303 lines
11 KiB
C++
303 lines
11 KiB
C++
#include "config.h"
|
|
|
|
#include <xmmintrin.h>
|
|
|
|
#include <limits>
|
|
|
|
#include "AL/al.h"
|
|
#include "AL/alc.h"
|
|
#include "alcmain.h"
|
|
|
|
#include "alu.h"
|
|
#include "defs.h"
|
|
#include "hrtfbase.h"
|
|
|
|
|
|
namespace {
|
|
|
|
inline void ApplyCoeffs(float2 *RESTRICT Values, const ALuint IrSize, const HrirArray &Coeffs,
|
|
const float left, const float right)
|
|
{
|
|
const __m128 lrlr{_mm_setr_ps(left, right, left, right)};
|
|
|
|
ASSUME(IrSize >= 4);
|
|
/* This isn't technically correct to test alignment, but it's true for
|
|
* systems that support SSE, which is the only one that needs to know the
|
|
* alignment of Values (which alternates between 8- and 16-byte aligned).
|
|
*/
|
|
if(reinterpret_cast<intptr_t>(Values)&0x8)
|
|
{
|
|
__m128 imp0, imp1;
|
|
__m128 coeffs{_mm_load_ps(&Coeffs[0][0])};
|
|
__m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(&Values[0][0]))};
|
|
imp0 = _mm_mul_ps(lrlr, coeffs);
|
|
vals = _mm_add_ps(imp0, vals);
|
|
_mm_storel_pi(reinterpret_cast<__m64*>(&Values[0][0]), vals);
|
|
ALuint i{1};
|
|
for(;i < IrSize-1;i += 2)
|
|
{
|
|
coeffs = _mm_load_ps(&Coeffs[i+1][0]);
|
|
vals = _mm_load_ps(&Values[i][0]);
|
|
imp1 = _mm_mul_ps(lrlr, coeffs);
|
|
imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
|
|
vals = _mm_add_ps(imp0, vals);
|
|
_mm_store_ps(&Values[i][0], vals);
|
|
imp0 = imp1;
|
|
}
|
|
vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(&Values[i][0]));
|
|
imp0 = _mm_movehl_ps(imp0, imp0);
|
|
vals = _mm_add_ps(imp0, vals);
|
|
_mm_storel_pi(reinterpret_cast<__m64*>(&Values[i][0]), vals);
|
|
}
|
|
else
|
|
{
|
|
for(ALuint i{0};i < IrSize;i += 2)
|
|
{
|
|
__m128 coeffs{_mm_load_ps(&Coeffs[i][0])};
|
|
__m128 vals{_mm_load_ps(&Values[i][0])};
|
|
vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs));
|
|
_mm_store_ps(&Values[i][0], vals);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
template<>
|
|
const ALfloat *Resample_<BSincTag,SSETag>(const InterpState *state, const ALfloat *RESTRICT src,
|
|
ALuint frac, ALuint increment, const al::span<float> dst)
|
|
{
|
|
const float *const filter{state->bsinc.filter};
|
|
const __m128 sf4{_mm_set1_ps(state->bsinc.sf)};
|
|
const size_t m{state->bsinc.m};
|
|
|
|
src -= state->bsinc.l;
|
|
for(float &out_sample : dst)
|
|
{
|
|
// Calculate the phase index and factor.
|
|
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
|
|
const ALuint pi{frac >> FRAC_PHASE_BITDIFF};
|
|
const float pf{static_cast<float>(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) *
|
|
(1.0f/(1<<FRAC_PHASE_BITDIFF))};
|
|
#undef FRAC_PHASE_BITDIFF
|
|
|
|
// Apply the scale and phase interpolated filter.
|
|
__m128 r4{_mm_setzero_ps()};
|
|
{
|
|
const __m128 pf4{_mm_set1_ps(pf)};
|
|
const float *fil{filter + m*pi*4};
|
|
const float *phd{fil + m};
|
|
const float *scd{phd + m};
|
|
const float *spd{scd + m};
|
|
size_t td{m >> 2};
|
|
size_t j{0u};
|
|
|
|
#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
|
|
do {
|
|
/* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
|
|
const __m128 f4 = MLA4(
|
|
MLA4(_mm_load_ps(fil), sf4, _mm_load_ps(scd)),
|
|
pf4, MLA4(_mm_load_ps(phd), sf4, _mm_load_ps(spd)));
|
|
fil += 4; scd += 4; phd += 4; spd += 4;
|
|
/* r += f*src */
|
|
r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j]));
|
|
j += 4;
|
|
} while(--td);
|
|
#undef MLA4
|
|
}
|
|
r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
|
|
r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
|
|
out_sample = _mm_cvtss_f32(r4);
|
|
|
|
frac += increment;
|
|
src += frac>>FRACTIONBITS;
|
|
frac &= FRACTIONMASK;
|
|
}
|
|
return dst.begin();
|
|
}
|
|
|
|
template<>
|
|
const ALfloat *Resample_<FastBSincTag,SSETag>(const InterpState *state,
|
|
const ALfloat *RESTRICT src, ALuint frac, ALuint increment, const al::span<float> dst)
|
|
{
|
|
const float *const filter{state->bsinc.filter};
|
|
const size_t m{state->bsinc.m};
|
|
|
|
src -= state->bsinc.l;
|
|
for(float &out_sample : dst)
|
|
{
|
|
// Calculate the phase index and factor.
|
|
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
|
|
const ALuint pi{frac >> FRAC_PHASE_BITDIFF};
|
|
const float pf{static_cast<float>(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) *
|
|
(1.0f/(1<<FRAC_PHASE_BITDIFF))};
|
|
#undef FRAC_PHASE_BITDIFF
|
|
|
|
// Apply the phase interpolated filter.
|
|
__m128 r4{_mm_setzero_ps()};
|
|
{
|
|
const __m128 pf4{_mm_set1_ps(pf)};
|
|
const float *fil{filter + m*pi*4};
|
|
const float *phd{fil + m};
|
|
size_t td{m >> 2};
|
|
size_t j{0u};
|
|
|
|
#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
|
|
do {
|
|
/* f = fil + pf*phd */
|
|
const __m128 f4 = MLA4(_mm_load_ps(fil), pf4, _mm_load_ps(phd));
|
|
/* r += f*src */
|
|
r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j]));
|
|
fil += 4; phd += 4; j += 4;
|
|
} while(--td);
|
|
#undef MLA4
|
|
}
|
|
r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
|
|
r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
|
|
out_sample = _mm_cvtss_f32(r4);
|
|
|
|
frac += increment;
|
|
src += frac>>FRACTIONBITS;
|
|
frac &= FRACTIONMASK;
|
|
}
|
|
return dst.begin();
|
|
}
|
|
|
|
|
|
template<>
|
|
void MixHrtf_<SSETag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
|
|
const float *InSamples, float2 *AccumSamples, const size_t OutPos, const ALuint IrSize,
|
|
MixHrtfFilter *hrtfparams, const size_t BufferSize)
|
|
{
|
|
MixHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize,
|
|
hrtfparams, BufferSize);
|
|
}
|
|
|
|
template<>
|
|
void MixHrtfBlend_<SSETag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
|
|
const float *InSamples, float2 *AccumSamples, const size_t OutPos, const ALuint IrSize,
|
|
const HrtfFilter *oldparams, MixHrtfFilter *newparams, const size_t BufferSize)
|
|
{
|
|
MixHrtfBlendBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize,
|
|
oldparams, newparams, BufferSize);
|
|
}
|
|
|
|
template<>
|
|
void MixDirectHrtf_<SSETag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
|
|
const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, DirectHrtfState *State,
|
|
const size_t BufferSize)
|
|
{ MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize); }
|
|
|
|
|
|
template<>
|
|
void Mix_<SSETag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
|
|
float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
|
|
{
|
|
const ALfloat delta{(Counter > 0) ? 1.0f / static_cast<ALfloat>(Counter) : 0.0f};
|
|
const bool reached_target{InSamples.size() >= Counter};
|
|
const auto min_end = reached_target ? InSamples.begin() + Counter : InSamples.end();
|
|
const auto aligned_end = minz(static_cast<uintptr_t>(min_end-InSamples.begin()+3) & ~3u,
|
|
InSamples.size()) + InSamples.begin();
|
|
for(FloatBufferLine &output : OutBuffer)
|
|
{
|
|
ALfloat *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
|
|
ALfloat gain{*CurrentGains};
|
|
const ALfloat diff{*TargetGains - gain};
|
|
|
|
auto in_iter = InSamples.begin();
|
|
if(std::fabs(diff) > std::numeric_limits<float>::epsilon())
|
|
{
|
|
const ALfloat step{diff * delta};
|
|
ALfloat step_count{0.0f};
|
|
/* Mix with applying gain steps in aligned multiples of 4. */
|
|
if(ptrdiff_t todo{(min_end-in_iter) >> 2})
|
|
{
|
|
const __m128 four4{_mm_set1_ps(4.0f)};
|
|
const __m128 step4{_mm_set1_ps(step)};
|
|
const __m128 gain4{_mm_set1_ps(gain)};
|
|
__m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)};
|
|
do {
|
|
const __m128 val4{_mm_load_ps(in_iter)};
|
|
__m128 dry4{_mm_load_ps(dst)};
|
|
#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
|
|
/* dry += val * (gain + step*step_count) */
|
|
dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4));
|
|
#undef MLA4
|
|
_mm_store_ps(dst, dry4);
|
|
step_count4 = _mm_add_ps(step_count4, four4);
|
|
in_iter += 4; dst += 4;
|
|
} while(--todo);
|
|
/* NOTE: step_count4 now represents the next four counts after
|
|
* the last four mixed samples, so the lowest element
|
|
* represents the next step count to apply.
|
|
*/
|
|
step_count = _mm_cvtss_f32(step_count4);
|
|
}
|
|
/* Mix with applying left over gain steps that aren't aligned multiples of 4. */
|
|
while(in_iter != min_end)
|
|
{
|
|
*(dst++) += *(in_iter++) * (gain + step*step_count);
|
|
step_count += 1.0f;
|
|
}
|
|
if(reached_target)
|
|
gain = *TargetGains;
|
|
else
|
|
gain += step*step_count;
|
|
*CurrentGains = gain;
|
|
|
|
/* Mix until pos is aligned with 4 or the mix is done. */
|
|
while(in_iter != aligned_end)
|
|
*(dst++) += *(in_iter++) * gain;
|
|
}
|
|
++CurrentGains;
|
|
++TargetGains;
|
|
|
|
if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
|
|
continue;
|
|
if(ptrdiff_t todo{(InSamples.end()-in_iter) >> 2})
|
|
{
|
|
const __m128 gain4{_mm_set1_ps(gain)};
|
|
do {
|
|
const __m128 val4{_mm_load_ps(in_iter)};
|
|
__m128 dry4{_mm_load_ps(dst)};
|
|
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
|
|
_mm_store_ps(dst, dry4);
|
|
in_iter += 4; dst += 4;
|
|
} while(--todo);
|
|
}
|
|
while(in_iter != InSamples.end())
|
|
*(dst++) += *(in_iter++) * gain;
|
|
}
|
|
}
|
|
|
|
template<>
|
|
void MixRow_<SSETag>(const al::span<float> OutBuffer, const al::span<const float> Gains,
|
|
const float *InSamples, const size_t InStride)
|
|
{
|
|
for(const float gain : Gains)
|
|
{
|
|
const float *RESTRICT input{InSamples};
|
|
InSamples += InStride;
|
|
|
|
if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
|
|
continue;
|
|
|
|
auto out_iter = OutBuffer.begin();
|
|
if(size_t todo{OutBuffer.size() >> 2})
|
|
{
|
|
const __m128 gain4 = _mm_set1_ps(gain);
|
|
do {
|
|
const __m128 val4{_mm_load_ps(input)};
|
|
__m128 dry4{_mm_load_ps(out_iter)};
|
|
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
|
|
_mm_store_ps(out_iter, dry4);
|
|
out_iter += 4; input += 4;
|
|
} while(--todo);
|
|
}
|
|
|
|
auto do_mix = [gain](const float cur, const float src) noexcept -> float
|
|
{ return cur + src*gain; };
|
|
std::transform(out_iter, OutBuffer.end(), input, out_iter, do_mix);
|
|
}
|
|
}
|