openal-soft/Alc/bformatdec.cpp

529 lines
18 KiB
C++

#include "config.h"
#include <array>
#include <vector>
#include "bformatdec.h"
#include "ambdec.h"
#include "filters/splitter.h"
#include "alu.h"
#include "bool.h"
#include "threads.h"
#include "almalloc.h"
/* NOTE: These are scale factors as applied to Ambisonics content. Decoder
* coefficients should be divided by these values to get proper N3D scalings.
*/
const ALfloat N3D2N3DScale[MAX_AMBI_COEFFS] = {
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f
};
const ALfloat SN3D2N3DScale[MAX_AMBI_COEFFS] = {
1.000000000f, /* ACN 0 (W), sqrt(1) */
1.732050808f, /* ACN 1 (Y), sqrt(3) */
1.732050808f, /* ACN 2 (Z), sqrt(3) */
1.732050808f, /* ACN 3 (X), sqrt(3) */
2.236067978f, /* ACN 4 (V), sqrt(5) */
2.236067978f, /* ACN 5 (T), sqrt(5) */
2.236067978f, /* ACN 6 (R), sqrt(5) */
2.236067978f, /* ACN 7 (S), sqrt(5) */
2.236067978f, /* ACN 8 (U), sqrt(5) */
2.645751311f, /* ACN 9 (Q), sqrt(7) */
2.645751311f, /* ACN 10 (O), sqrt(7) */
2.645751311f, /* ACN 11 (M), sqrt(7) */
2.645751311f, /* ACN 12 (K), sqrt(7) */
2.645751311f, /* ACN 13 (L), sqrt(7) */
2.645751311f, /* ACN 14 (N), sqrt(7) */
2.645751311f, /* ACN 15 (P), sqrt(7) */
};
const ALfloat FuMa2N3DScale[MAX_AMBI_COEFFS] = {
1.414213562f, /* ACN 0 (W), sqrt(2) */
1.732050808f, /* ACN 1 (Y), sqrt(3) */
1.732050808f, /* ACN 2 (Z), sqrt(3) */
1.732050808f, /* ACN 3 (X), sqrt(3) */
1.936491673f, /* ACN 4 (V), sqrt(15)/2 */
1.936491673f, /* ACN 5 (T), sqrt(15)/2 */
2.236067978f, /* ACN 6 (R), sqrt(5) */
1.936491673f, /* ACN 7 (S), sqrt(15)/2 */
1.936491673f, /* ACN 8 (U), sqrt(15)/2 */
2.091650066f, /* ACN 9 (Q), sqrt(35/8) */
1.972026594f, /* ACN 10 (O), sqrt(35)/3 */
2.231093404f, /* ACN 11 (M), sqrt(224/45) */
2.645751311f, /* ACN 12 (K), sqrt(7) */
2.231093404f, /* ACN 13 (L), sqrt(224/45) */
1.972026594f, /* ACN 14 (N), sqrt(35)/3 */
2.091650066f, /* ACN 15 (P), sqrt(35/8) */
};
namespace {
#define HF_BAND 0
#define LF_BAND 1
#define NUM_BANDS 2
/* These points are in AL coordinates! */
constexpr ALfloat Ambi3DPoints[8][3] = {
{ -0.577350269f, 0.577350269f, -0.577350269f },
{ 0.577350269f, 0.577350269f, -0.577350269f },
{ -0.577350269f, 0.577350269f, 0.577350269f },
{ 0.577350269f, 0.577350269f, 0.577350269f },
{ -0.577350269f, -0.577350269f, -0.577350269f },
{ 0.577350269f, -0.577350269f, -0.577350269f },
{ -0.577350269f, -0.577350269f, 0.577350269f },
{ 0.577350269f, -0.577350269f, 0.577350269f },
};
constexpr ALfloat Ambi3DDecoder[8][MAX_AMBI_COEFFS] = {
{ 0.125f, 0.125f, 0.125f, 0.125f },
{ 0.125f, -0.125f, 0.125f, 0.125f },
{ 0.125f, 0.125f, 0.125f, -0.125f },
{ 0.125f, -0.125f, 0.125f, -0.125f },
{ 0.125f, 0.125f, -0.125f, 0.125f },
{ 0.125f, -0.125f, -0.125f, 0.125f },
{ 0.125f, 0.125f, -0.125f, -0.125f },
{ 0.125f, -0.125f, -0.125f, -0.125f },
};
constexpr ALfloat Ambi3DDecoderHFScale[MAX_AMBI_COEFFS] = {
2.0f,
1.15470054f, 1.15470054f, 1.15470054f
};
#define INVALID_UPSAMPLE_INDEX INT_MAX
ALsizei GetACNIndex(const BFChannelConfig *chans, ALsizei numchans, ALsizei acn)
{
ALsizei i;
for(i = 0;i < numchans;i++)
{
if(chans[i].Index == acn)
return i;
}
return INVALID_UPSAMPLE_INDEX;
}
#define GetChannelForACN(b, a) GetACNIndex((b).Ambi.Map, (b).NumChannels, (a))
template<typename T, size_t alignment>
class aligned_allocator : public std::allocator<T> {
public:
using size_type = size_t;
using pointer = T*;
using const_pointer = const T*;
template<typename U>
struct rebind {
using other = aligned_allocator<U, alignment>;
};
pointer allocate(size_type n, const void* = nullptr)
{ return reinterpret_cast<T*>(al_malloc(alignment, n*sizeof(T))); }
void deallocate(pointer p, size_type)
{ al_free(p); }
aligned_allocator() : std::allocator<T>() { }
aligned_allocator(const aligned_allocator &a) : std::allocator<T>(a) { }
template<class U>
aligned_allocator(const aligned_allocator<U,alignment> &a)
: std::allocator<T>(a)
{ }
~aligned_allocator() { }
};
template<typename T, size_t alignment>
using aligned_vector = std::vector<T, aligned_allocator<T, alignment>>;
} // namespace
/* NOTE: BandSplitter filters are unused with single-band decoding */
struct BFormatDec {
ALuint Enabled; /* Bitfield of enabled channels. */
union {
alignas(16) ALfloat Dual[MAX_OUTPUT_CHANNELS][NUM_BANDS][MAX_AMBI_COEFFS];
alignas(16) ALfloat Single[MAX_OUTPUT_CHANNELS][MAX_AMBI_COEFFS];
} Matrix;
BandSplitter XOver[MAX_AMBI_COEFFS];
aligned_vector<std::array<ALfloat,BUFFERSIZE>, 16> Samples;
/* These two alias into Samples */
std::array<ALfloat,BUFFERSIZE> *SamplesHF;
std::array<ALfloat,BUFFERSIZE> *SamplesLF;
alignas(16) ALfloat ChannelMix[BUFFERSIZE];
struct {
BandSplitter XOver;
ALfloat Gains[NUM_BANDS];
} UpSampler[4];
ALsizei NumChannels;
ALboolean DualBand;
void *operator new(size_t size) { return al_malloc(alignof(BFormatDec), size); }
void operator delete(void *block) { al_free(block); }
};
BFormatDec *bformatdec_alloc()
{ return new BFormatDec{}; }
void bformatdec_free(BFormatDec **dec)
{
if(dec && *dec)
{
delete *dec;
*dec = nullptr;
}
}
void bformatdec_reset(BFormatDec *dec, const AmbDecConf *conf, ALsizei chancount, ALuint srate, const ALsizei chanmap[MAX_OUTPUT_CHANNELS])
{
static constexpr ALsizei map2DTo3D[MAX_AMBI2D_COEFFS] = {
0, 1, 3, 4, 8, 9, 15
};
const ALfloat *coeff_scale = N3D2N3DScale;
bool periphonic;
ALfloat ratio;
ALsizei i;
dec->Samples.clear();
dec->SamplesHF = nullptr;
dec->SamplesLF = nullptr;
dec->NumChannels = chancount;
dec->Samples.resize(dec->NumChannels * 2);
dec->SamplesHF = dec->Samples.data();
dec->SamplesLF = dec->SamplesHF + dec->NumChannels;
dec->Enabled = 0;
for(i = 0;i < conf->NumSpeakers;i++)
dec->Enabled |= 1 << chanmap[i];
if(conf->CoeffScale == AmbDecScale::SN3D)
coeff_scale = SN3D2N3DScale;
else if(conf->CoeffScale == AmbDecScale::FuMa)
coeff_scale = FuMa2N3DScale;
memset(dec->UpSampler, 0, sizeof(dec->UpSampler));
ratio = 400.0f / (ALfloat)srate;
for(i = 0;i < 4;i++)
bandsplit_init(&dec->UpSampler[i].XOver, ratio);
if((conf->ChanMask&AMBI_PERIPHONIC_MASK))
{
periphonic = true;
dec->UpSampler[0].Gains[HF_BAND] = (conf->ChanMask > 0x1ff) ? W_SCALE_3H3P :
(conf->ChanMask > 0xf) ? W_SCALE_2H2P : 1.0f;
dec->UpSampler[0].Gains[LF_BAND] = 1.0f;
for(i = 1;i < 4;i++)
{
dec->UpSampler[i].Gains[HF_BAND] = (conf->ChanMask > 0x1ff) ? XYZ_SCALE_3H3P :
(conf->ChanMask > 0xf) ? XYZ_SCALE_2H2P : 1.0f;
dec->UpSampler[i].Gains[LF_BAND] = 1.0f;
}
}
else
{
periphonic = false;
dec->UpSampler[0].Gains[HF_BAND] = (conf->ChanMask > 0x1ff) ? W_SCALE_3H0P :
(conf->ChanMask > 0xf) ? W_SCALE_2H0P : 1.0f;
dec->UpSampler[0].Gains[LF_BAND] = 1.0f;
for(i = 1;i < 3;i++)
{
dec->UpSampler[i].Gains[HF_BAND] = (conf->ChanMask > 0x1ff) ? XYZ_SCALE_3H0P :
(conf->ChanMask > 0xf) ? XYZ_SCALE_2H0P : 1.0f;
dec->UpSampler[i].Gains[LF_BAND] = 1.0f;
}
dec->UpSampler[3].Gains[HF_BAND] = 0.0f;
dec->UpSampler[3].Gains[LF_BAND] = 0.0f;
}
memset(&dec->Matrix, 0, sizeof(dec->Matrix));
if(conf->FreqBands == 1)
{
dec->DualBand = AL_FALSE;
for(i = 0;i < conf->NumSpeakers;i++)
{
ALsizei chan = chanmap[i];
ALfloat gain;
ALsizei j, k;
if(!periphonic)
{
for(j = 0,k = 0;j < MAX_AMBI2D_COEFFS;j++)
{
ALsizei l = map2DTo3D[j];
if(j == 0) gain = conf->HFOrderGain[0];
else if(j == 1) gain = conf->HFOrderGain[1];
else if(j == 3) gain = conf->HFOrderGain[2];
else if(j == 5) gain = conf->HFOrderGain[3];
if((conf->ChanMask&(1<<l)))
dec->Matrix.Single[chan][j] = conf->HFMatrix[i][k++] / coeff_scale[l] *
gain;
}
}
else
{
for(j = 0,k = 0;j < MAX_AMBI_COEFFS;j++)
{
if(j == 0) gain = conf->HFOrderGain[0];
else if(j == 1) gain = conf->HFOrderGain[1];
else if(j == 4) gain = conf->HFOrderGain[2];
else if(j == 9) gain = conf->HFOrderGain[3];
if((conf->ChanMask&(1<<j)))
dec->Matrix.Single[chan][j] = conf->HFMatrix[i][k++] / coeff_scale[j] *
gain;
}
}
}
}
else
{
dec->DualBand = AL_TRUE;
ratio = conf->XOverFreq / (ALfloat)srate;
for(i = 0;i < MAX_AMBI_COEFFS;i++)
bandsplit_init(&dec->XOver[i], ratio);
ratio = powf(10.0f, conf->XOverRatio / 40.0f);
for(i = 0;i < conf->NumSpeakers;i++)
{
ALsizei chan = chanmap[i];
ALfloat gain;
ALsizei j, k;
if(!periphonic)
{
for(j = 0,k = 0;j < MAX_AMBI2D_COEFFS;j++)
{
ALsizei l = map2DTo3D[j];
if(j == 0) gain = conf->HFOrderGain[0] * ratio;
else if(j == 1) gain = conf->HFOrderGain[1] * ratio;
else if(j == 3) gain = conf->HFOrderGain[2] * ratio;
else if(j == 5) gain = conf->HFOrderGain[3] * ratio;
if((conf->ChanMask&(1<<l)))
dec->Matrix.Dual[chan][HF_BAND][j] = conf->HFMatrix[i][k++] /
coeff_scale[l] * gain;
}
for(j = 0,k = 0;j < MAX_AMBI2D_COEFFS;j++)
{
ALsizei l = map2DTo3D[j];
if(j == 0) gain = conf->LFOrderGain[0] / ratio;
else if(j == 1) gain = conf->LFOrderGain[1] / ratio;
else if(j == 3) gain = conf->LFOrderGain[2] / ratio;
else if(j == 5) gain = conf->LFOrderGain[3] / ratio;
if((conf->ChanMask&(1<<l)))
dec->Matrix.Dual[chan][LF_BAND][j] = conf->LFMatrix[i][k++] /
coeff_scale[l] * gain;
}
}
else
{
for(j = 0,k = 0;j < MAX_AMBI_COEFFS;j++)
{
if(j == 0) gain = conf->HFOrderGain[0] * ratio;
else if(j == 1) gain = conf->HFOrderGain[1] * ratio;
else if(j == 4) gain = conf->HFOrderGain[2] * ratio;
else if(j == 9) gain = conf->HFOrderGain[3] * ratio;
if((conf->ChanMask&(1<<j)))
dec->Matrix.Dual[chan][HF_BAND][j] = conf->HFMatrix[i][k++] /
coeff_scale[j] * gain;
}
for(j = 0,k = 0;j < MAX_AMBI_COEFFS;j++)
{
if(j == 0) gain = conf->LFOrderGain[0] / ratio;
else if(j == 1) gain = conf->LFOrderGain[1] / ratio;
else if(j == 4) gain = conf->LFOrderGain[2] / ratio;
else if(j == 9) gain = conf->LFOrderGain[3] / ratio;
if((conf->ChanMask&(1<<j)))
dec->Matrix.Dual[chan][LF_BAND][j] = conf->LFMatrix[i][k++] /
coeff_scale[j] * gain;
}
}
}
}
}
void bformatdec_process(struct BFormatDec *dec, ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE], ALsizei OutChannels, const ALfloat (*RESTRICT InSamples)[BUFFERSIZE], ALsizei SamplesToDo)
{
ALsizei chan, i;
if(dec->DualBand)
{
for(i = 0;i < dec->NumChannels;i++)
bandsplit_process(&dec->XOver[i], dec->SamplesHF[i].data(), dec->SamplesLF[i].data(),
InSamples[i], SamplesToDo);
for(chan = 0;chan < OutChannels;chan++)
{
if(!(dec->Enabled&(1<<chan)))
continue;
memset(dec->ChannelMix, 0, SamplesToDo*sizeof(ALfloat));
MixRowSamples(dec->ChannelMix, dec->Matrix.Dual[chan][HF_BAND],
&reinterpret_cast<ALfloat(&)[BUFFERSIZE]>(dec->SamplesHF[0]),
dec->NumChannels, 0, SamplesToDo
);
MixRowSamples(dec->ChannelMix, dec->Matrix.Dual[chan][LF_BAND],
&reinterpret_cast<ALfloat(&)[BUFFERSIZE]>(dec->SamplesLF[0]),
dec->NumChannels, 0, SamplesToDo
);
for(i = 0;i < SamplesToDo;i++)
OutBuffer[chan][i] += dec->ChannelMix[i];
}
}
else
{
for(chan = 0;chan < OutChannels;chan++)
{
if(!(dec->Enabled&(1<<chan)))
continue;
memset(dec->ChannelMix, 0, SamplesToDo*sizeof(ALfloat));
MixRowSamples(dec->ChannelMix, dec->Matrix.Single[chan], InSamples,
dec->NumChannels, 0, SamplesToDo);
for(i = 0;i < SamplesToDo;i++)
OutBuffer[chan][i] += dec->ChannelMix[i];
}
}
}
void bformatdec_upSample(struct BFormatDec *dec, ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE], const ALfloat (*RESTRICT InSamples)[BUFFERSIZE], ALsizei InChannels, ALsizei SamplesToDo)
{
ALsizei i;
/* This up-sampler leverages the differences observed in dual-band second-
* and third-order decoder matrices compared to first-order. For the same
* output channel configuration, the low-frequency matrix has identical
* coefficients in the shared input channels, while the high-frequency
* matrix has extra scalars applied to the W channel and X/Y/Z channels.
* Mixing the first-order content into the higher-order stream with the
* appropriate counter-scales applied to the HF response results in the
* subsequent higher-order decode generating the same response as a first-
* order decode.
*/
for(i = 0;i < InChannels;i++)
{
/* First, split the first-order components into low and high frequency
* bands.
*/
bandsplit_process(&dec->UpSampler[i].XOver,
dec->Samples[HF_BAND].data(), dec->Samples[LF_BAND].data(),
InSamples[i], SamplesToDo
);
/* Now write each band to the output. */
MixRowSamples(OutBuffer[i], dec->UpSampler[i].Gains,
&reinterpret_cast<ALfloat(&)[BUFFERSIZE]>(dec->Samples[0]),
NUM_BANDS, 0, SamplesToDo
);
}
}
struct AmbiUpsampler {
alignas(16) ALfloat Samples[NUM_BANDS][BUFFERSIZE];
BandSplitter XOver[4];
ALfloat Gains[4][MAX_OUTPUT_CHANNELS][NUM_BANDS];
void *operator new(size_t size) { return al_malloc(alignof(AmbiUpsampler), size); }
void operator delete(void *block) { al_free(block); }
};
AmbiUpsampler *ambiup_alloc()
{ return new AmbiUpsampler{}; }
void ambiup_free(struct AmbiUpsampler **ambiup)
{
if(ambiup)
{
delete *ambiup;
*ambiup = nullptr;
}
}
void ambiup_reset(struct AmbiUpsampler *ambiup, const ALCdevice *device, ALfloat w_scale, ALfloat xyz_scale)
{
ALfloat ratio;
ALsizei i;
ratio = 400.0f / (ALfloat)device->Frequency;
for(i = 0;i < 4;i++)
bandsplit_init(&ambiup->XOver[i], ratio);
memset(ambiup->Gains, 0, sizeof(ambiup->Gains));
if(device->Dry.CoeffCount > 0)
{
ALfloat encgains[8][MAX_OUTPUT_CHANNELS];
ALsizei j;
size_t k;
for(k = 0;k < COUNTOF(Ambi3DPoints);k++)
{
ALfloat coeffs[MAX_AMBI_COEFFS] = { 0.0f };
CalcDirectionCoeffs(Ambi3DPoints[k], 0.0f, coeffs);
ComputePanGains(&device->Dry, coeffs, 1.0f, encgains[k]);
}
/* Combine the matrices that do the in->virt and virt->out conversions
* so we get a single in->out conversion. NOTE: the Encoder matrix
* (encgains) and output are transposed, so the input channels line up
* with the rows and the output channels line up with the columns.
*/
for(i = 0;i < 4;i++)
{
for(j = 0;j < device->Dry.NumChannels;j++)
{
ALdouble gain = 0.0;
for(k = 0;k < COUNTOF(Ambi3DDecoder);k++)
gain += (ALdouble)Ambi3DDecoder[k][i] * encgains[k][j];
ambiup->Gains[i][j][HF_BAND] = (ALfloat)(gain * Ambi3DDecoderHFScale[i]);
ambiup->Gains[i][j][LF_BAND] = (ALfloat)gain;
}
}
}
else
{
for(i = 0;i < 4;i++)
{
ALsizei index = GetChannelForACN(device->Dry, i);
if(index != INVALID_UPSAMPLE_INDEX)
{
ALfloat scale = device->Dry.Ambi.Map[index].Scale;
ambiup->Gains[i][index][HF_BAND] = scale * ((i==0) ? w_scale : xyz_scale);
ambiup->Gains[i][index][LF_BAND] = scale;
}
}
}
}
void ambiup_process(struct AmbiUpsampler *ambiup, ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE], ALsizei OutChannels, const ALfloat (*RESTRICT InSamples)[BUFFERSIZE], ALsizei SamplesToDo)
{
ALsizei i, j;
for(i = 0;i < 4;i++)
{
bandsplit_process(&ambiup->XOver[i],
ambiup->Samples[HF_BAND], ambiup->Samples[LF_BAND],
InSamples[i], SamplesToDo
);
for(j = 0;j < OutChannels;j++)
MixRowSamples(OutBuffer[j], ambiup->Gains[i][j],
ambiup->Samples, NUM_BANDS, 0, SamplesToDo
);
}
}