6708504026
And combine a couple arrays into an array structure
122 lines
3.1 KiB
C++
122 lines
3.1 KiB
C++
#ifndef ALC_HRTF_H
|
|
#define ALC_HRTF_H
|
|
|
|
#include <array>
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
#include "AL/al.h"
|
|
#include "AL/alc.h"
|
|
|
|
#include "vector.h"
|
|
#include "almalloc.h"
|
|
|
|
|
|
#define HRTF_HISTORY_BITS (6)
|
|
#define HRTF_HISTORY_LENGTH (1<<HRTF_HISTORY_BITS)
|
|
#define HRTF_HISTORY_MASK (HRTF_HISTORY_LENGTH-1)
|
|
|
|
#define HRIR_BITS (7)
|
|
#define HRIR_LENGTH (1<<HRIR_BITS)
|
|
#define HRIR_MASK (HRIR_LENGTH-1)
|
|
|
|
|
|
struct HrtfHandle;
|
|
|
|
struct HrtfEntry {
|
|
RefCount ref;
|
|
|
|
ALuint sampleRate;
|
|
ALsizei irSize;
|
|
|
|
struct Field {
|
|
ALfloat distance;
|
|
ALubyte evCount;
|
|
};
|
|
/* NOTE: Fields are stored *backwards*. field[0] is the farthest field, and
|
|
* field[fdCount-1] is the nearest.
|
|
*/
|
|
ALsizei fdCount;
|
|
const Field *field;
|
|
|
|
struct Elevation {
|
|
ALushort azCount;
|
|
ALushort irOffset;
|
|
};
|
|
Elevation *elev;
|
|
const ALfloat (*coeffs)[2];
|
|
const ALubyte (*delays)[2];
|
|
|
|
void IncRef();
|
|
void DecRef();
|
|
|
|
static constexpr inline const char *CurrentPrefix() noexcept { return "HrtfEntry::"; }
|
|
DEF_PLACE_NEWDEL()
|
|
};
|
|
|
|
struct EnumeratedHrtf {
|
|
std::string name;
|
|
|
|
HrtfHandle *hrtf;
|
|
};
|
|
|
|
|
|
using float2 = std::array<float,2>;
|
|
|
|
template<typename T>
|
|
using HrirArray = std::array<std::array<T,2>,HRIR_LENGTH>;
|
|
|
|
struct HrtfState {
|
|
alignas(16) std::array<ALfloat,HRTF_HISTORY_LENGTH> History;
|
|
alignas(16) HrirArray<ALfloat> Values;
|
|
};
|
|
|
|
struct HrtfParams {
|
|
alignas(16) HrirArray<ALfloat> Coeffs;
|
|
ALsizei Delay[2];
|
|
ALfloat Gain;
|
|
};
|
|
|
|
struct DirectHrtfState {
|
|
/* HRTF filter state for dry buffer content */
|
|
ALsizei IrSize{0};
|
|
struct ChanData {
|
|
alignas(16) HrirArray<ALfloat> Values;
|
|
alignas(16) HrirArray<ALfloat> Coeffs;
|
|
};
|
|
al::FlexArray<ChanData> Chan;
|
|
|
|
DirectHrtfState(size_t numchans) : Chan{numchans} { }
|
|
DirectHrtfState(const DirectHrtfState&) = delete;
|
|
DirectHrtfState& operator=(const DirectHrtfState&) = delete;
|
|
|
|
static std::unique_ptr<DirectHrtfState> Create(size_t num_chans);
|
|
static constexpr size_t Sizeof(size_t numchans) noexcept
|
|
{ return al::FlexArray<ChanData>::Sizeof(numchans, offsetof(DirectHrtfState, Chan)); }
|
|
|
|
DEF_PLACE_NEWDEL()
|
|
};
|
|
|
|
struct AngularPoint {
|
|
ALfloat Elev;
|
|
ALfloat Azim;
|
|
};
|
|
|
|
|
|
al::vector<EnumeratedHrtf> EnumerateHrtf(const char *devname);
|
|
HrtfEntry *GetLoadedHrtf(HrtfHandle *handle);
|
|
|
|
void GetHrtfCoeffs(const HrtfEntry *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat distance,
|
|
ALfloat spread, HrirArray<ALfloat> &coeffs, ALsizei (&delays)[2]);
|
|
|
|
/**
|
|
* Produces HRTF filter coefficients for decoding B-Format, given a set of
|
|
* virtual speaker positions, a matching decoding matrix, and per-order high-
|
|
* frequency gains for the decoder. The calculated impulse responses are
|
|
* ordered and scaled according to the matrix input. Note the specified virtual
|
|
* positions should be in degrees, not radians!
|
|
*/
|
|
void BuildBFormatHrtf(const HrtfEntry *Hrtf, DirectHrtfState *state, const ALsizei NumChannels, const AngularPoint *AmbiPoints, const ALfloat (*RESTRICT AmbiMatrix)[MAX_AMBI_CHANNELS], const size_t AmbiCount, const ALfloat *RESTRICT AmbiOrderHFGain);
|
|
|
|
#endif /* ALC_HRTF_H */
|