openal-soft/Alc/bformatdec.cpp
Chris Robinson 13056b45b0 Revert back to using a band-splitter to increase the HF response
Unfortunately the shelf filter causes issues due to the shelf gain magnitude
creating a varying phase offset. The splitter also creates phase offsets, but
it's consistent regardless of gain.
2019-01-06 05:15:11 -08:00

271 lines
9.4 KiB
C++

#include "config.h"
#include <cmath>
#include <array>
#include <vector>
#include <numeric>
#include <algorithm>
#include <functional>
#include "bformatdec.h"
#include "ambdec.h"
#include "filters/splitter.h"
#include "alu.h"
#include "threads.h"
#include "almalloc.h"
namespace {
using namespace std::placeholders;
#define HF_BAND 0
#define LF_BAND 1
static_assert(BFormatDec::sNumBands == 2, "Unexpected BFormatDec::sNumBands");
constexpr ALfloat Ambi3DDecoderHFScale[MAX_AMBI_ORDER+1] = {
2.00000000f, 1.15470054f
};
constexpr ALfloat Ambi3DDecoderHFScale2O[MAX_AMBI_ORDER+1] = {
1.49071198f, 1.15470054f
};
constexpr ALfloat Ambi3DDecoderHFScale3O[MAX_AMBI_ORDER+1] = {
1.17958441f, 1.01578297f
};
inline auto GetDecoderHFScales(ALsizei order) noexcept -> const ALfloat(&)[MAX_AMBI_ORDER+1]
{
if(order >= 3) return Ambi3DDecoderHFScale3O;
if(order == 2) return Ambi3DDecoderHFScale2O;
return Ambi3DDecoderHFScale;
}
inline auto GetAmbiScales(AmbDecScale scaletype) noexcept -> const std::array<float,MAX_AMBI_COEFFS>&
{
if(scaletype == AmbDecScale::FuMa) return AmbiScale::FromFuMa;
if(scaletype == AmbDecScale::SN3D) return AmbiScale::FromSN3D;
return AmbiScale::FromN3D;
}
} // namespace
void BFormatDec::reset(const AmbDecConf *conf, bool allow_2band, ALsizei inchans, ALuint srate, const ALsizei (&chanmap)[MAX_OUTPUT_CHANNELS])
{
mSamples.clear();
mSamplesHF = nullptr;
mSamplesLF = nullptr;
mMatrix = MatrixU{};
mDualBand = allow_2band && (conf->FreqBands == 2);
if(!mDualBand)
mSamples.resize(2);
else
{
mSamples.resize(inchans * 2);
mSamplesHF = mSamples.data();
mSamplesLF = mSamplesHF + inchans;
}
mNumChannels = inchans;
mEnabled = std::accumulate(std::begin(chanmap), std::begin(chanmap)+conf->Speakers.size(), 0u,
[](ALuint mask, const ALsizei &chan) noexcept -> ALuint
{ return mask | (1 << chan); }
);
const ALfloat xover_norm{conf->XOverFreq / (float)srate};
const ALsizei out_order{
(conf->ChanMask > AMBI_3ORDER_MASK) ? 4 :
(conf->ChanMask > AMBI_2ORDER_MASK) ? 3 :
(conf->ChanMask > AMBI_1ORDER_MASK) ? 2 : 1};
{
const ALfloat (&hfscales)[MAX_AMBI_ORDER+1] = GetDecoderHFScales(out_order);
mUpsampler[0].Splitter.init(xover_norm);
mUpsampler[0].Gains[HF_BAND] = Ambi3DDecoderHFScale[0] / hfscales[0];
mUpsampler[0].Gains[LF_BAND] = 1.0f;
mUpsampler[1].Splitter.init(xover_norm);
mUpsampler[1].Gains[HF_BAND] = Ambi3DDecoderHFScale[1] / hfscales[1];
mUpsampler[1].Gains[LF_BAND] = 1.0f;
std::fill(std::begin(mUpsampler)+2, std::end(mUpsampler), mUpsampler[1]);
}
const bool periphonic{(conf->ChanMask&AMBI_PERIPHONIC_MASK) != 0};
const std::array<float,MAX_AMBI_COEFFS> &coeff_scale = GetAmbiScales(conf->CoeffScale);
const ALsizei coeff_count{periphonic ? MAX_AMBI_COEFFS : MAX_AMBI2D_COEFFS};
if(!mDualBand)
{
for(size_t i{0u};i < conf->Speakers.size();i++)
{
ALfloat (&mtx)[MAX_AMBI_COEFFS] = mMatrix.Single[chanmap[i]];
for(ALsizei j{0},k{0};j < coeff_count;j++)
{
const ALsizei l{periphonic ? j : AmbiIndex::From2D[j]};
if(!(conf->ChanMask&(1<<l))) continue;
mtx[j] = conf->HFMatrix[i][k] / coeff_scale[l] *
((l>=9) ? conf->HFOrderGain[3] :
(l>=4) ? conf->HFOrderGain[2] :
(l>=1) ? conf->HFOrderGain[1] : conf->HFOrderGain[0]);
++k;
}
}
}
else
{
mXOver[0].init(xover_norm);
std::fill(std::begin(mXOver)+1, std::end(mXOver), mXOver[0]);
const float ratio{std::pow(10.0f, conf->XOverRatio / 40.0f)};
for(size_t i{0u};i < conf->Speakers.size();i++)
{
ALfloat (&mtx)[sNumBands][MAX_AMBI_COEFFS] = mMatrix.Dual[chanmap[i]];
for(ALsizei j{0},k{0};j < coeff_count;j++)
{
const ALsizei l{periphonic ? j : AmbiIndex::From2D[j]};
if(!(conf->ChanMask&(1<<l))) continue;
mtx[HF_BAND][j] = conf->HFMatrix[i][k] / coeff_scale[l] *
((l>=9) ? conf->HFOrderGain[3] :
(l>=4) ? conf->HFOrderGain[2] :
(l>=1) ? conf->HFOrderGain[1] : conf->HFOrderGain[0]) * ratio;
mtx[LF_BAND][j] = conf->LFMatrix[i][k] / coeff_scale[l] *
((l>=9) ? conf->LFOrderGain[3] :
(l>=4) ? conf->LFOrderGain[2] :
(l>=1) ? conf->LFOrderGain[1] : conf->LFOrderGain[0]) / ratio;
++k;
}
}
}
}
void BFormatDec::reset(const ALsizei inchans, const ALfloat xover_norm, const ALsizei chancount, const ChannelDec (&chancoeffs)[MAX_OUTPUT_CHANNELS], const ALsizei (&chanmap)[MAX_OUTPUT_CHANNELS])
{
mSamples.clear();
mSamplesHF = nullptr;
mSamplesLF = nullptr;
mMatrix = MatrixU{};
mDualBand = false;
mSamples.resize(2);
mNumChannels = inchans;
mEnabled = std::accumulate(std::begin(chanmap), std::begin(chanmap)+chancount, 0u,
[](ALuint mask, const ALsizei &chan) noexcept -> ALuint
{ return mask | (1 << chan); }
);
const ALsizei out_order{
(inchans > 7) ? 4 :
(inchans > 5) ? 3 :
(inchans > 3) ? 2 : 1};
{
const ALfloat (&hfscales)[MAX_AMBI_ORDER+1] = GetDecoderHFScales(out_order);
mUpsampler[0].Splitter.init(xover_norm);
mUpsampler[0].Gains[HF_BAND] = Ambi3DDecoderHFScale[0] / hfscales[0];
mUpsampler[0].Gains[LF_BAND] = 1.0f;
mUpsampler[1].Splitter.init(xover_norm);
mUpsampler[1].Gains[HF_BAND] = Ambi3DDecoderHFScale[1] / hfscales[1];
mUpsampler[1].Gains[LF_BAND] = 1.0f;
std::fill(std::begin(mUpsampler)+2, std::end(mUpsampler), mUpsampler[1]);
}
for(ALsizei i{0};i < chancount;i++)
{
const ALfloat (&coeffs)[MAX_AMBI_COEFFS] = chancoeffs[chanmap[i]];
ALfloat (&mtx)[MAX_AMBI_COEFFS] = mMatrix.Single[chanmap[i]];
std::copy_n(std::begin(coeffs), inchans, std::begin(mtx));
}
}
void BFormatDec::process(ALfloat (*OutBuffer)[BUFFERSIZE], const ALsizei OutChannels, const ALfloat (*InSamples)[BUFFERSIZE], const ALsizei SamplesToDo)
{
ASSUME(OutChannels > 0);
ASSUME(mNumChannels > 0);
if(mDualBand)
{
for(ALsizei i{0};i < mNumChannels;i++)
mXOver[i].process(mSamplesHF[i].data(), mSamplesLF[i].data(), InSamples[i],
SamplesToDo);
for(ALsizei chan{0};chan < OutChannels;chan++)
{
if(UNLIKELY(!(mEnabled&(1<<chan))))
continue;
MixRowSamples(OutBuffer[chan], mMatrix.Dual[chan][HF_BAND],
&reinterpret_cast<ALfloat(&)[BUFFERSIZE]>(mSamplesHF[0]),
mNumChannels, 0, SamplesToDo);
MixRowSamples(OutBuffer[chan], mMatrix.Dual[chan][LF_BAND],
&reinterpret_cast<ALfloat(&)[BUFFERSIZE]>(mSamplesLF[0]),
mNumChannels, 0, SamplesToDo);
}
}
else
{
for(ALsizei chan{0};chan < OutChannels;chan++)
{
if(UNLIKELY(!(mEnabled&(1<<chan))))
continue;
MixRowSamples(OutBuffer[chan], mMatrix.Single[chan], InSamples,
mNumChannels, 0, SamplesToDo);
}
}
}
void BFormatDec::upSample(ALfloat (*OutBuffer)[BUFFERSIZE], const ALfloat (*InSamples)[BUFFERSIZE], const ALsizei InChannels, const ALsizei SamplesToDo)
{
ASSUME(InChannels > 0);
/* This up-sampler leverages the differences observed in dual-band higher-
* order decoder matrices compared to first-order. For the same output
* channel configuration, the low-frequency matrix has identical
* coefficients in the shared input channels, while the high-frequency
* matrix has extra scalars applied to the W channel and X/Y/Z channels.
* Mixing the first-order content into the higher-order stream, with the
* appropriate counter-scales applied to the HF response, results in the
* subsequent higher-order decode generating the same response as a first-
* order decode.
*/
for(ALsizei i{0};i < InChannels;i++)
{
mUpsampler[i].Splitter.process(mSamples[HF_BAND].data(), mSamples[LF_BAND].data(),
InSamples[i], SamplesToDo);
MixRowSamples(OutBuffer[i], mUpsampler[i].Gains,
&reinterpret_cast<ALfloat(&)[BUFFERSIZE]>(mSamples[0]), sNumBands, 0, SamplesToDo);
}
}
void AmbiUpsampler::reset(const ALsizei out_order, const ALfloat xover_norm)
{
const ALfloat (&hfscales)[MAX_AMBI_ORDER+1] = GetDecoderHFScales(out_order);
mInput[0].Splitter.init(xover_norm);
mInput[0].Gains[HF_BAND] = Ambi3DDecoderHFScale[0] / hfscales[0];
mInput[0].Gains[LF_BAND] = 1.0f;
mInput[1].Splitter.init(xover_norm);
mInput[1].Gains[HF_BAND] = Ambi3DDecoderHFScale[1] / hfscales[1];
mInput[1].Gains[LF_BAND] = 1.0f;
std::fill(std::begin(mInput)+2, std::end(mInput), mInput[1]);
}
void AmbiUpsampler::process(ALfloat (*OutBuffer)[BUFFERSIZE], const ALfloat (*InSamples)[BUFFERSIZE], const ALsizei InChannels, const ALsizei SamplesToDo)
{
ASSUME(InChannels > 0);
for(ALsizei i{0};i < InChannels;i++)
{
mInput[i].Splitter.process(mSamples[HF_BAND], mSamples[LF_BAND], InSamples[i],
SamplesToDo);
MixRowSamples(OutBuffer[i], mInput[i].Gains, mSamples, sNumBands, 0, SamplesToDo);
}
}