openal-soft/Alc/backends/pulseaudio.cpp

1681 lines
55 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 2009 by Konstantinos Natsakis <konstantinos.natsakis@gmail.com>
* Copyright (C) 2010 by Chris Robinson <chris.kcat@gmail.com>
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include "backends/pulseaudio.h"
#include <string.h>
#include <array>
#include <string>
#include <vector>
#include <atomic>
#include <thread>
#include <algorithm>
#include "alMain.h"
#include "alu.h"
#include "alconfig.h"
#include "compat.h"
#include <pulse/pulseaudio.h>
namespace {
#ifdef HAVE_DYNLOAD
void *pa_handle;
#define MAKE_FUNC(x) decltype(x) * p##x
MAKE_FUNC(pa_context_unref);
MAKE_FUNC(pa_sample_spec_valid);
MAKE_FUNC(pa_frame_size);
MAKE_FUNC(pa_stream_drop);
MAKE_FUNC(pa_strerror);
MAKE_FUNC(pa_context_get_state);
MAKE_FUNC(pa_stream_get_state);
MAKE_FUNC(pa_threaded_mainloop_signal);
MAKE_FUNC(pa_stream_peek);
MAKE_FUNC(pa_threaded_mainloop_wait);
MAKE_FUNC(pa_threaded_mainloop_unlock);
MAKE_FUNC(pa_threaded_mainloop_in_thread);
MAKE_FUNC(pa_context_new);
MAKE_FUNC(pa_threaded_mainloop_stop);
MAKE_FUNC(pa_context_disconnect);
MAKE_FUNC(pa_threaded_mainloop_start);
MAKE_FUNC(pa_threaded_mainloop_get_api);
MAKE_FUNC(pa_context_set_state_callback);
MAKE_FUNC(pa_stream_write);
MAKE_FUNC(pa_xfree);
MAKE_FUNC(pa_stream_connect_record);
MAKE_FUNC(pa_stream_connect_playback);
MAKE_FUNC(pa_stream_readable_size);
MAKE_FUNC(pa_stream_writable_size);
MAKE_FUNC(pa_stream_is_corked);
MAKE_FUNC(pa_stream_cork);
MAKE_FUNC(pa_stream_is_suspended);
MAKE_FUNC(pa_stream_get_device_name);
MAKE_FUNC(pa_stream_get_latency);
MAKE_FUNC(pa_path_get_filename);
MAKE_FUNC(pa_get_binary_name);
MAKE_FUNC(pa_threaded_mainloop_free);
MAKE_FUNC(pa_context_errno);
MAKE_FUNC(pa_xmalloc);
MAKE_FUNC(pa_stream_unref);
MAKE_FUNC(pa_threaded_mainloop_accept);
MAKE_FUNC(pa_stream_set_write_callback);
MAKE_FUNC(pa_threaded_mainloop_new);
MAKE_FUNC(pa_context_connect);
MAKE_FUNC(pa_stream_set_buffer_attr);
MAKE_FUNC(pa_stream_get_buffer_attr);
MAKE_FUNC(pa_stream_get_sample_spec);
MAKE_FUNC(pa_stream_get_time);
MAKE_FUNC(pa_stream_set_read_callback);
MAKE_FUNC(pa_stream_set_state_callback);
MAKE_FUNC(pa_stream_set_moved_callback);
MAKE_FUNC(pa_stream_set_underflow_callback);
MAKE_FUNC(pa_stream_new_with_proplist);
MAKE_FUNC(pa_stream_disconnect);
MAKE_FUNC(pa_threaded_mainloop_lock);
MAKE_FUNC(pa_channel_map_init_auto);
MAKE_FUNC(pa_channel_map_parse);
MAKE_FUNC(pa_channel_map_snprint);
MAKE_FUNC(pa_channel_map_equal);
MAKE_FUNC(pa_context_get_server_info);
MAKE_FUNC(pa_context_get_sink_info_by_name);
MAKE_FUNC(pa_context_get_sink_info_list);
MAKE_FUNC(pa_context_get_source_info_by_name);
MAKE_FUNC(pa_context_get_source_info_list);
MAKE_FUNC(pa_operation_get_state);
MAKE_FUNC(pa_operation_unref);
MAKE_FUNC(pa_proplist_new);
MAKE_FUNC(pa_proplist_free);
MAKE_FUNC(pa_proplist_set);
MAKE_FUNC(pa_channel_map_superset);
MAKE_FUNC(pa_stream_set_buffer_attr_callback);
MAKE_FUNC(pa_stream_begin_write);
#undef MAKE_FUNC
#ifndef IN_IDE_PARSER
#define pa_context_unref ppa_context_unref
#define pa_sample_spec_valid ppa_sample_spec_valid
#define pa_frame_size ppa_frame_size
#define pa_stream_drop ppa_stream_drop
#define pa_strerror ppa_strerror
#define pa_context_get_state ppa_context_get_state
#define pa_stream_get_state ppa_stream_get_state
#define pa_threaded_mainloop_signal ppa_threaded_mainloop_signal
#define pa_stream_peek ppa_stream_peek
#define pa_threaded_mainloop_wait ppa_threaded_mainloop_wait
#define pa_threaded_mainloop_unlock ppa_threaded_mainloop_unlock
#define pa_threaded_mainloop_in_thread ppa_threaded_mainloop_in_thread
#define pa_context_new ppa_context_new
#define pa_threaded_mainloop_stop ppa_threaded_mainloop_stop
#define pa_context_disconnect ppa_context_disconnect
#define pa_threaded_mainloop_start ppa_threaded_mainloop_start
#define pa_threaded_mainloop_get_api ppa_threaded_mainloop_get_api
#define pa_context_set_state_callback ppa_context_set_state_callback
#define pa_stream_write ppa_stream_write
#define pa_xfree ppa_xfree
#define pa_stream_connect_record ppa_stream_connect_record
#define pa_stream_connect_playback ppa_stream_connect_playback
#define pa_stream_readable_size ppa_stream_readable_size
#define pa_stream_writable_size ppa_stream_writable_size
#define pa_stream_is_corked ppa_stream_is_corked
#define pa_stream_cork ppa_stream_cork
#define pa_stream_is_suspended ppa_stream_is_suspended
#define pa_stream_get_device_name ppa_stream_get_device_name
#define pa_stream_get_latency ppa_stream_get_latency
#define pa_path_get_filename ppa_path_get_filename
#define pa_get_binary_name ppa_get_binary_name
#define pa_threaded_mainloop_free ppa_threaded_mainloop_free
#define pa_context_errno ppa_context_errno
#define pa_xmalloc ppa_xmalloc
#define pa_stream_unref ppa_stream_unref
#define pa_threaded_mainloop_accept ppa_threaded_mainloop_accept
#define pa_stream_set_write_callback ppa_stream_set_write_callback
#define pa_threaded_mainloop_new ppa_threaded_mainloop_new
#define pa_context_connect ppa_context_connect
#define pa_stream_set_buffer_attr ppa_stream_set_buffer_attr
#define pa_stream_get_buffer_attr ppa_stream_get_buffer_attr
#define pa_stream_get_sample_spec ppa_stream_get_sample_spec
#define pa_stream_get_time ppa_stream_get_time
#define pa_stream_set_read_callback ppa_stream_set_read_callback
#define pa_stream_set_state_callback ppa_stream_set_state_callback
#define pa_stream_set_moved_callback ppa_stream_set_moved_callback
#define pa_stream_set_underflow_callback ppa_stream_set_underflow_callback
#define pa_stream_new_with_proplist ppa_stream_new_with_proplist
#define pa_stream_disconnect ppa_stream_disconnect
#define pa_threaded_mainloop_lock ppa_threaded_mainloop_lock
#define pa_channel_map_init_auto ppa_channel_map_init_auto
#define pa_channel_map_parse ppa_channel_map_parse
#define pa_channel_map_snprint ppa_channel_map_snprint
#define pa_channel_map_equal ppa_channel_map_equal
#define pa_context_get_server_info ppa_context_get_server_info
#define pa_context_get_sink_info_by_name ppa_context_get_sink_info_by_name
#define pa_context_get_sink_info_list ppa_context_get_sink_info_list
#define pa_context_get_source_info_by_name ppa_context_get_source_info_by_name
#define pa_context_get_source_info_list ppa_context_get_source_info_list
#define pa_operation_get_state ppa_operation_get_state
#define pa_operation_unref ppa_operation_unref
#define pa_proplist_new ppa_proplist_new
#define pa_proplist_free ppa_proplist_free
#define pa_proplist_set ppa_proplist_set
#define pa_channel_map_superset ppa_channel_map_superset
#define pa_stream_set_buffer_attr_callback ppa_stream_set_buffer_attr_callback
#define pa_stream_begin_write ppa_stream_begin_write
#endif /* IN_IDE_PARSER */
#endif
ALCboolean pulse_load(void)
{
ALCboolean ret{ALC_TRUE};
#ifdef HAVE_DYNLOAD
if(!pa_handle)
{
std::string missing_funcs;
#ifdef _WIN32
#define PALIB "libpulse-0.dll"
#elif defined(__APPLE__) && defined(__MACH__)
#define PALIB "libpulse.0.dylib"
#else
#define PALIB "libpulse.so.0"
#endif
pa_handle = LoadLib(PALIB);
if(!pa_handle)
{
WARN("Failed to load %s\n", PALIB);
return ALC_FALSE;
}
#define LOAD_FUNC(x) do { \
p##x = reinterpret_cast<decltype(p##x)>(GetSymbol(pa_handle, #x)); \
if(!(p##x)) { \
ret = ALC_FALSE; \
missing_funcs += "\n" #x; \
} \
} while(0)
LOAD_FUNC(pa_context_unref);
LOAD_FUNC(pa_sample_spec_valid);
LOAD_FUNC(pa_stream_drop);
LOAD_FUNC(pa_frame_size);
LOAD_FUNC(pa_strerror);
LOAD_FUNC(pa_context_get_state);
LOAD_FUNC(pa_stream_get_state);
LOAD_FUNC(pa_threaded_mainloop_signal);
LOAD_FUNC(pa_stream_peek);
LOAD_FUNC(pa_threaded_mainloop_wait);
LOAD_FUNC(pa_threaded_mainloop_unlock);
LOAD_FUNC(pa_threaded_mainloop_in_thread);
LOAD_FUNC(pa_context_new);
LOAD_FUNC(pa_threaded_mainloop_stop);
LOAD_FUNC(pa_context_disconnect);
LOAD_FUNC(pa_threaded_mainloop_start);
LOAD_FUNC(pa_threaded_mainloop_get_api);
LOAD_FUNC(pa_context_set_state_callback);
LOAD_FUNC(pa_stream_write);
LOAD_FUNC(pa_xfree);
LOAD_FUNC(pa_stream_connect_record);
LOAD_FUNC(pa_stream_connect_playback);
LOAD_FUNC(pa_stream_readable_size);
LOAD_FUNC(pa_stream_writable_size);
LOAD_FUNC(pa_stream_is_corked);
LOAD_FUNC(pa_stream_cork);
LOAD_FUNC(pa_stream_is_suspended);
LOAD_FUNC(pa_stream_get_device_name);
LOAD_FUNC(pa_stream_get_latency);
LOAD_FUNC(pa_path_get_filename);
LOAD_FUNC(pa_get_binary_name);
LOAD_FUNC(pa_threaded_mainloop_free);
LOAD_FUNC(pa_context_errno);
LOAD_FUNC(pa_xmalloc);
LOAD_FUNC(pa_stream_unref);
LOAD_FUNC(pa_threaded_mainloop_accept);
LOAD_FUNC(pa_stream_set_write_callback);
LOAD_FUNC(pa_threaded_mainloop_new);
LOAD_FUNC(pa_context_connect);
LOAD_FUNC(pa_stream_set_buffer_attr);
LOAD_FUNC(pa_stream_get_buffer_attr);
LOAD_FUNC(pa_stream_get_sample_spec);
LOAD_FUNC(pa_stream_get_time);
LOAD_FUNC(pa_stream_set_read_callback);
LOAD_FUNC(pa_stream_set_state_callback);
LOAD_FUNC(pa_stream_set_moved_callback);
LOAD_FUNC(pa_stream_set_underflow_callback);
LOAD_FUNC(pa_stream_new_with_proplist);
LOAD_FUNC(pa_stream_disconnect);
LOAD_FUNC(pa_threaded_mainloop_lock);
LOAD_FUNC(pa_channel_map_init_auto);
LOAD_FUNC(pa_channel_map_parse);
LOAD_FUNC(pa_channel_map_snprint);
LOAD_FUNC(pa_channel_map_equal);
LOAD_FUNC(pa_context_get_server_info);
LOAD_FUNC(pa_context_get_sink_info_by_name);
LOAD_FUNC(pa_context_get_sink_info_list);
LOAD_FUNC(pa_context_get_source_info_by_name);
LOAD_FUNC(pa_context_get_source_info_list);
LOAD_FUNC(pa_operation_get_state);
LOAD_FUNC(pa_operation_unref);
LOAD_FUNC(pa_proplist_new);
LOAD_FUNC(pa_proplist_free);
LOAD_FUNC(pa_proplist_set);
LOAD_FUNC(pa_channel_map_superset);
LOAD_FUNC(pa_stream_set_buffer_attr_callback);
LOAD_FUNC(pa_stream_begin_write);
#undef LOAD_FUNC
if(ret == ALC_FALSE)
{
WARN("Missing expected functions:%s\n", missing_funcs.c_str());
CloseLib(pa_handle);
pa_handle = nullptr;
}
}
#endif /* HAVE_DYNLOAD */
return ret;
}
/* *grumble* Don't use enums for bitflags. */
inline pa_stream_flags_t operator|(pa_stream_flags_t lhs, pa_stream_flags_t rhs)
{ return pa_stream_flags_t(int(lhs) | int(rhs)); }
inline pa_stream_flags_t operator|=(pa_stream_flags_t &lhs, pa_stream_flags_t rhs)
{
lhs = pa_stream_flags_t(int(lhs) | int(rhs));
return lhs;
}
inline pa_context_flags_t operator|=(pa_context_flags_t &lhs, pa_context_flags_t rhs)
{
lhs = pa_context_flags_t(int(lhs) | int(rhs));
return lhs;
}
class palock_guard {
pa_threaded_mainloop *mLoop;
public:
explicit palock_guard(pa_threaded_mainloop *loop) : mLoop(loop)
{ pa_threaded_mainloop_lock(mLoop); }
~palock_guard() { pa_threaded_mainloop_unlock(mLoop); }
palock_guard(const palock_guard&) = delete;
palock_guard& operator=(const palock_guard&) = delete;
};
class unique_palock {
pa_threaded_mainloop *mLoop{nullptr};
bool mLocked{false};
public:
unique_palock() noexcept = default;
explicit unique_palock(pa_threaded_mainloop *loop) : mLoop(loop)
{
pa_threaded_mainloop_lock(mLoop);
mLocked = true;
}
unique_palock(unique_palock&& rhs) : mLoop(rhs.mLoop), mLocked(rhs.mLocked)
{ rhs.mLoop = nullptr; rhs.mLocked = false; }
~unique_palock() { if(mLocked) pa_threaded_mainloop_unlock(mLoop); }
unique_palock& operator=(const unique_palock&) = delete;
unique_palock& operator=(unique_palock&& rhs)
{
if(mLocked)
pa_threaded_mainloop_unlock(mLoop);
mLoop = rhs.mLoop; rhs.mLoop = nullptr;
mLocked = rhs.mLocked; rhs.mLocked = false;
return *this;
}
void lock()
{
pa_threaded_mainloop_lock(mLoop);
mLocked = true;
}
void unlock()
{
mLocked = false;
pa_threaded_mainloop_unlock(mLoop);
}
};
/* Global flags and properties */
pa_context_flags_t pulse_ctx_flags;
pa_proplist *prop_filter;
/* PulseAudio Event Callbacks */
void context_state_callback(pa_context *context, void *pdata)
{
auto loop = static_cast<pa_threaded_mainloop*>(pdata);
pa_context_state_t state{pa_context_get_state(context)};
if(state == PA_CONTEXT_READY || !PA_CONTEXT_IS_GOOD(state))
pa_threaded_mainloop_signal(loop, 0);
}
void stream_state_callback(pa_stream *stream, void *pdata)
{
auto loop = static_cast<pa_threaded_mainloop*>(pdata);
pa_stream_state_t state{pa_stream_get_state(stream)};
if(state == PA_STREAM_READY || !PA_STREAM_IS_GOOD(state))
pa_threaded_mainloop_signal(loop, 0);
}
void stream_success_callback(pa_stream *UNUSED(stream), int UNUSED(success), void *pdata)
{
auto loop = static_cast<pa_threaded_mainloop*>(pdata);
pa_threaded_mainloop_signal(loop, 0);
}
void wait_for_operation(pa_operation *op, pa_threaded_mainloop *loop)
{
if(op)
{
while(pa_operation_get_state(op) == PA_OPERATION_RUNNING)
pa_threaded_mainloop_wait(loop);
pa_operation_unref(op);
}
}
pa_context *connect_context(pa_threaded_mainloop *loop, ALboolean silent)
{
const char *name{"OpenAL Soft"};
const PathNamePair &binname = GetProcBinary();
if(!binname.fname.empty())
name = binname.fname.c_str();
pa_context *context{pa_context_new(pa_threaded_mainloop_get_api(loop), name)};
if(!context)
{
ERR("pa_context_new() failed\n");
return nullptr;
}
pa_context_set_state_callback(context, context_state_callback, loop);
int err;
if((err=pa_context_connect(context, nullptr, pulse_ctx_flags, nullptr)) >= 0)
{
pa_context_state_t state;
while((state=pa_context_get_state(context)) != PA_CONTEXT_READY)
{
if(!PA_CONTEXT_IS_GOOD(state))
{
err = pa_context_errno(context);
if(err > 0) err = -err;
break;
}
pa_threaded_mainloop_wait(loop);
}
}
pa_context_set_state_callback(context, nullptr, nullptr);
if(err < 0)
{
if(!silent)
ERR("Context did not connect: %s\n", pa_strerror(err));
pa_context_unref(context);
context = nullptr;
}
return context;
}
using MainloopContextPair = std::pair<pa_threaded_mainloop*,pa_context*>;
MainloopContextPair pulse_open(void(*state_cb)(pa_context*,void*), void *ptr)
{
pa_threaded_mainloop *loop{pa_threaded_mainloop_new()};
if(UNLIKELY(!loop))
{
ERR("pa_threaded_mainloop_new() failed!\n");
return {nullptr, nullptr};
}
if(UNLIKELY(pa_threaded_mainloop_start(loop) < 0))
{
ERR("pa_threaded_mainloop_start() failed\n");
pa_threaded_mainloop_free(loop);
return {nullptr, nullptr};
}
unique_palock palock{loop};
pa_context *context{connect_context(loop, AL_FALSE)};
if(UNLIKELY(!context))
{
palock = unique_palock{};
pa_threaded_mainloop_stop(loop);
pa_threaded_mainloop_free(loop);
return {nullptr, nullptr};
}
pa_context_set_state_callback(context, state_cb, ptr);
return {loop, context};
}
void pulse_close(pa_threaded_mainloop *loop, pa_context *context, pa_stream *stream)
{
{ palock_guard _{loop};
if(stream)
{
pa_stream_set_state_callback(stream, nullptr, nullptr);
pa_stream_set_moved_callback(stream, nullptr, nullptr);
pa_stream_set_write_callback(stream, nullptr, nullptr);
pa_stream_set_buffer_attr_callback(stream, nullptr, nullptr);
pa_stream_disconnect(stream);
pa_stream_unref(stream);
}
pa_context_disconnect(context);
pa_context_unref(context);
}
pa_threaded_mainloop_stop(loop);
pa_threaded_mainloop_free(loop);
}
struct DevMap {
std::string name;
std::string device_name;
template<typename StrT0, typename StrT1>
DevMap(StrT0&& name_, StrT1&& devname_)
: name{std::forward<StrT0>(name_)}, device_name{std::forward<StrT1>(devname_)}
{ }
};
bool checkName(const al::vector<DevMap> &list, const std::string &name)
{
return std::find_if(list.cbegin(), list.cend(),
[&name](const DevMap &entry) -> bool
{ return entry.name == name; }
) != list.cend();
}
al::vector<DevMap> PlaybackDevices;
al::vector<DevMap> CaptureDevices;
pa_stream *pulse_connect_stream(const char *device_name, pa_threaded_mainloop *loop,
pa_context *context, pa_stream_flags_t flags, pa_buffer_attr *attr, pa_sample_spec *spec,
pa_channel_map *chanmap, BackendType type)
{
pa_stream *stream{pa_stream_new_with_proplist(context,
(type==BackendType::Playback) ? "Playback Stream" : "Capture Stream", spec, chanmap,
prop_filter)};
if(!stream)
{
ERR("pa_stream_new_with_proplist() failed: %s\n", pa_strerror(pa_context_errno(context)));
return nullptr;
}
pa_stream_set_state_callback(stream, stream_state_callback, loop);
int err{(type==BackendType::Playback) ?
pa_stream_connect_playback(stream, device_name, attr, flags, nullptr, nullptr) :
pa_stream_connect_record(stream, device_name, attr, flags)};
if(err < 0)
{
ERR("Stream did not connect: %s\n", pa_strerror(err));
pa_stream_unref(stream);
return nullptr;
}
pa_stream_state_t state;
while((state=pa_stream_get_state(stream)) != PA_STREAM_READY)
{
if(!PA_STREAM_IS_GOOD(state))
{
ERR("Stream did not get ready: %s\n", pa_strerror(pa_context_errno(context)));
pa_stream_unref(stream);
return nullptr;
}
pa_threaded_mainloop_wait(loop);
}
pa_stream_set_state_callback(stream, nullptr, nullptr);
return stream;
}
void device_sink_callback(pa_context *UNUSED(context), const pa_sink_info *info, int eol, void *pdata)
{
auto loop = static_cast<pa_threaded_mainloop*>(pdata);
if(eol)
{
pa_threaded_mainloop_signal(loop, 0);
return;
}
/* Skip this device is if it's already in the list. */
if(std::find_if(PlaybackDevices.cbegin(), PlaybackDevices.cend(),
[info](const DevMap &entry) -> bool
{ return entry.device_name == info->name; }
) != PlaybackDevices.cend())
return;
/* Make sure the display name (description) is unique. Append a number
* counter as needed.
*/
int count{1};
std::string newname{info->description};
while(checkName(PlaybackDevices, newname))
{
newname = info->description;
newname += " #";
newname += std::to_string(++count);
}
PlaybackDevices.emplace_back(std::move(newname), info->name);
DevMap &newentry = PlaybackDevices.back();
TRACE("Got device \"%s\", \"%s\"\n", newentry.name.c_str(), newentry.device_name.c_str());
}
void probePlaybackDevices(void)
{
PlaybackDevices.clear();
pa_threaded_mainloop *loop{pa_threaded_mainloop_new()};
if(loop && pa_threaded_mainloop_start(loop) >= 0)
{
unique_palock palock{loop};
pa_context *context{connect_context(loop, AL_FALSE)};
if(context)
{
pa_stream_flags_t flags{PA_STREAM_FIX_FORMAT | PA_STREAM_FIX_RATE |
PA_STREAM_FIX_CHANNELS | PA_STREAM_DONT_MOVE};
pa_sample_spec spec;
spec.format = PA_SAMPLE_S16NE;
spec.rate = 44100;
spec.channels = 2;
pa_stream *stream{pulse_connect_stream(nullptr, loop, context, flags, nullptr, &spec,
nullptr, BackendType::Playback)};
if(stream)
{
pa_operation *op{pa_context_get_sink_info_by_name(context,
pa_stream_get_device_name(stream), device_sink_callback, loop)};
wait_for_operation(op, loop);
pa_stream_disconnect(stream);
pa_stream_unref(stream);
stream = nullptr;
}
pa_operation *op{pa_context_get_sink_info_list(context,
device_sink_callback, loop)};
wait_for_operation(op, loop);
pa_context_disconnect(context);
pa_context_unref(context);
}
palock = unique_palock{};
pa_threaded_mainloop_stop(loop);
}
if(loop)
pa_threaded_mainloop_free(loop);
}
void device_source_callback(pa_context *UNUSED(context), const pa_source_info *info, int eol, void *pdata)
{
auto loop = static_cast<pa_threaded_mainloop*>(pdata);
if(eol)
{
pa_threaded_mainloop_signal(loop, 0);
return;
}
/* Skip this device is if it's already in the list. */
if(std::find_if(CaptureDevices.cbegin(), CaptureDevices.cend(),
[info](const DevMap &entry) -> bool
{ return entry.device_name == info->name; }
) != CaptureDevices.cend())
return;
/* Make sure the display name (description) is unique. Append a number
* counter as needed.
*/
int count{1};
std::string newname{info->description};
while(checkName(CaptureDevices, newname))
{
newname = info->description;
newname += " #";
newname += std::to_string(++count);
}
CaptureDevices.emplace_back(std::move(newname), info->name);
DevMap &newentry = CaptureDevices.back();
TRACE("Got device \"%s\", \"%s\"\n", newentry.name.c_str(), newentry.device_name.c_str());
}
void probeCaptureDevices(void)
{
CaptureDevices.clear();
pa_threaded_mainloop *loop{pa_threaded_mainloop_new()};
if(loop && pa_threaded_mainloop_start(loop) >= 0)
{
unique_palock palock{loop};
pa_context *context{connect_context(loop, AL_FALSE)};
if(context)
{
pa_stream_flags_t flags{PA_STREAM_FIX_FORMAT | PA_STREAM_FIX_RATE |
PA_STREAM_FIX_CHANNELS | PA_STREAM_DONT_MOVE};
pa_sample_spec spec;
spec.format = PA_SAMPLE_S16NE;
spec.rate = 44100;
spec.channels = 1;
pa_stream *stream{pulse_connect_stream(nullptr, loop, context, flags, nullptr, &spec,
nullptr, BackendType::Capture)};
if(stream)
{
pa_operation *op{pa_context_get_source_info_by_name(context,
pa_stream_get_device_name(stream), device_source_callback, loop)};
wait_for_operation(op, loop);
pa_stream_disconnect(stream);
pa_stream_unref(stream);
stream = nullptr;
}
pa_operation *op{pa_context_get_source_info_list(context,
device_source_callback, loop)};
wait_for_operation(op, loop);
pa_context_disconnect(context);
pa_context_unref(context);
}
palock.unlock();
pa_threaded_mainloop_stop(loop);
}
if(loop)
pa_threaded_mainloop_free(loop);
}
struct PulsePlayback final : public BackendBase {
PulsePlayback(ALCdevice *device) noexcept : BackendBase{device} { }
~PulsePlayback() override;
static void bufferAttrCallbackC(pa_stream *stream, void *pdata);
void bufferAttrCallback(pa_stream *stream);
static void contextStateCallbackC(pa_context *context, void *pdata);
void contextStateCallback(pa_context *context);
static void streamStateCallbackC(pa_stream *stream, void *pdata);
void streamStateCallback(pa_stream *stream);
static void streamWriteCallbackC(pa_stream *stream, size_t nbytes, void *pdata);
void streamWriteCallback(pa_stream *stream, size_t nbytes);
static void sinkInfoCallbackC(pa_context *context, const pa_sink_info *info, int eol, void *pdata);
void sinkInfoCallback(pa_context *context, const pa_sink_info *info, int eol);
static void sinkNameCallbackC(pa_context *context, const pa_sink_info *info, int eol, void *pdata);
void sinkNameCallback(pa_context *context, const pa_sink_info *info, int eol);
static void streamMovedCallbackC(pa_stream *stream, void *pdata);
void streamMovedCallback(pa_stream *stream);
ALCenum open(const ALCchar *name) override;
ALCboolean reset() override;
ALCboolean start() override;
void stop() override;
ClockLatency getClockLatency() override;
void lock() override;
void unlock() override;
std::string mDeviceName;
pa_buffer_attr mAttr;
pa_sample_spec mSpec;
pa_threaded_mainloop *mLoop{nullptr};
pa_stream *mStream{nullptr};
pa_context *mContext{nullptr};
ALuint mBufferSize{0u};
ALuint mFrameSize{0u};
static constexpr inline const char *CurrentPrefix() noexcept { return "PulsePlayback::"; }
DEF_NEWDEL(PulsePlayback)
};
PulsePlayback::~PulsePlayback()
{
if(!mLoop)
return;
pulse_close(mLoop, mContext, mStream);
mLoop = nullptr;
mContext = nullptr;
mStream = nullptr;
}
void PulsePlayback::bufferAttrCallbackC(pa_stream *stream, void *pdata)
{ static_cast<PulsePlayback*>(pdata)->bufferAttrCallback(stream); }
void PulsePlayback::bufferAttrCallback(pa_stream *stream)
{
/* FIXME: Update the device's UpdateSize (and/or NumUpdates) using the new
* buffer attributes? Changing UpdateSize will change the ALC_REFRESH
* property, which probably shouldn't change between device resets. But
* leaving it alone means ALC_REFRESH will be off.
*/
mAttr = *(pa_stream_get_buffer_attr(stream));
TRACE("minreq=%d, tlength=%d, prebuf=%d\n", mAttr.minreq, mAttr.tlength, mAttr.prebuf);
const ALuint num_periods{(mAttr.tlength + mAttr.minreq/2u) / mAttr.minreq};
mBufferSize = maxu(num_periods, 2u) * mAttr.minreq;
}
void PulsePlayback::contextStateCallbackC(pa_context *context, void *pdata)
{ static_cast<PulsePlayback*>(pdata)->contextStateCallback(context); }
void PulsePlayback::contextStateCallback(pa_context *context)
{
if(pa_context_get_state(context) == PA_CONTEXT_FAILED)
{
ERR("Received context failure!\n");
aluHandleDisconnect(mDevice, "Playback state failure");
}
pa_threaded_mainloop_signal(mLoop, 0);
}
void PulsePlayback::streamStateCallbackC(pa_stream *stream, void *pdata)
{ static_cast<PulsePlayback*>(pdata)->streamStateCallback(stream); }
void PulsePlayback::streamStateCallback(pa_stream *stream)
{
if(pa_stream_get_state(stream) == PA_STREAM_FAILED)
{
ERR("Received stream failure!\n");
aluHandleDisconnect(mDevice, "Playback stream failure");
}
pa_threaded_mainloop_signal(mLoop, 0);
}
void PulsePlayback::streamWriteCallbackC(pa_stream *stream, size_t nbytes, void *pdata)
{ static_cast<PulsePlayback*>(pdata)->streamWriteCallback(stream, nbytes); }
void PulsePlayback::streamWriteCallback(pa_stream *stream, size_t nbytes)
{
/* Round down to the nearest period/minreq multiple if doing more than 1. */
if(nbytes > mAttr.minreq)
nbytes -= nbytes%mAttr.minreq;
void *buf{pa_xmalloc(nbytes)};
aluMixData(mDevice, buf, nbytes/mFrameSize);
int ret{pa_stream_write(stream, buf, nbytes, pa_xfree, 0, PA_SEEK_RELATIVE)};
if(UNLIKELY(ret != PA_OK))
ERR("Failed to write to stream: %d, %s\n", ret, pa_strerror(ret));
}
void PulsePlayback::sinkInfoCallbackC(pa_context *context, const pa_sink_info *info, int eol, void *pdata)
{ static_cast<PulsePlayback*>(pdata)->sinkInfoCallback(context, info, eol); }
void PulsePlayback::sinkInfoCallback(pa_context* UNUSED(context), const pa_sink_info *info, int eol)
{
struct ChannelMap {
DevFmtChannels chans;
pa_channel_map map;
};
static constexpr std::array<ChannelMap,7> chanmaps{{
{ DevFmtX71, { 8, {
PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT,
PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE,
PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT,
PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT
} } },
{ DevFmtX61, { 7, {
PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT,
PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE,
PA_CHANNEL_POSITION_REAR_CENTER,
PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT
} } },
{ DevFmtX51, { 6, {
PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT,
PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE,
PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT
} } },
{ DevFmtX51Rear, { 6, {
PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT,
PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE,
PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT
} } },
{ DevFmtQuad, { 4, {
PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT,
PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT
} } },
{ DevFmtStereo, { 2, {
PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT
} } },
{ DevFmtMono, { 1, {PA_CHANNEL_POSITION_MONO} } }
}};
if(eol)
{
pa_threaded_mainloop_signal(mLoop, 0);
return;
}
auto chanmap = std::find_if(chanmaps.cbegin(), chanmaps.cend(),
[info](const ChannelMap &chanmap) -> bool
{ return pa_channel_map_superset(&info->channel_map, &chanmap.map); }
);
if(chanmap != chanmaps.cend())
{
if(!(mDevice->Flags&DEVICE_CHANNELS_REQUEST))
mDevice->FmtChans = chanmap->chans;
}
else
{
char chanmap_str[PA_CHANNEL_MAP_SNPRINT_MAX]{};
pa_channel_map_snprint(chanmap_str, sizeof(chanmap_str), &info->channel_map);
WARN("Failed to find format for channel map:\n %s\n", chanmap_str);
}
if(info->active_port)
TRACE("Active port: %s (%s)\n", info->active_port->name, info->active_port->description);
mDevice->IsHeadphones = (mDevice->FmtChans == DevFmtStereo &&
info->active_port && strcmp(info->active_port->name, "analog-output-headphones") == 0);
}
void PulsePlayback::sinkNameCallbackC(pa_context *context, const pa_sink_info *info, int eol, void *pdata)
{ static_cast<PulsePlayback*>(pdata)->sinkNameCallback(context, info, eol); }
void PulsePlayback::sinkNameCallback(pa_context* UNUSED(context), const pa_sink_info *info, int eol)
{
if(eol)
{
pa_threaded_mainloop_signal(mLoop, 0);
return;
}
mDevice->DeviceName = info->description;
}
void PulsePlayback::streamMovedCallbackC(pa_stream *stream, void *pdata)
{ static_cast<PulsePlayback*>(pdata)->streamMovedCallback(stream); }
void PulsePlayback::streamMovedCallback(pa_stream *stream)
{
mDeviceName = pa_stream_get_device_name(stream);
TRACE("Stream moved to %s\n", mDeviceName.c_str());
}
ALCenum PulsePlayback::open(const ALCchar *name)
{
const char *pulse_name{nullptr};
const char *dev_name{nullptr};
if(name)
{
if(PlaybackDevices.empty())
probePlaybackDevices();
auto iter = std::find_if(PlaybackDevices.cbegin(), PlaybackDevices.cend(),
[name](const DevMap &entry) -> bool
{ return entry.name == name; }
);
if(iter == PlaybackDevices.cend())
return ALC_INVALID_VALUE;
pulse_name = iter->device_name.c_str();
dev_name = iter->name.c_str();
}
std::tie(mLoop, mContext) = pulse_open(&PulsePlayback::contextStateCallbackC, this);
if(!mLoop) return ALC_INVALID_VALUE;
unique_palock palock{mLoop};
pa_stream_flags_t flags{PA_STREAM_FIX_FORMAT | PA_STREAM_FIX_RATE |
PA_STREAM_FIX_CHANNELS};
if(!GetConfigValueBool(nullptr, "pulse", "allow-moves", 0))
flags |= PA_STREAM_DONT_MOVE;
pa_sample_spec spec{};
spec.format = PA_SAMPLE_S16NE;
spec.rate = 44100;
spec.channels = 2;
TRACE("Connecting to \"%s\"\n", pulse_name ? pulse_name : "(default)");
if(!pulse_name)
{
pulse_name = getenv("ALSOFT_PULSE_DEFAULT");
if(pulse_name && !pulse_name[0]) pulse_name = nullptr;
}
mStream = pulse_connect_stream(pulse_name, mLoop, mContext, flags, nullptr, &spec, nullptr,
BackendType::Playback);
if(!mStream)
{
palock = unique_palock{};
pulse_close(mLoop, mContext, mStream);
mLoop = nullptr;
mContext = nullptr;
return ALC_INVALID_VALUE;
}
pa_stream_set_moved_callback(mStream, &PulsePlayback::streamMovedCallbackC, this);
mFrameSize = pa_frame_size(pa_stream_get_sample_spec(mStream));
mDeviceName = pa_stream_get_device_name(mStream);
if(!dev_name)
{
pa_operation *op{pa_context_get_sink_info_by_name(mContext, mDeviceName.c_str(),
&PulsePlayback::sinkNameCallbackC, this)};
wait_for_operation(op, mLoop);
}
else
mDevice->DeviceName = dev_name;
return ALC_NO_ERROR;
}
ALCboolean PulsePlayback::reset()
{
unique_palock palock{mLoop};
if(mStream)
{
pa_stream_set_state_callback(mStream, nullptr, nullptr);
pa_stream_set_moved_callback(mStream, nullptr, nullptr);
pa_stream_set_write_callback(mStream, nullptr, nullptr);
pa_stream_set_buffer_attr_callback(mStream, nullptr, nullptr);
pa_stream_disconnect(mStream);
pa_stream_unref(mStream);
mStream = nullptr;
}
pa_operation *op{pa_context_get_sink_info_by_name(mContext, mDeviceName.c_str(),
&PulsePlayback::sinkInfoCallbackC, this)};
wait_for_operation(op, mLoop);
pa_stream_flags_t flags{PA_STREAM_START_CORKED | PA_STREAM_INTERPOLATE_TIMING |
PA_STREAM_AUTO_TIMING_UPDATE};
if(!GetConfigValueBool(nullptr, "pulse", "allow-moves", 0))
flags |= PA_STREAM_DONT_MOVE;
if(GetConfigValueBool(mDevice->DeviceName.c_str(), "pulse", "adjust-latency", 0))
flags |= PA_STREAM_ADJUST_LATENCY;
if(GetConfigValueBool(mDevice->DeviceName.c_str(), "pulse", "fix-rate", 0) ||
!(mDevice->Flags&DEVICE_FREQUENCY_REQUEST))
flags |= PA_STREAM_FIX_RATE;
switch(mDevice->FmtType)
{
case DevFmtByte:
mDevice->FmtType = DevFmtUByte;
/* fall-through */
case DevFmtUByte:
mSpec.format = PA_SAMPLE_U8;
break;
case DevFmtUShort:
mDevice->FmtType = DevFmtShort;
/* fall-through */
case DevFmtShort:
mSpec.format = PA_SAMPLE_S16NE;
break;
case DevFmtUInt:
mDevice->FmtType = DevFmtInt;
/* fall-through */
case DevFmtInt:
mSpec.format = PA_SAMPLE_S32NE;
break;
case DevFmtFloat:
mSpec.format = PA_SAMPLE_FLOAT32NE;
break;
}
mSpec.rate = mDevice->Frequency;
mSpec.channels = mDevice->channelsFromFmt();
if(pa_sample_spec_valid(&mSpec) == 0)
{
ERR("Invalid sample format\n");
return ALC_FALSE;
}
const char *mapname{nullptr};
pa_channel_map chanmap;
switch(mDevice->FmtChans)
{
case DevFmtMono:
mapname = "mono";
break;
case DevFmtAmbi3D:
mDevice->FmtChans = DevFmtStereo;
/*fall-through*/
case DevFmtStereo:
mapname = "front-left,front-right";
break;
case DevFmtQuad:
mapname = "front-left,front-right,rear-left,rear-right";
break;
case DevFmtX51:
mapname = "front-left,front-right,front-center,lfe,side-left,side-right";
break;
case DevFmtX51Rear:
mapname = "front-left,front-right,front-center,lfe,rear-left,rear-right";
break;
case DevFmtX61:
mapname = "front-left,front-right,front-center,lfe,rear-center,side-left,side-right";
break;
case DevFmtX71:
mapname = "front-left,front-right,front-center,lfe,rear-left,rear-right,side-left,side-right";
break;
}
if(!pa_channel_map_parse(&chanmap, mapname))
{
ERR("Failed to build channel map for %s\n", DevFmtChannelsString(mDevice->FmtChans));
return ALC_FALSE;
}
SetDefaultWFXChannelOrder(mDevice);
size_t period_size{mDevice->UpdateSize * pa_frame_size(&mSpec)};
mAttr.maxlength = -1;
mAttr.tlength = period_size * maxu(mDevice->NumUpdates, 2);
mAttr.prebuf = 0;
mAttr.minreq = period_size;
mAttr.fragsize = -1;
mStream = pulse_connect_stream(mDeviceName.c_str(), mLoop, mContext, flags, &mAttr, &mSpec,
&chanmap, BackendType::Playback);
if(!mStream) return ALC_FALSE;
pa_stream_set_state_callback(mStream, &PulsePlayback::streamStateCallbackC, this);
pa_stream_set_moved_callback(mStream, &PulsePlayback::streamMovedCallbackC, this);
mSpec = *(pa_stream_get_sample_spec(mStream));
mFrameSize = pa_frame_size(&mSpec);
if(mDevice->Frequency != mSpec.rate)
{
/* Server updated our playback rate, so modify the buffer attribs
* accordingly. */
mDevice->NumUpdates = static_cast<ALuint>(clampd(
(ALdouble)mSpec.rate/mDevice->Frequency*mDevice->NumUpdates + 0.5, 2.0, 16.0));
period_size = mDevice->UpdateSize * mFrameSize;
mAttr.maxlength = -1;
mAttr.tlength = period_size * maxu(mDevice->NumUpdates, 2);
mAttr.prebuf = 0;
mAttr.minreq = period_size;
op = pa_stream_set_buffer_attr(mStream, &mAttr, stream_success_callback, mLoop);
wait_for_operation(op, mLoop);
mDevice->Frequency = mSpec.rate;
}
pa_stream_set_buffer_attr_callback(mStream, &PulsePlayback::bufferAttrCallbackC, this);
bufferAttrCallback(mStream);
mDevice->NumUpdates = clampu((mAttr.tlength + mAttr.minreq/2u) / mAttr.minreq, 2u, 16u);
mDevice->UpdateSize = mAttr.minreq / mFrameSize;
/* HACK: prebuf should be 0 as that's what we set it to. However on some
* systems it comes back as non-0, so we have to make sure the device will
* write enough audio to start playback. The lack of manual start control
* may have unintended consequences, but it's better than not starting at
* all.
*/
if(mAttr.prebuf != 0)
{
ALuint len{mAttr.prebuf / mFrameSize};
if(len <= mDevice->UpdateSize*mDevice->NumUpdates)
ERR("Non-0 prebuf, %u samples (%u bytes), device has %u samples\n",
len, mAttr.prebuf, mDevice->UpdateSize*mDevice->NumUpdates);
else
{
ERR("Large prebuf, %u samples (%u bytes), increasing device from %u samples",
len, mAttr.prebuf, mDevice->UpdateSize*mDevice->NumUpdates);
mDevice->NumUpdates = (len+mDevice->UpdateSize-1) / mDevice->UpdateSize;
}
}
return ALC_TRUE;
}
ALCboolean PulsePlayback::start()
{
unique_palock palock{mLoop};
pa_stream_set_write_callback(mStream, &PulsePlayback::streamWriteCallbackC, this);
pa_operation *op{pa_stream_cork(mStream, 0, stream_success_callback, mLoop)};
wait_for_operation(op, mLoop);
return ALC_TRUE;
}
void PulsePlayback::stop()
{
unique_palock palock{mLoop};
pa_stream_set_write_callback(mStream, nullptr, nullptr);
pa_operation *op{pa_stream_cork(mStream, 1, stream_success_callback, mLoop)};
wait_for_operation(op, mLoop);
}
ClockLatency PulsePlayback::getClockLatency()
{
ClockLatency ret;
pa_usec_t latency;
int neg, err;
{ palock_guard _{mLoop};
ret.ClockTime = GetDeviceClockTime(mDevice);
err = pa_stream_get_latency(mStream, &latency, &neg);
}
if(UNLIKELY(err != 0))
{
/* FIXME: if err = -PA_ERR_NODATA, it means we were called too soon
* after starting the stream and no timing info has been received from
* the server yet. Should we wait, possibly stalling the app, or give a
* dummy value? Either way, it shouldn't be 0. */
if(err != -PA_ERR_NODATA)
ERR("Failed to get stream latency: 0x%x\n", err);
latency = 0;
neg = 0;
}
else if(UNLIKELY(neg))
latency = 0;
ret.Latency = std::chrono::microseconds{latency};
return ret;
}
void PulsePlayback::lock()
{ pa_threaded_mainloop_lock(mLoop); }
void PulsePlayback::unlock()
{ pa_threaded_mainloop_unlock(mLoop); }
struct PulseCapture final : public BackendBase {
PulseCapture(ALCdevice *device) noexcept : BackendBase{device} { }
~PulseCapture() override;
static void contextStateCallbackC(pa_context *context, void *pdata);
void contextStateCallback(pa_context *context);
static void streamStateCallbackC(pa_stream *stream, void *pdata);
void streamStateCallback(pa_stream *stream);
static void sourceNameCallbackC(pa_context *context, const pa_source_info *info, int eol, void *pdata);
void sourceNameCallback(pa_context *context, const pa_source_info *info, int eol);
static void streamMovedCallbackC(pa_stream *stream, void *pdata);
void streamMovedCallback(pa_stream *stream);
ALCenum open(const ALCchar *name) override;
ALCboolean start() override;
void stop() override;
ALCenum captureSamples(ALCvoid *buffer, ALCuint samples) override;
ALCuint availableSamples() override;
ClockLatency getClockLatency() override;
void lock() override;
void unlock() override;
std::string mDeviceName;
const void *mCapStore{nullptr};
size_t mCapLen{0u};
size_t mCapRemain{0u};
ALCuint mLastReadable{0u};
pa_buffer_attr mAttr{};
pa_sample_spec mSpec{};
pa_threaded_mainloop *mLoop{nullptr};
pa_stream *mStream{nullptr};
pa_context *mContext{nullptr};
static constexpr inline const char *CurrentPrefix() noexcept { return "PulseCapture::"; }
DEF_NEWDEL(PulseCapture)
};
PulseCapture::~PulseCapture()
{
if(!mLoop)
return;
pulse_close(mLoop, mContext, mStream);
mLoop = nullptr;
mContext = nullptr;
mStream = nullptr;
}
void PulseCapture::contextStateCallbackC(pa_context *context, void *pdata)
{ static_cast<PulseCapture*>(pdata)->contextStateCallback(context); }
void PulseCapture::contextStateCallback(pa_context *context)
{
if(pa_context_get_state(context) == PA_CONTEXT_FAILED)
{
ERR("Received context failure!\n");
aluHandleDisconnect(mDevice, "Capture state failure");
}
pa_threaded_mainloop_signal(mLoop, 0);
}
void PulseCapture::streamStateCallbackC(pa_stream *stream, void *pdata)
{ static_cast<PulseCapture*>(pdata)->streamStateCallback(stream); }
void PulseCapture::streamStateCallback(pa_stream *stream)
{
if(pa_stream_get_state(stream) == PA_STREAM_FAILED)
{
ERR("Received stream failure!\n");
aluHandleDisconnect(mDevice, "Capture stream failure");
}
pa_threaded_mainloop_signal(mLoop, 0);
}
void PulseCapture::sourceNameCallbackC(pa_context *context, const pa_source_info *info, int eol, void *pdata)
{ static_cast<PulseCapture*>(pdata)->sourceNameCallback(context, info, eol); }
void PulseCapture::sourceNameCallback(pa_context* UNUSED(context), const pa_source_info *info, int eol)
{
if(eol)
{
pa_threaded_mainloop_signal(mLoop, 0);
return;
}
mDevice->DeviceName = info->description;
}
void PulseCapture::streamMovedCallbackC(pa_stream *stream, void *pdata)
{ static_cast<PulseCapture*>(pdata)->streamMovedCallback(stream); }
void PulseCapture::streamMovedCallback(pa_stream *stream)
{
mDeviceName = pa_stream_get_device_name(stream);
TRACE("Stream moved to %s\n", mDeviceName.c_str());
}
ALCenum PulseCapture::open(const ALCchar *name)
{
const char *pulse_name{nullptr};
if(name)
{
if(CaptureDevices.empty())
probeCaptureDevices();
auto iter = std::find_if(CaptureDevices.cbegin(), CaptureDevices.cend(),
[name](const DevMap &entry) -> bool
{ return entry.name == name; }
);
if(iter == CaptureDevices.cend())
return ALC_INVALID_VALUE;
pulse_name = iter->device_name.c_str();
mDevice->DeviceName = iter->name;
}
std::tie(mLoop, mContext) = pulse_open(&PulseCapture::contextStateCallbackC, this);
if(!mLoop) return ALC_INVALID_VALUE;
unique_palock palock{mLoop};
switch(mDevice->FmtType)
{
case DevFmtUByte:
mSpec.format = PA_SAMPLE_U8;
break;
case DevFmtShort:
mSpec.format = PA_SAMPLE_S16NE;
break;
case DevFmtInt:
mSpec.format = PA_SAMPLE_S32NE;
break;
case DevFmtFloat:
mSpec.format = PA_SAMPLE_FLOAT32NE;
break;
case DevFmtByte:
case DevFmtUShort:
case DevFmtUInt:
ERR("%s capture samples not supported\n", DevFmtTypeString(mDevice->FmtType));
return ALC_INVALID_VALUE;
}
const char *mapname{nullptr};
pa_channel_map chanmap;
switch(mDevice->FmtChans)
{
case DevFmtMono:
mapname = "mono";
break;
case DevFmtStereo:
mapname = "front-left,front-right";
break;
case DevFmtQuad:
mapname = "front-left,front-right,rear-left,rear-right";
break;
case DevFmtX51:
mapname = "front-left,front-right,front-center,lfe,side-left,side-right";
break;
case DevFmtX51Rear:
mapname = "front-left,front-right,front-center,lfe,rear-left,rear-right";
break;
case DevFmtX61:
mapname = "front-left,front-right,front-center,lfe,rear-center,side-left,side-right";
break;
case DevFmtX71:
mapname = "front-left,front-right,front-center,lfe,rear-left,rear-right,side-left,side-right";
break;
case DevFmtAmbi3D:
ERR("%s capture samples not supported\n", DevFmtChannelsString(mDevice->FmtChans));
return ALC_INVALID_VALUE;
}
if(!pa_channel_map_parse(&chanmap, mapname))
{
ERR("Failed to build channel map for %s\n", DevFmtChannelsString(mDevice->FmtChans));
return ALC_INVALID_VALUE;
}
mSpec.rate = mDevice->Frequency;
mSpec.channels = mDevice->channelsFromFmt();
if(pa_sample_spec_valid(&mSpec) == 0)
{
ERR("Invalid sample format\n");
return ALC_INVALID_VALUE;
}
if(!pa_channel_map_init_auto(&chanmap, mSpec.channels, PA_CHANNEL_MAP_WAVEEX))
{
ERR("Couldn't build map for channel count (%d)!\n", mSpec.channels);
return ALC_INVALID_VALUE;
}
ALuint samples{mDevice->UpdateSize * mDevice->NumUpdates};
samples = maxu(samples, 100 * mDevice->Frequency / 1000);
mAttr.minreq = -1;
mAttr.prebuf = -1;
mAttr.maxlength = samples * pa_frame_size(&mSpec);
mAttr.tlength = -1;
mAttr.fragsize = minu(samples, 50*mDevice->Frequency/1000) * pa_frame_size(&mSpec);
pa_stream_flags_t flags{PA_STREAM_START_CORKED|PA_STREAM_ADJUST_LATENCY};
if(!GetConfigValueBool(nullptr, "pulse", "allow-moves", 0))
flags |= PA_STREAM_DONT_MOVE;
TRACE("Connecting to \"%s\"\n", pulse_name ? pulse_name : "(default)");
mStream = pulse_connect_stream(pulse_name, mLoop, mContext, flags, &mAttr, &mSpec, &chanmap,
BackendType::Capture);
if(!mStream) return ALC_INVALID_VALUE;
pa_stream_set_moved_callback(mStream, &PulseCapture::streamMovedCallbackC, this);
pa_stream_set_state_callback(mStream, &PulseCapture::streamStateCallbackC, this);
mDeviceName = pa_stream_get_device_name(mStream);
if(mDevice->DeviceName.empty())
{
pa_operation *op{pa_context_get_source_info_by_name(mContext, mDeviceName.c_str(),
&PulseCapture::sourceNameCallbackC, this)};
wait_for_operation(op, mLoop);
}
return ALC_NO_ERROR;
}
ALCboolean PulseCapture::start()
{
palock_guard _{mLoop};
pa_operation *op{pa_stream_cork(mStream, 0, stream_success_callback, mLoop)};
wait_for_operation(op, mLoop);
return ALC_TRUE;
}
void PulseCapture::stop()
{
palock_guard _{mLoop};
pa_operation *op{pa_stream_cork(mStream, 1, stream_success_callback, mLoop)};
wait_for_operation(op, mLoop);
}
ALCenum PulseCapture::captureSamples(ALCvoid *buffer, ALCuint samples)
{
ALCuint todo{samples * static_cast<ALCuint>(pa_frame_size(&mSpec))};
/* Capture is done in fragment-sized chunks, so we loop until we get all
* that's available */
mLastReadable -= todo;
unique_palock palock{mLoop};
while(todo > 0)
{
size_t rem{todo};
if(mCapLen == 0)
{
pa_stream_state_t state{pa_stream_get_state(mStream)};
if(!PA_STREAM_IS_GOOD(state))
{
aluHandleDisconnect(mDevice, "Bad capture state: %u", state);
return ALC_INVALID_DEVICE;
}
if(pa_stream_peek(mStream, &mCapStore, &mCapLen) < 0)
{
ERR("pa_stream_peek() failed: %s\n",
pa_strerror(pa_context_errno(mContext)));
aluHandleDisconnect(mDevice, "Failed retrieving capture samples: %s",
pa_strerror(pa_context_errno(mContext)));
return ALC_INVALID_DEVICE;
}
mCapRemain = mCapLen;
}
rem = minz(rem, mCapRemain);
memcpy(buffer, mCapStore, rem);
buffer = (ALbyte*)buffer + rem;
todo -= rem;
mCapStore = (ALbyte*)mCapStore + rem;
mCapRemain -= rem;
if(mCapRemain == 0)
{
pa_stream_drop(mStream);
mCapLen = 0;
}
}
palock.unlock();
if(todo > 0)
memset(buffer, ((mDevice->FmtType==DevFmtUByte) ? 0x80 : 0), todo);
return ALC_NO_ERROR;
}
ALCuint PulseCapture::availableSamples()
{
size_t readable{mCapRemain};
if(mDevice->Connected.load(std::memory_order_acquire))
{
palock_guard _{mLoop};
size_t got{pa_stream_readable_size(mStream)};
if(static_cast<ssize_t>(got) < 0)
{
ERR("pa_stream_readable_size() failed: %s\n", pa_strerror(got));
aluHandleDisconnect(mDevice, "Failed getting readable size: %s", pa_strerror(got));
}
else if(got > mCapLen)
readable += got - mCapLen;
}
if(mLastReadable < readable)
mLastReadable = readable;
return mLastReadable / pa_frame_size(&mSpec);
}
ClockLatency PulseCapture::getClockLatency()
{
ClockLatency ret;
pa_usec_t latency;
int neg, err;
{ palock_guard _{mLoop};
ret.ClockTime = GetDeviceClockTime(mDevice);
err = pa_stream_get_latency(mStream, &latency, &neg);
}
if(UNLIKELY(err != 0))
{
ERR("Failed to get stream latency: 0x%x\n", err);
latency = 0;
neg = 0;
}
else if(UNLIKELY(neg))
latency = 0;
ret.Latency = std::chrono::microseconds{latency};
return ret;
}
void PulseCapture::lock()
{ pa_threaded_mainloop_lock(mLoop); }
void PulseCapture::unlock()
{ pa_threaded_mainloop_unlock(mLoop); }
} // namespace
bool PulseBackendFactory::init()
{
bool ret{false};
if(pulse_load())
{
pulse_ctx_flags = PA_CONTEXT_NOFLAGS;
if(!GetConfigValueBool(nullptr, "pulse", "spawn-server", 1))
pulse_ctx_flags |= PA_CONTEXT_NOAUTOSPAWN;
pa_threaded_mainloop *loop{pa_threaded_mainloop_new()};
if(loop && pa_threaded_mainloop_start(loop) >= 0)
{
unique_palock palock{loop};
pa_context *context{connect_context(loop, AL_TRUE)};
if(context)
{
ret = true;
/* Some libraries (Phonon, Qt) set some pulseaudio properties
* through environment variables, which causes all streams in
* the process to inherit them. This attempts to filter those
* properties out by setting them to 0-length data. */
prop_filter = pa_proplist_new();
pa_proplist_set(prop_filter, PA_PROP_MEDIA_ROLE, nullptr, 0);
pa_proplist_set(prop_filter, "phonon.streamid", nullptr, 0);
pa_context_disconnect(context);
pa_context_unref(context);
}
palock.unlock();
pa_threaded_mainloop_stop(loop);
}
if(loop)
pa_threaded_mainloop_free(loop);
}
return ret;
}
void PulseBackendFactory::deinit()
{
PlaybackDevices.clear();
CaptureDevices.clear();
if(prop_filter)
pa_proplist_free(prop_filter);
prop_filter = nullptr;
/* PulseAudio doesn't like being CloseLib'd sometimes */
}
bool PulseBackendFactory::querySupport(BackendType type)
{ return type == BackendType::Playback || type == BackendType::Capture; }
void PulseBackendFactory::probe(DevProbe type, std::string *outnames)
{
auto add_device = [outnames](const DevMap &entry) -> void
{
/* +1 to also append the null char (to ensure a null-separated list and
* double-null terminated list).
*/
outnames->append(entry.name.c_str(), entry.name.length()+1);
};
switch(type)
{
case ALL_DEVICE_PROBE:
probePlaybackDevices();
std::for_each(PlaybackDevices.cbegin(), PlaybackDevices.cend(), add_device);
break;
case CAPTURE_DEVICE_PROBE:
probeCaptureDevices();
std::for_each(CaptureDevices.cbegin(), CaptureDevices.cend(), add_device);
break;
}
}
BackendPtr PulseBackendFactory::createBackend(ALCdevice *device, BackendType type)
{
if(type == BackendType::Playback)
return BackendPtr{new PulsePlayback{device}};
if(type == BackendType::Capture)
return BackendPtr{new PulseCapture{device}};
return nullptr;
}
BackendFactory &PulseBackendFactory::getFactory()
{
static PulseBackendFactory factory{};
return factory;
}