openal-soft/Alc/mixer.c
2011-02-06 01:07:37 -08:00

809 lines
40 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include "alMain.h"
#include "AL/al.h"
#include "AL/alc.h"
#include "alSource.h"
#include "alBuffer.h"
#include "alListener.h"
#include "alAuxEffectSlot.h"
#include "alu.h"
#include "bs2b.h"
static __inline ALdouble point32(const ALfloat *vals, ALint step, ALint frac)
{ return vals[0]; (void)step; (void)frac; }
static __inline ALdouble lerp32(const ALfloat *vals, ALint step, ALint frac)
{ return lerp(vals[0], vals[step], frac * (1.0/FRACTIONONE)); }
static __inline ALdouble cubic32(const ALfloat *vals, ALint step, ALint frac)
{ return cubic(vals[-step], vals[0], vals[step], vals[step+step],
frac * (1.0/FRACTIONONE)); }
static __inline ALdouble point16(const ALshort *vals, ALint step, ALint frac)
{ return vals[0] * (1.0/32767.0); (void)step; (void)frac; }
static __inline ALdouble lerp16(const ALshort *vals, ALint step, ALint frac)
{ return lerp(vals[0], vals[step], frac * (1.0/FRACTIONONE)) * (1.0/32767.0); }
static __inline ALdouble cubic16(const ALshort *vals, ALint step, ALint frac)
{ return cubic(vals[-step], vals[0], vals[step], vals[step+step],
frac * (1.0/FRACTIONONE)) * (1.0/32767.0); }
static __inline ALdouble point8(const ALubyte *vals, ALint step, ALint frac)
{ return (vals[0]-128.0) * (1.0/127.0); (void)step; (void)frac; }
static __inline ALdouble lerp8(const ALubyte *vals, ALint step, ALint frac)
{ return (lerp(vals[0], vals[step],
frac * (1.0/FRACTIONONE))-128.0) * (1.0/127.0); }
static __inline ALdouble cubic8(const ALubyte *vals, ALint step, ALint frac)
{ return (cubic(vals[-step], vals[0], vals[step], vals[step+step],
frac * (1.0/FRACTIONONE))-128.0) * (1.0/127.0); }
#define DECL_TEMPLATE(T, sampler) \
static void Mix_##T##_1_##sampler(ALsource *Source, ALCdevice *Device, \
const T *data, ALuint *DataPosInt, ALuint *DataPosFrac, \
ALuint OutPos, ALuint SamplesToDo, ALuint BufferSize) \
{ \
ALfloat (*DryBuffer)[MAXCHANNELS]; \
ALfloat *ClickRemoval, *PendingClicks; \
ALuint pos, frac; \
ALfloat DrySend[MAXCHANNELS]; \
FILTER *DryFilter; \
ALuint BufferIdx; \
ALuint increment; \
ALuint out, c; \
ALfloat value; \
\
increment = Source->Params.Step; \
\
DryBuffer = Device->DryBuffer; \
ClickRemoval = Device->ClickRemoval; \
PendingClicks = Device->PendingClicks; \
DryFilter = &Source->Params.iirFilter; \
for(c = 0;c < MAXCHANNELS;c++) \
DrySend[c] = Source->Params.DryGains[0][c]; \
\
pos = 0; \
frac = *DataPosFrac; \
\
if(OutPos == 0) \
{ \
value = sampler(data+pos, 1, frac); \
\
value = lpFilter4PC(DryFilter, 0, value); \
for(c = 0;c < MAXCHANNELS;c++) \
ClickRemoval[c] -= value*DrySend[c]; \
} \
for(BufferIdx = 0;BufferIdx < BufferSize;BufferIdx++) \
{ \
/* First order interpolator */ \
value = sampler(data+pos, 1, frac); \
\
/* Direct path final mix buffer and panning */ \
value = lpFilter4P(DryFilter, 0, value); \
for(c = 0;c < MAXCHANNELS;c++) \
DryBuffer[OutPos][c] += value*DrySend[c]; \
\
frac += increment; \
pos += frac>>FRACTIONBITS; \
frac &= FRACTIONMASK; \
OutPos++; \
} \
if(OutPos == SamplesToDo) \
{ \
value = sampler(data+pos, 1, frac); \
\
value = lpFilter4PC(DryFilter, 0, value); \
for(c = 0;c < MAXCHANNELS;c++) \
PendingClicks[c] += value*DrySend[c]; \
} \
\
for(out = 0;out < Device->NumAuxSends;out++) \
{ \
ALfloat WetSend; \
ALfloat *WetBuffer; \
ALfloat *WetClickRemoval; \
ALfloat *WetPendingClicks; \
FILTER *WetFilter; \
\
if(!Source->Send[out].Slot || \
Source->Send[out].Slot->effect.type == AL_EFFECT_NULL) \
continue; \
\
WetBuffer = Source->Send[out].Slot->WetBuffer; \
WetClickRemoval = Source->Send[out].Slot->ClickRemoval; \
WetPendingClicks = Source->Send[out].Slot->PendingClicks; \
WetFilter = &Source->Params.Send[out].iirFilter; \
WetSend = Source->Params.Send[out].WetGain; \
\
pos = 0; \
frac = *DataPosFrac; \
OutPos -= BufferSize; \
\
if(OutPos == 0) \
{ \
value = sampler(data+pos, 1, frac); \
\
value = lpFilter2PC(WetFilter, 0, value); \
WetClickRemoval[0] -= value*WetSend; \
} \
for(BufferIdx = 0;BufferIdx < BufferSize;BufferIdx++) \
{ \
/* First order interpolator */ \
value = sampler(data+pos, 1, frac); \
\
/* Room path final mix buffer and panning */ \
value = lpFilter2P(WetFilter, 0, value); \
WetBuffer[OutPos] += value*WetSend; \
\
frac += increment; \
pos += frac>>FRACTIONBITS; \
frac &= FRACTIONMASK; \
OutPos++; \
} \
if(OutPos == SamplesToDo) \
{ \
value = sampler(data+pos, 1, frac); \
\
value = lpFilter2PC(WetFilter, 0, value); \
WetPendingClicks[0] += value*WetSend; \
} \
} \
*DataPosInt += pos; \
*DataPosFrac = frac; \
}
DECL_TEMPLATE(ALfloat, point32)
DECL_TEMPLATE(ALfloat, lerp32)
DECL_TEMPLATE(ALfloat, cubic32)
DECL_TEMPLATE(ALshort, point16)
DECL_TEMPLATE(ALshort, lerp16)
DECL_TEMPLATE(ALshort, cubic16)
DECL_TEMPLATE(ALubyte, point8)
DECL_TEMPLATE(ALubyte, lerp8)
DECL_TEMPLATE(ALubyte, cubic8)
#undef DECL_TEMPLATE
#define DECL_TEMPLATE(T, chnct, sampler) \
static void Mix_##T##_##chnct##_##sampler(ALsource *Source, ALCdevice *Device,\
const T *data, ALuint *DataPosInt, ALuint *DataPosFrac, \
ALuint OutPos, ALuint SamplesToDo, ALuint BufferSize) \
{ \
const ALuint Channels = chnct; \
const ALfloat scaler = 1.0f/chnct; \
ALfloat (*DryBuffer)[MAXCHANNELS]; \
ALfloat *ClickRemoval, *PendingClicks; \
ALuint pos, frac; \
ALfloat DrySend[chnct][MAXCHANNELS]; \
FILTER *DryFilter; \
ALuint BufferIdx; \
ALuint increment; \
ALuint i, out, c; \
ALfloat value; \
\
increment = Source->Params.Step; \
\
DryBuffer = Device->DryBuffer; \
ClickRemoval = Device->ClickRemoval; \
PendingClicks = Device->PendingClicks; \
DryFilter = &Source->Params.iirFilter; \
for(i = 0;i < Channels;i++) \
{ \
for(c = 0;c < MAXCHANNELS;c++) \
DrySend[i][c] = Source->Params.DryGains[i][c]; \
} \
\
pos = 0; \
frac = *DataPosFrac; \
\
if(OutPos == 0) \
{ \
for(i = 0;i < Channels;i++) \
{ \
value = sampler(data + pos*Channels + i, Channels, frac); \
\
value = lpFilter2PC(DryFilter, i*2, value); \
for(c = 0;c < MAXCHANNELS;c++) \
ClickRemoval[c] -= value*DrySend[i][c]; \
} \
} \
for(BufferIdx = 0;BufferIdx < BufferSize;BufferIdx++) \
{ \
for(i = 0;i < Channels;i++) \
{ \
value = sampler(data + pos*Channels + i, Channels, frac); \
\
value = lpFilter2P(DryFilter, i*2, value); \
for(c = 0;c < MAXCHANNELS;c++) \
DryBuffer[OutPos][c] += value*DrySend[i][c]; \
} \
\
frac += increment; \
pos += frac>>FRACTIONBITS; \
frac &= FRACTIONMASK; \
OutPos++; \
} \
if(OutPos == SamplesToDo) \
{ \
for(i = 0;i < Channels;i++) \
{ \
value = sampler(data + pos*Channels + i, Channels, frac); \
\
value = lpFilter2PC(DryFilter, i*2, value); \
for(c = 0;c < MAXCHANNELS;c++) \
PendingClicks[c] += value*DrySend[i][c]; \
} \
} \
\
for(out = 0;out < Device->NumAuxSends;out++) \
{ \
ALfloat WetSend; \
ALfloat *WetBuffer; \
ALfloat *WetClickRemoval; \
ALfloat *WetPendingClicks; \
FILTER *WetFilter; \
\
if(!Source->Send[out].Slot || \
Source->Send[out].Slot->effect.type == AL_EFFECT_NULL) \
continue; \
\
WetBuffer = Source->Send[out].Slot->WetBuffer; \
WetClickRemoval = Source->Send[out].Slot->ClickRemoval; \
WetPendingClicks = Source->Send[out].Slot->PendingClicks; \
WetFilter = &Source->Params.Send[out].iirFilter; \
WetSend = Source->Params.Send[out].WetGain; \
\
pos = 0; \
frac = *DataPosFrac; \
OutPos -= BufferSize; \
\
if(OutPos == 0) \
{ \
for(i = 0;i < Channels;i++) \
{ \
value = sampler(data + pos*Channels + i, Channels, frac); \
\
value = lpFilter1PC(WetFilter, i, value); \
WetClickRemoval[0] -= value*WetSend * scaler; \
} \
} \
for(BufferIdx = 0;BufferIdx < BufferSize;BufferIdx++) \
{ \
for(i = 0;i < Channels;i++) \
{ \
value = sampler(data + pos*Channels + i, Channels, frac); \
\
value = lpFilter1P(WetFilter, i, value); \
WetBuffer[OutPos] += value*WetSend * scaler; \
} \
\
frac += increment; \
pos += frac>>FRACTIONBITS; \
frac &= FRACTIONMASK; \
OutPos++; \
} \
if(OutPos == SamplesToDo) \
{ \
for(i = 0;i < Channels;i++) \
{ \
value = sampler(data + pos*Channels + i, Channels, frac); \
\
value = lpFilter1PC(WetFilter, i, value); \
WetPendingClicks[0] += value*WetSend * scaler; \
} \
} \
} \
*DataPosInt += pos; \
*DataPosFrac = frac; \
}
DECL_TEMPLATE(ALfloat, 2, point32)
DECL_TEMPLATE(ALfloat, 2, lerp32)
DECL_TEMPLATE(ALfloat, 2, cubic32)
DECL_TEMPLATE(ALshort, 2, point16)
DECL_TEMPLATE(ALshort, 2, lerp16)
DECL_TEMPLATE(ALshort, 2, cubic16)
DECL_TEMPLATE(ALubyte, 2, point8)
DECL_TEMPLATE(ALubyte, 2, lerp8)
DECL_TEMPLATE(ALubyte, 2, cubic8)
DECL_TEMPLATE(ALfloat, 4, point32)
DECL_TEMPLATE(ALfloat, 4, lerp32)
DECL_TEMPLATE(ALfloat, 4, cubic32)
DECL_TEMPLATE(ALshort, 4, point16)
DECL_TEMPLATE(ALshort, 4, lerp16)
DECL_TEMPLATE(ALshort, 4, cubic16)
DECL_TEMPLATE(ALubyte, 4, point8)
DECL_TEMPLATE(ALubyte, 4, lerp8)
DECL_TEMPLATE(ALubyte, 4, cubic8)
DECL_TEMPLATE(ALfloat, 6, point32)
DECL_TEMPLATE(ALfloat, 6, lerp32)
DECL_TEMPLATE(ALfloat, 6, cubic32)
DECL_TEMPLATE(ALshort, 6, point16)
DECL_TEMPLATE(ALshort, 6, lerp16)
DECL_TEMPLATE(ALshort, 6, cubic16)
DECL_TEMPLATE(ALubyte, 6, point8)
DECL_TEMPLATE(ALubyte, 6, lerp8)
DECL_TEMPLATE(ALubyte, 6, cubic8)
DECL_TEMPLATE(ALfloat, 7, point32)
DECL_TEMPLATE(ALfloat, 7, lerp32)
DECL_TEMPLATE(ALfloat, 7, cubic32)
DECL_TEMPLATE(ALshort, 7, point16)
DECL_TEMPLATE(ALshort, 7, lerp16)
DECL_TEMPLATE(ALshort, 7, cubic16)
DECL_TEMPLATE(ALubyte, 7, point8)
DECL_TEMPLATE(ALubyte, 7, lerp8)
DECL_TEMPLATE(ALubyte, 7, cubic8)
DECL_TEMPLATE(ALfloat, 8, point32)
DECL_TEMPLATE(ALfloat, 8, lerp32)
DECL_TEMPLATE(ALfloat, 8, cubic32)
DECL_TEMPLATE(ALshort, 8, point16)
DECL_TEMPLATE(ALshort, 8, lerp16)
DECL_TEMPLATE(ALshort, 8, cubic16)
DECL_TEMPLATE(ALubyte, 8, point8)
DECL_TEMPLATE(ALubyte, 8, lerp8)
DECL_TEMPLATE(ALubyte, 8, cubic8)
#undef DECL_TEMPLATE
#define DECL_TEMPLATE(T, sampler) \
static void Mix_##T##_##sampler(ALsource *Source, ALCdevice *Device, \
enum FmtChannels FmtChannels, \
const ALvoid *Data, ALuint *DataPosInt, ALuint *DataPosFrac, \
ALuint OutPos, ALuint SamplesToDo, ALuint BufferSize) \
{ \
switch(FmtChannels) \
{ \
case FmtMono: \
Mix_##T##_1_##sampler(Source, Device, Data, DataPosInt, DataPosFrac, \
OutPos, SamplesToDo, BufferSize); \
break; \
case FmtStereo: \
case FmtRear: \
Mix_##T##_2_##sampler(Source, Device, Data, DataPosInt, DataPosFrac, \
OutPos, SamplesToDo, BufferSize); \
break; \
case FmtQuad: \
Mix_##T##_4_##sampler(Source, Device, Data, DataPosInt, DataPosFrac, \
OutPos, SamplesToDo, BufferSize); \
break; \
case FmtX51: \
Mix_##T##_6_##sampler(Source, Device, Data, DataPosInt, DataPosFrac, \
OutPos, SamplesToDo, BufferSize); \
break; \
case FmtX61: \
Mix_##T##_7_##sampler(Source, Device, Data, DataPosInt, DataPosFrac, \
OutPos, SamplesToDo, BufferSize); \
break; \
case FmtX71: \
Mix_##T##_8_##sampler(Source, Device, Data, DataPosInt, DataPosFrac, \
OutPos, SamplesToDo, BufferSize); \
break; \
} \
}
DECL_TEMPLATE(ALfloat, point32)
DECL_TEMPLATE(ALfloat, lerp32)
DECL_TEMPLATE(ALfloat, cubic32)
DECL_TEMPLATE(ALshort, point16)
DECL_TEMPLATE(ALshort, lerp16)
DECL_TEMPLATE(ALshort, cubic16)
DECL_TEMPLATE(ALubyte, point8)
DECL_TEMPLATE(ALubyte, lerp8)
DECL_TEMPLATE(ALubyte, cubic8)
#undef DECL_TEMPLATE
#define DECL_TEMPLATE(sampler) \
static void Mix_##sampler(ALsource *Source, ALCdevice *Device, \
enum FmtChannels FmtChannels, enum FmtType FmtType, \
const ALvoid *Data, ALuint *DataPosInt, ALuint *DataPosFrac, \
ALuint OutPos, ALuint SamplesToDo, ALuint BufferSize) \
{ \
switch(FmtType) \
{ \
case FmtUByte: \
Mix_ALubyte_##sampler##8(Source, Device, FmtChannels, \
Data, DataPosInt, DataPosFrac, \
OutPos, SamplesToDo, BufferSize); \
break; \
\
case FmtShort: \
Mix_ALshort_##sampler##16(Source, Device, FmtChannels, \
Data, DataPosInt, DataPosFrac, \
OutPos, SamplesToDo, BufferSize); \
break; \
\
case FmtFloat: \
Mix_ALfloat_##sampler##32(Source, Device, FmtChannels, \
Data, DataPosInt, DataPosFrac, \
OutPos, SamplesToDo, BufferSize); \
break; \
} \
}
DECL_TEMPLATE(point)
DECL_TEMPLATE(lerp)
DECL_TEMPLATE(cubic)
#undef DECL_TEMPLATE
ALvoid MixSource(ALsource *Source, ALCdevice *Device, ALuint SamplesToDo)
{
ALbufferlistitem *BufferListItem;
ALuint DataPosInt, DataPosFrac;
enum FmtChannels FmtChannels;
enum FmtType FmtType;
ALuint BuffersPlayed;
ALboolean Looping;
ALuint increment;
resampler_t Resampler;
ALenum State;
ALuint OutPos;
ALuint FrameSize;
ALint64 DataSize64;
ALuint i;
/* Get source info */
State = Source->state;
BuffersPlayed = Source->BuffersPlayed;
DataPosInt = Source->position;
DataPosFrac = Source->position_fraction;
Looping = Source->bLooping;
increment = Source->Params.Step;
Resampler = (increment == FRACTIONONE) ? POINT_RESAMPLER :
Source->Resampler;
/* Get buffer info */
FrameSize = 0;
FmtChannels = FmtMono;
FmtType = FmtUByte;
BufferListItem = Source->queue;
for(i = 0;i < Source->BuffersInQueue;i++)
{
const ALbuffer *ALBuffer;
if((ALBuffer=BufferListItem->buffer) != NULL)
{
FmtChannels = ALBuffer->FmtChannels;
FmtType = ALBuffer->FmtType;
FrameSize = FrameSizeFromFmt(FmtChannels, FmtType);
break;
}
BufferListItem = BufferListItem->next;
}
/* Get current buffer queue item */
BufferListItem = Source->queue;
for(i = 0;i < BuffersPlayed;i++)
BufferListItem = BufferListItem->next;
OutPos = 0;
do {
const ALuint BufferPrePadding = ResamplerPrePadding[Resampler];
const ALuint BufferPadding = ResamplerPadding[Resampler];
ALubyte StackData[STACK_DATA_SIZE];
ALubyte *SrcData = StackData;
ALuint SrcDataSize = 0;
ALuint BufferSize;
/* Figure out how many buffer bytes will be needed */
DataSize64 = SamplesToDo-OutPos+1;
DataSize64 *= increment;
DataSize64 += DataPosFrac+FRACTIONMASK;
DataSize64 >>= FRACTIONBITS;
DataSize64 += BufferPadding+BufferPrePadding;
DataSize64 *= FrameSize;
BufferSize = min(DataSize64, STACK_DATA_SIZE);
BufferSize -= BufferSize%FrameSize;
if(Source->lSourceType == AL_STATIC)
{
const ALbuffer *ALBuffer = Source->Buffer;
const ALubyte *Data = ALBuffer->data;
ALuint DataSize;
ALuint pos;
/* If current pos is beyond the loop range, do not loop */
if(Looping == AL_FALSE || DataPosInt >= (ALuint)ALBuffer->LoopEnd)
{
Looping = AL_FALSE;
if(DataPosInt >= BufferPrePadding)
pos = (DataPosInt-BufferPrePadding)*FrameSize;
else
{
DataSize = (BufferPrePadding-DataPosInt)*FrameSize;
DataSize = min(BufferSize, DataSize);
memset(&SrcData[SrcDataSize], (FmtType==FmtUByte)?0x80:0, DataSize);
SrcDataSize += DataSize;
BufferSize -= DataSize;
pos = 0;
}
/* Copy what's left to play in the source buffer, and clear the
* rest of the temp buffer */
DataSize = ALBuffer->size - pos;
DataSize = min(BufferSize, DataSize);
memcpy(&SrcData[SrcDataSize], &Data[pos], DataSize);
SrcDataSize += DataSize;
BufferSize -= DataSize;
memset(&SrcData[SrcDataSize], (FmtType==FmtUByte)?0x80:0, BufferSize);
SrcDataSize += BufferSize;
BufferSize -= BufferSize;
}
else
{
ALuint LoopStart = ALBuffer->LoopStart;
ALuint LoopEnd = ALBuffer->LoopEnd;
if(DataPosInt >= LoopStart)
{
pos = DataPosInt-LoopStart;
while(pos < BufferPrePadding)
pos += LoopEnd-LoopStart;
pos -= BufferPrePadding;
pos += LoopStart;
pos *= FrameSize;
}
else if(DataPosInt >= BufferPrePadding)
pos = (DataPosInt-BufferPrePadding)*FrameSize;
else
{
DataSize = (BufferPrePadding-DataPosInt)*FrameSize;
DataSize = min(BufferSize, DataSize);
memset(&SrcData[SrcDataSize], (FmtType==FmtUByte)?0x80:0, DataSize);
SrcDataSize += DataSize;
BufferSize -= DataSize;
pos = 0;
}
/* Copy what's left of this loop iteration, then copy repeats
* of the loop section */
DataSize = LoopEnd*FrameSize - pos;
DataSize = min(BufferSize, DataSize);
memcpy(&SrcData[SrcDataSize], &Data[pos], DataSize);
SrcDataSize += DataSize;
BufferSize -= DataSize;
DataSize = (LoopEnd-LoopStart) * FrameSize;
while(BufferSize > 0)
{
DataSize = min(BufferSize, DataSize);
memcpy(&SrcData[SrcDataSize], &Data[LoopStart*FrameSize], DataSize);
SrcDataSize += DataSize;
BufferSize -= DataSize;
}
}
}
else
{
/* Crawl the buffer queue to fill in the temp buffer */
ALbufferlistitem *BufferListIter = BufferListItem;
ALuint pos;
if(DataPosInt >= BufferPrePadding)
pos = (DataPosInt-BufferPrePadding)*FrameSize;
else
{
pos = (BufferPrePadding-DataPosInt)*FrameSize;
while(pos > 0)
{
if(!BufferListIter->prev && !Looping)
{
ALuint DataSize = min(BufferSize, pos);
memset(&SrcData[SrcDataSize], (FmtType==FmtUByte)?0x80:0, DataSize);
SrcDataSize += DataSize;
BufferSize -= DataSize;
pos = 0;
break;
}
if(BufferListIter->prev)
BufferListIter = BufferListIter->prev;
else
{
while(BufferListIter->next)
BufferListIter = BufferListIter->next;
}
if(BufferListIter->buffer)
{
if((ALuint)BufferListIter->buffer->size > pos)
{
pos = BufferListIter->buffer->size - pos;
break;
}
pos -= BufferListIter->buffer->size;
}
}
}
while(BufferListIter && BufferSize > 0)
{
const ALbuffer *ALBuffer;
if((ALBuffer=BufferListIter->buffer) != NULL)
{
const ALubyte *Data = ALBuffer->data;
ALuint DataSize = ALBuffer->size;
/* Skip the data already played */
if(DataSize <= pos)
pos -= DataSize;
else
{
Data += pos;
DataSize -= pos;
pos -= pos;
DataSize = min(BufferSize, DataSize);
memcpy(&SrcData[SrcDataSize], Data, DataSize);
SrcDataSize += DataSize;
BufferSize -= DataSize;
}
}
BufferListIter = BufferListIter->next;
if(!BufferListIter && Looping)
BufferListIter = Source->queue;
else if(!BufferListIter)
{
memset(&SrcData[SrcDataSize], (FmtType==FmtUByte)?0x80:0, BufferSize);
SrcDataSize += BufferSize;
BufferSize -= BufferSize;
}
}
}
/* Figure out how many samples we can mix. */
DataSize64 = SrcDataSize / FrameSize;
DataSize64 -= BufferPadding+BufferPrePadding;
DataSize64 <<= FRACTIONBITS;
DataSize64 -= increment;
DataSize64 -= DataPosFrac;
BufferSize = (ALuint)((DataSize64+(increment-1)) / increment);
BufferSize = min(BufferSize, (SamplesToDo-OutPos));
SrcData += BufferPrePadding*FrameSize;
switch(Resampler)
{
case POINT_RESAMPLER:
Mix_point(Source, Device, FmtChannels, FmtType,
SrcData, &DataPosInt, &DataPosFrac,
OutPos, SamplesToDo, BufferSize);
break;
case LINEAR_RESAMPLER:
Mix_lerp(Source, Device, FmtChannels, FmtType,
SrcData, &DataPosInt, &DataPosFrac,
OutPos, SamplesToDo, BufferSize);
break;
case CUBIC_RESAMPLER:
Mix_cubic(Source, Device, FmtChannels, FmtType,
SrcData, &DataPosInt, &DataPosFrac,
OutPos, SamplesToDo, BufferSize);
break;
case RESAMPLER_MIN:
case RESAMPLER_MAX:
break;
}
OutPos += BufferSize;
/* Handle looping sources */
while(1)
{
const ALbuffer *ALBuffer;
ALuint DataSize = 0;
ALuint LoopStart = 0;
ALuint LoopEnd = 0;
if((ALBuffer=BufferListItem->buffer) != NULL)
{
DataSize = ALBuffer->size / FrameSize;
LoopStart = ALBuffer->LoopStart;
LoopEnd = ALBuffer->LoopEnd;
if(LoopEnd > DataPosInt)
break;
}
if(Looping && Source->lSourceType == AL_STATIC)
{
BufferListItem = Source->queue;
DataPosInt = ((DataPosInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart;
break;
}
if(DataSize > DataPosInt)
break;
if(BufferListItem->next)
{
BufferListItem = BufferListItem->next;
BuffersPlayed++;
}
else if(Looping)
{
BufferListItem = Source->queue;
BuffersPlayed = 0;
}
else
{
State = AL_STOPPED;
BufferListItem = Source->queue;
BuffersPlayed = Source->BuffersInQueue;
DataPosInt = 0;
DataPosFrac = 0;
break;
}
DataPosInt -= DataSize;
}
} while(State == AL_PLAYING && OutPos < SamplesToDo);
/* Update source info */
Source->state = State;
Source->BuffersPlayed = BuffersPlayed;
Source->position = DataPosInt;
Source->position_fraction = DataPosFrac;
Source->Buffer = BufferListItem->buffer;
}