72 lines
1.7 KiB
C
72 lines
1.7 KiB
C
#ifndef ALCOMPLEX_H
|
|
#define ALCOMPLEX_H
|
|
|
|
#include "AL/al.h"
|
|
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
typedef struct ALcomplex {
|
|
ALdouble Real;
|
|
ALdouble Imag;
|
|
} ALcomplex;
|
|
|
|
/** Addition of two complex numbers. */
|
|
inline ALcomplex complex_add(ALcomplex a, ALcomplex b)
|
|
{
|
|
ALcomplex result;
|
|
|
|
result.Real = a.Real + b.Real;
|
|
result.Imag = a.Imag + b.Imag;
|
|
|
|
return result;
|
|
}
|
|
|
|
/** Subtraction of two complex numbers. */
|
|
inline ALcomplex complex_sub(ALcomplex a, ALcomplex b)
|
|
{
|
|
ALcomplex result;
|
|
|
|
result.Real = a.Real - b.Real;
|
|
result.Imag = a.Imag - b.Imag;
|
|
|
|
return result;
|
|
}
|
|
|
|
/** Multiplication of two complex numbers. */
|
|
inline ALcomplex complex_mult(ALcomplex a, ALcomplex b)
|
|
{
|
|
ALcomplex result;
|
|
|
|
result.Real = a.Real*b.Real - a.Imag*b.Imag;
|
|
result.Imag = a.Imag*b.Real + a.Real*b.Imag;
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Iterative implementation of 2-radix FFT (In-place algorithm). Sign = -1 is
|
|
* FFT and 1 is iFFT (inverse). Fills FFTBuffer[0...FFTSize-1] with the
|
|
* Discrete Fourier Transform (DFT) of the time domain data stored in
|
|
* FFTBuffer[0...FFTSize-1]. FFTBuffer is an array of complex numbers, FFTSize
|
|
* MUST BE power of two.
|
|
*/
|
|
void complex_fft(ALcomplex *FFTBuffer, ALsizei FFTSize, ALdouble Sign);
|
|
|
|
/**
|
|
* Calculate the complex helical sequence (discrete-time analytical signal) of
|
|
* the given input using the discrete Hilbert transform (In-place algorithm).
|
|
* Fills Buffer[0...size-1] with the discrete-time analytical signal stored in
|
|
* Buffer[0...size-1]. Buffer is an array of complex numbers, size MUST BE
|
|
* power of two.
|
|
*/
|
|
void complex_hilbert(ALcomplex *Buffer, ALsizei size);
|
|
|
|
#ifdef __cplusplus
|
|
} // extern "C"
|
|
#endif
|
|
|
|
#endif /* ALCOMPLEX_H */
|