openal-soft/Alc/effects/equalizer.c
2017-05-02 04:54:59 -07:00

405 lines
16 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 2013 by Mike Gorchak
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include "alMain.h"
#include "alFilter.h"
#include "alAuxEffectSlot.h"
#include "alError.h"
#include "alu.h"
/* The document "Effects Extension Guide.pdf" says that low and high *
* frequencies are cutoff frequencies. This is not fully correct, they *
* are corner frequencies for low and high shelf filters. If they were *
* just cutoff frequencies, there would be no need in cutoff frequency *
* gains, which are present. Documentation for "Creative Proteus X2" *
* software describes 4-band equalizer functionality in a much better *
* way. This equalizer seems to be a predecessor of OpenAL 4-band *
* equalizer. With low and high shelf filters we are able to cutoff *
* frequencies below and/or above corner frequencies using attenuation *
* gains (below 1.0) and amplify all low and/or high frequencies using *
* gains above 1.0. *
* *
* Low-shelf Low Mid Band High Mid Band High-shelf *
* corner center center corner *
* frequency frequency frequency frequency *
* 50Hz..800Hz 200Hz..3000Hz 1000Hz..8000Hz 4000Hz..16000Hz *
* *
* | | | | *
* | | | | *
* B -----+ /--+--\ /--+--\ +----- *
* O |\ | | | | | | /| *
* O | \ - | - - | - / | *
* S + | \ | | | | | | / | *
* T | | | | | | | | | | *
* ---------+---------------+------------------+---------------+-------- *
* C | | | | | | | | | | *
* U - | / | | | | | | \ | *
* T | / - | - - | - \ | *
* O |/ | | | | | | \| *
* F -----+ \--+--/ \--+--/ +----- *
* F | | | | *
* | | | | *
* *
* Gains vary from 0.126 up to 7.943, which means from -18dB attenuation *
* up to +18dB amplification. Band width varies from 0.01 up to 1.0 in *
* octaves for two mid bands. *
* *
* Implementation is based on the "Cookbook formulae for audio EQ biquad *
* filter coefficients" by Robert Bristow-Johnson *
* http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt */
/* The maximum number of sample frames per update. */
#define MAX_UPDATE_SAMPLES 256
typedef struct ALequalizerState {
DERIVE_FROM_TYPE(ALeffectState);
/* Effect gains for each channel */
ALfloat Gain[MAX_EFFECT_CHANNELS][MAX_OUTPUT_CHANNELS];
/* Effect parameters */
ALfilterState filter[4][MAX_EFFECT_CHANNELS];
ALfloat SampleBuffer[4][MAX_EFFECT_CHANNELS][MAX_UPDATE_SAMPLES];
} ALequalizerState;
static ALvoid ALequalizerState_Destruct(ALequalizerState *state);
static ALboolean ALequalizerState_deviceUpdate(ALequalizerState *state, ALCdevice *device);
static ALvoid ALequalizerState_update(ALequalizerState *state, const ALCdevice *device, const ALeffectslot *slot, const ALeffectProps *props);
static ALvoid ALequalizerState_process(ALequalizerState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels);
DECLARE_DEFAULT_ALLOCATORS(ALequalizerState)
DEFINE_ALEFFECTSTATE_VTABLE(ALequalizerState);
static void ALequalizerState_Construct(ALequalizerState *state)
{
int it, ft;
ALeffectState_Construct(STATIC_CAST(ALeffectState, state));
SET_VTABLE2(ALequalizerState, ALeffectState, state);
/* Initialize sample history only on filter creation to avoid */
/* sound clicks if filter settings were changed in runtime. */
for(it = 0; it < 4; it++)
{
for(ft = 0;ft < MAX_EFFECT_CHANNELS;ft++)
ALfilterState_clear(&state->filter[it][ft]);
}
}
static ALvoid ALequalizerState_Destruct(ALequalizerState *state)
{
ALeffectState_Destruct(STATIC_CAST(ALeffectState,state));
}
static ALboolean ALequalizerState_deviceUpdate(ALequalizerState *UNUSED(state), ALCdevice *UNUSED(device))
{
return AL_TRUE;
}
static ALvoid ALequalizerState_update(ALequalizerState *state, const ALCdevice *device, const ALeffectslot *slot, const ALeffectProps *props)
{
ALfloat frequency = (ALfloat)device->Frequency;
ALfloat gain, freq_mult;
ALuint i;
STATIC_CAST(ALeffectState,state)->OutBuffer = device->FOAOut.Buffer;
STATIC_CAST(ALeffectState,state)->OutChannels = device->FOAOut.NumChannels;
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
ComputeFirstOrderGains(device->FOAOut, IdentityMatrixf.m[i],
slot->Params.Gain, state->Gain[i]);
/* Calculate coefficients for the each type of filter. Note that the shelf
* filters' gain is for the reference frequency, which is the centerpoint
* of the transition band.
*/
gain = maxf(sqrtf(props->Equalizer.LowGain), 0.0625f); /* Limit -24dB */
freq_mult = props->Equalizer.LowCutoff/frequency;
ALfilterState_setParams(&state->filter[0][0], ALfilterType_LowShelf,
gain, freq_mult, calc_rcpQ_from_slope(gain, 0.75f)
);
/* Copy the filter coefficients for the other input channels. */
for(i = 1;i < MAX_EFFECT_CHANNELS;i++)
{
state->filter[0][i].b0 = state->filter[0][0].b0;
state->filter[0][i].b1 = state->filter[0][0].b1;
state->filter[0][i].b2 = state->filter[0][0].b2;
state->filter[0][i].a1 = state->filter[0][0].a1;
state->filter[0][i].a2 = state->filter[0][0].a2;
}
gain = maxf(props->Equalizer.Mid1Gain, 0.0625f);
freq_mult = props->Equalizer.Mid1Center/frequency;
ALfilterState_setParams(&state->filter[1][0], ALfilterType_Peaking,
gain, freq_mult, calc_rcpQ_from_bandwidth(
freq_mult, props->Equalizer.Mid1Width
)
);
for(i = 1;i < MAX_EFFECT_CHANNELS;i++)
{
state->filter[1][i].b0 = state->filter[1][0].b0;
state->filter[1][i].b1 = state->filter[1][0].b1;
state->filter[1][i].b2 = state->filter[1][0].b2;
state->filter[1][i].a1 = state->filter[1][0].a1;
state->filter[1][i].a2 = state->filter[1][0].a2;
}
gain = maxf(props->Equalizer.Mid2Gain, 0.0625f);
freq_mult = props->Equalizer.Mid2Center/frequency;
ALfilterState_setParams(&state->filter[2][0], ALfilterType_Peaking,
gain, freq_mult, calc_rcpQ_from_bandwidth(
freq_mult, props->Equalizer.Mid2Width
)
);
for(i = 1;i < MAX_EFFECT_CHANNELS;i++)
{
state->filter[2][i].b0 = state->filter[2][0].b0;
state->filter[2][i].b1 = state->filter[2][0].b1;
state->filter[2][i].b2 = state->filter[2][0].b2;
state->filter[2][i].a1 = state->filter[2][0].a1;
state->filter[2][i].a2 = state->filter[2][0].a2;
}
gain = maxf(sqrtf(props->Equalizer.HighGain), 0.0625f);
freq_mult = props->Equalizer.HighCutoff/frequency;
ALfilterState_setParams(&state->filter[3][0], ALfilterType_HighShelf,
gain, freq_mult, calc_rcpQ_from_slope(gain, 0.75f)
);
for(i = 1;i < MAX_EFFECT_CHANNELS;i++)
{
state->filter[3][i].b0 = state->filter[3][0].b0;
state->filter[3][i].b1 = state->filter[3][0].b1;
state->filter[3][i].b2 = state->filter[3][0].b2;
state->filter[3][i].a1 = state->filter[3][0].a1;
state->filter[3][i].a2 = state->filter[3][0].a2;
}
}
static ALvoid ALequalizerState_process(ALequalizerState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels)
{
ALfloat (*Samples)[MAX_EFFECT_CHANNELS][MAX_UPDATE_SAMPLES] = state->SampleBuffer;
ALsizei it, kt, ft;
ALsizei base;
for(base = 0;base < SamplesToDo;)
{
ALsizei td = mini(MAX_UPDATE_SAMPLES, SamplesToDo-base);
for(ft = 0;ft < MAX_EFFECT_CHANNELS;ft++)
ALfilterState_process(&state->filter[0][ft], Samples[0][ft], &SamplesIn[ft][base], td);
for(ft = 0;ft < MAX_EFFECT_CHANNELS;ft++)
ALfilterState_process(&state->filter[1][ft], Samples[1][ft], Samples[0][ft], td);
for(ft = 0;ft < MAX_EFFECT_CHANNELS;ft++)
ALfilterState_process(&state->filter[2][ft], Samples[2][ft], Samples[1][ft], td);
for(ft = 0;ft < MAX_EFFECT_CHANNELS;ft++)
ALfilterState_process(&state->filter[3][ft], Samples[3][ft], Samples[2][ft], td);
for(ft = 0;ft < MAX_EFFECT_CHANNELS;ft++)
{
for(kt = 0;kt < NumChannels;kt++)
{
ALfloat gain = state->Gain[ft][kt];
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
for(it = 0;it < td;it++)
SamplesOut[kt][base+it] += gain * Samples[3][ft][it];
}
}
base += td;
}
}
typedef struct ALequalizerStateFactory {
DERIVE_FROM_TYPE(ALeffectStateFactory);
} ALequalizerStateFactory;
ALeffectState *ALequalizerStateFactory_create(ALequalizerStateFactory *UNUSED(factory))
{
ALequalizerState *state;
NEW_OBJ0(state, ALequalizerState)();
if(!state) return NULL;
return STATIC_CAST(ALeffectState, state);
}
DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALequalizerStateFactory);
ALeffectStateFactory *ALequalizerStateFactory_getFactory(void)
{
static ALequalizerStateFactory EqualizerFactory = { { GET_VTABLE2(ALequalizerStateFactory, ALeffectStateFactory) } };
return STATIC_CAST(ALeffectStateFactory, &EqualizerFactory);
}
void ALequalizer_setParami(ALeffect *UNUSED(effect), ALCcontext *context, ALenum UNUSED(param), ALint UNUSED(val))
{ SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM); }
void ALequalizer_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
{
ALequalizer_setParami(effect, context, param, vals[0]);
}
void ALequalizer_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_EQUALIZER_LOW_GAIN:
if(!(val >= AL_EQUALIZER_MIN_LOW_GAIN && val <= AL_EQUALIZER_MAX_LOW_GAIN))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Equalizer.LowGain = val;
break;
case AL_EQUALIZER_LOW_CUTOFF:
if(!(val >= AL_EQUALIZER_MIN_LOW_CUTOFF && val <= AL_EQUALIZER_MAX_LOW_CUTOFF))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Equalizer.LowCutoff = val;
break;
case AL_EQUALIZER_MID1_GAIN:
if(!(val >= AL_EQUALIZER_MIN_MID1_GAIN && val <= AL_EQUALIZER_MAX_MID1_GAIN))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Equalizer.Mid1Gain = val;
break;
case AL_EQUALIZER_MID1_CENTER:
if(!(val >= AL_EQUALIZER_MIN_MID1_CENTER && val <= AL_EQUALIZER_MAX_MID1_CENTER))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Equalizer.Mid1Center = val;
break;
case AL_EQUALIZER_MID1_WIDTH:
if(!(val >= AL_EQUALIZER_MIN_MID1_WIDTH && val <= AL_EQUALIZER_MAX_MID1_WIDTH))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Equalizer.Mid1Width = val;
break;
case AL_EQUALIZER_MID2_GAIN:
if(!(val >= AL_EQUALIZER_MIN_MID2_GAIN && val <= AL_EQUALIZER_MAX_MID2_GAIN))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Equalizer.Mid2Gain = val;
break;
case AL_EQUALIZER_MID2_CENTER:
if(!(val >= AL_EQUALIZER_MIN_MID2_CENTER && val <= AL_EQUALIZER_MAX_MID2_CENTER))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Equalizer.Mid2Center = val;
break;
case AL_EQUALIZER_MID2_WIDTH:
if(!(val >= AL_EQUALIZER_MIN_MID2_WIDTH && val <= AL_EQUALIZER_MAX_MID2_WIDTH))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Equalizer.Mid2Width = val;
break;
case AL_EQUALIZER_HIGH_GAIN:
if(!(val >= AL_EQUALIZER_MIN_HIGH_GAIN && val <= AL_EQUALIZER_MAX_HIGH_GAIN))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Equalizer.HighGain = val;
break;
case AL_EQUALIZER_HIGH_CUTOFF:
if(!(val >= AL_EQUALIZER_MIN_HIGH_CUTOFF && val <= AL_EQUALIZER_MAX_HIGH_CUTOFF))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Equalizer.HighCutoff = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALequalizer_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
{
ALequalizer_setParamf(effect, context, param, vals[0]);
}
void ALequalizer_getParami(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum UNUSED(param), ALint *UNUSED(val))
{ SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM); }
void ALequalizer_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
{
ALequalizer_getParami(effect, context, param, vals);
}
void ALequalizer_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_EQUALIZER_LOW_GAIN:
*val = props->Equalizer.LowGain;
break;
case AL_EQUALIZER_LOW_CUTOFF:
*val = props->Equalizer.LowCutoff;
break;
case AL_EQUALIZER_MID1_GAIN:
*val = props->Equalizer.Mid1Gain;
break;
case AL_EQUALIZER_MID1_CENTER:
*val = props->Equalizer.Mid1Center;
break;
case AL_EQUALIZER_MID1_WIDTH:
*val = props->Equalizer.Mid1Width;
break;
case AL_EQUALIZER_MID2_GAIN:
*val = props->Equalizer.Mid2Gain;
break;
case AL_EQUALIZER_MID2_CENTER:
*val = props->Equalizer.Mid2Center;
break;
case AL_EQUALIZER_MID2_WIDTH:
*val = props->Equalizer.Mid2Width;
break;
case AL_EQUALIZER_HIGH_GAIN:
*val = props->Equalizer.HighGain;
break;
case AL_EQUALIZER_HIGH_CUTOFF:
*val = props->Equalizer.HighCutoff;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALequalizer_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
{
ALequalizer_getParamf(effect, context, param, vals);
}
DEFINE_ALEFFECT_VTABLE(ALequalizer);