2018-11-26 21:39:31 -08:00

574 lines
16 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include "backends/sndio.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <thread>
#include "alMain.h"
#include "alu.h"
#include "threads.h"
#include "ringbuffer.h"
#include <sndio.h>
static const ALCchar sndio_device[] = "SndIO Default";
struct SndioPlayback final : public ALCbackend {
struct sio_hdl *sndHandle{nullptr};
ALvoid *mix_data{nullptr};
ALsizei data_size{0};
std::atomic<ALenum> mKillNow{AL_TRUE};
std::thread mThread;
};
static int SndioPlayback_mixerProc(SndioPlayback *self);
static void SndioPlayback_Construct(SndioPlayback *self, ALCdevice *device);
static void SndioPlayback_Destruct(SndioPlayback *self);
static ALCenum SndioPlayback_open(SndioPlayback *self, const ALCchar *name);
static ALCboolean SndioPlayback_reset(SndioPlayback *self);
static ALCboolean SndioPlayback_start(SndioPlayback *self);
static void SndioPlayback_stop(SndioPlayback *self);
static DECLARE_FORWARD2(SndioPlayback, ALCbackend, ALCenum, captureSamples, void*, ALCuint)
static DECLARE_FORWARD(SndioPlayback, ALCbackend, ALCuint, availableSamples)
static DECLARE_FORWARD(SndioPlayback, ALCbackend, ClockLatency, getClockLatency)
static DECLARE_FORWARD(SndioPlayback, ALCbackend, void, lock)
static DECLARE_FORWARD(SndioPlayback, ALCbackend, void, unlock)
DECLARE_DEFAULT_ALLOCATORS(SndioPlayback)
DEFINE_ALCBACKEND_VTABLE(SndioPlayback);
static void SndioPlayback_Construct(SndioPlayback *self, ALCdevice *device)
{
new (self) SndioPlayback{};
ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device);
SET_VTABLE2(SndioPlayback, ALCbackend, self);
}
static void SndioPlayback_Destruct(SndioPlayback *self)
{
if(self->sndHandle)
sio_close(self->sndHandle);
self->sndHandle = nullptr;
al_free(self->mix_data);
self->mix_data = nullptr;
ALCbackend_Destruct(STATIC_CAST(ALCbackend, self));
self->~SndioPlayback();
}
static int SndioPlayback_mixerProc(SndioPlayback *self)
{
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
ALsizei frameSize;
size_t wrote;
SetRTPriority();
althrd_setname(MIXER_THREAD_NAME);
frameSize = FrameSizeFromDevFmt(device->FmtChans, device->FmtType, device->mAmbiOrder);
while(!self->mKillNow.load(std::memory_order_acquire) &&
device->Connected.load(std::memory_order_acquire))
{
ALsizei len = self->data_size;
ALubyte *WritePtr = static_cast<ALubyte*>(self->mix_data);
SndioPlayback_lock(self);
aluMixData(device, WritePtr, len/frameSize);
SndioPlayback_unlock(self);
while(len > 0 && !self->mKillNow.load(std::memory_order_acquire))
{
wrote = sio_write(self->sndHandle, WritePtr, len);
if(wrote == 0)
{
ERR("sio_write failed\n");
SndioPlayback_lock(self);
aluHandleDisconnect(device, "Failed to write playback samples");
SndioPlayback_unlock(self);
break;
}
len -= wrote;
WritePtr += wrote;
}
}
return 0;
}
static ALCenum SndioPlayback_open(SndioPlayback *self, const ALCchar *name)
{
ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice;
if(!name)
name = sndio_device;
else if(strcmp(name, sndio_device) != 0)
return ALC_INVALID_VALUE;
self->sndHandle = sio_open(nullptr, SIO_PLAY, 0);
if(self->sndHandle == nullptr)
{
ERR("Could not open device\n");
return ALC_INVALID_VALUE;
}
device->DeviceName = name;
return ALC_NO_ERROR;
}
static ALCboolean SndioPlayback_reset(SndioPlayback *self)
{
ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice;
struct sio_par par;
sio_initpar(&par);
par.rate = device->Frequency;
par.pchan = ((device->FmtChans != DevFmtMono) ? 2 : 1);
switch(device->FmtType)
{
case DevFmtByte:
par.bits = 8;
par.sig = 1;
break;
case DevFmtUByte:
par.bits = 8;
par.sig = 0;
break;
case DevFmtFloat:
case DevFmtShort:
par.bits = 16;
par.sig = 1;
break;
case DevFmtUShort:
par.bits = 16;
par.sig = 0;
break;
case DevFmtInt:
par.bits = 32;
par.sig = 1;
break;
case DevFmtUInt:
par.bits = 32;
par.sig = 0;
break;
}
par.le = SIO_LE_NATIVE;
par.round = device->UpdateSize;
par.appbufsz = device->UpdateSize * (device->NumUpdates-1);
if(!par.appbufsz) par.appbufsz = device->UpdateSize;
if(!sio_setpar(self->sndHandle, &par) || !sio_getpar(self->sndHandle, &par))
{
ERR("Failed to set device parameters\n");
return ALC_FALSE;
}
if(par.bits != par.bps*8)
{
ERR("Padded samples not supported (%u of %u bits)\n", par.bits, par.bps*8);
return ALC_FALSE;
}
device->Frequency = par.rate;
device->FmtChans = ((par.pchan==1) ? DevFmtMono : DevFmtStereo);
if(par.bits == 8 && par.sig == 1)
device->FmtType = DevFmtByte;
else if(par.bits == 8 && par.sig == 0)
device->FmtType = DevFmtUByte;
else if(par.bits == 16 && par.sig == 1)
device->FmtType = DevFmtShort;
else if(par.bits == 16 && par.sig == 0)
device->FmtType = DevFmtUShort;
else if(par.bits == 32 && par.sig == 1)
device->FmtType = DevFmtInt;
else if(par.bits == 32 && par.sig == 0)
device->FmtType = DevFmtUInt;
else
{
ERR("Unhandled sample format: %s %u-bit\n", (par.sig?"signed":"unsigned"), par.bits);
return ALC_FALSE;
}
device->UpdateSize = par.round;
device->NumUpdates = (par.bufsz/par.round) + 1;
SetDefaultChannelOrder(device);
return ALC_TRUE;
}
static ALCboolean SndioPlayback_start(SndioPlayback *self)
{
ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice;
self->data_size = device->UpdateSize * FrameSizeFromDevFmt(
device->FmtChans, device->FmtType, device->mAmbiOrder
);
al_free(self->mix_data);
self->mix_data = al_calloc(16, self->data_size);
if(!sio_start(self->sndHandle))
{
ERR("Error starting playback\n");
return ALC_FALSE;
}
try {
self->mKillNow.store(AL_FALSE, std::memory_order_release);
self->mThread = std::thread(SndioPlayback_mixerProc, self);
return ALC_TRUE;
}
catch(std::exception& e) {
ERR("Could not create playback thread: %s\n", e.what());
}
catch(...) {
}
sio_stop(self->sndHandle);
return ALC_FALSE;
}
static void SndioPlayback_stop(SndioPlayback *self)
{
if(self->mKillNow.exchange(AL_TRUE, std::memory_order_acq_rel) || !self->mThread.joinable())
return;
self->mThread.join();
if(!sio_stop(self->sndHandle))
ERR("Error stopping device\n");
al_free(self->mix_data);
self->mix_data = nullptr;
}
struct SndioCapture final : public ALCbackend {
struct sio_hdl *sndHandle{nullptr};
ll_ringbuffer_t *ring{nullptr};
std::atomic<ALenum> mKillNow{AL_TRUE};
std::thread mThread;
};
static int SndioCapture_recordProc(SndioCapture *self);
static void SndioCapture_Construct(SndioCapture *self, ALCdevice *device);
static void SndioCapture_Destruct(SndioCapture *self);
static ALCenum SndioCapture_open(SndioCapture *self, const ALCchar *name);
static DECLARE_FORWARD(SndioCapture, ALCbackend, ALCboolean, reset)
static ALCboolean SndioCapture_start(SndioCapture *self);
static void SndioCapture_stop(SndioCapture *self);
static ALCenum SndioCapture_captureSamples(SndioCapture *self, void *buffer, ALCuint samples);
static ALCuint SndioCapture_availableSamples(SndioCapture *self);
static DECLARE_FORWARD(SndioCapture, ALCbackend, ClockLatency, getClockLatency)
static DECLARE_FORWARD(SndioCapture, ALCbackend, void, lock)
static DECLARE_FORWARD(SndioCapture, ALCbackend, void, unlock)
DECLARE_DEFAULT_ALLOCATORS(SndioCapture)
DEFINE_ALCBACKEND_VTABLE(SndioCapture);
static void SndioCapture_Construct(SndioCapture *self, ALCdevice *device)
{
new (self) SndioCapture{};
ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device);
SET_VTABLE2(SndioCapture, ALCbackend, self);
}
static void SndioCapture_Destruct(SndioCapture *self)
{
if(self->sndHandle)
sio_close(self->sndHandle);
self->sndHandle = nullptr;
ll_ringbuffer_free(self->ring);
self->ring = nullptr;
ALCbackend_Destruct(STATIC_CAST(ALCbackend, self));
self->~SndioCapture();
}
static int SndioCapture_recordProc(SndioCapture *self)
{
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
ALsizei frameSize;
SetRTPriority();
althrd_setname(RECORD_THREAD_NAME);
frameSize = FrameSizeFromDevFmt(device->FmtChans, device->FmtType, device->mAmbiOrder);
while(!self->mKillNow.load(std::memory_order_acquire) &&
device->Connected.load(std::memory_order_acquire))
{
size_t total, todo;
auto data = ll_ringbuffer_get_write_vector(self->ring);
todo = data.first.len + data.second.len;
if(todo == 0)
{
static char junk[4096];
sio_read(self->sndHandle, junk, minz(sizeof(junk)/frameSize, device->UpdateSize)*frameSize);
continue;
}
total = 0;
data.first.len *= frameSize;
data.second.len *= frameSize;
todo = minz(todo, device->UpdateSize) * frameSize;
while(total < todo)
{
size_t got;
if(!data.first.len)
data.first = data.second;
got = sio_read(self->sndHandle, data.first.buf, minz(todo-total, data.first.len));
if(!got)
{
SndioCapture_lock(self);
aluHandleDisconnect(device, "Failed to read capture samples");
SndioCapture_unlock(self);
break;
}
data.first.buf += got;
data.first.len -= got;
total += got;
}
ll_ringbuffer_write_advance(self->ring, total / frameSize);
}
return 0;
}
static ALCenum SndioCapture_open(SndioCapture *self, const ALCchar *name)
{
ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice;
struct sio_par par;
if(!name)
name = sndio_device;
else if(strcmp(name, sndio_device) != 0)
return ALC_INVALID_VALUE;
self->sndHandle = sio_open(nullptr, SIO_REC, 0);
if(self->sndHandle == nullptr)
{
ERR("Could not open device\n");
return ALC_INVALID_VALUE;
}
sio_initpar(&par);
switch(device->FmtType)
{
case DevFmtByte:
par.bps = 1;
par.sig = 1;
break;
case DevFmtUByte:
par.bps = 1;
par.sig = 0;
break;
case DevFmtShort:
par.bps = 2;
par.sig = 1;
break;
case DevFmtUShort:
par.bps = 2;
par.sig = 0;
break;
case DevFmtInt:
par.bps = 4;
par.sig = 1;
break;
case DevFmtUInt:
par.bps = 4;
par.sig = 0;
break;
case DevFmtFloat:
ERR("%s capture samples not supported\n", DevFmtTypeString(device->FmtType));
return ALC_INVALID_VALUE;
}
par.bits = par.bps * 8;
par.le = SIO_LE_NATIVE;
par.msb = SIO_LE_NATIVE ? 0 : 1;
par.rchan = ChannelsFromDevFmt(device->FmtChans, device->mAmbiOrder);
par.rate = device->Frequency;
par.appbufsz = maxu(device->UpdateSize*device->NumUpdates, (device->Frequency+9)/10);
par.round = clampu(par.appbufsz/device->NumUpdates, (device->Frequency+99)/100,
(device->Frequency+19)/20);
device->UpdateSize = par.round;
device->NumUpdates = maxu(par.appbufsz/par.round, 1);
if(!sio_setpar(self->sndHandle, &par) || !sio_getpar(self->sndHandle, &par))
{
ERR("Failed to set device parameters\n");
return ALC_INVALID_VALUE;
}
if(par.bits != par.bps*8)
{
ERR("Padded samples not supported (%u of %u bits)\n", par.bits, par.bps*8);
return ALC_INVALID_VALUE;
}
if(!((device->FmtType == DevFmtByte && par.bits == 8 && par.sig != 0) ||
(device->FmtType == DevFmtUByte && par.bits == 8 && par.sig == 0) ||
(device->FmtType == DevFmtShort && par.bits == 16 && par.sig != 0) ||
(device->FmtType == DevFmtUShort && par.bits == 16 && par.sig == 0) ||
(device->FmtType == DevFmtInt && par.bits == 32 && par.sig != 0) ||
(device->FmtType == DevFmtUInt && par.bits == 32 && par.sig == 0)) ||
ChannelsFromDevFmt(device->FmtChans, device->mAmbiOrder) != (ALsizei)par.rchan ||
device->Frequency != par.rate)
{
ERR("Failed to set format %s %s %uhz, got %c%u %u-channel %uhz instead\n",
DevFmtTypeString(device->FmtType), DevFmtChannelsString(device->FmtChans),
device->Frequency, par.sig?'s':'u', par.bits, par.rchan, par.rate);
return ALC_INVALID_VALUE;
}
self->ring = ll_ringbuffer_create(device->UpdateSize*device->NumUpdates, par.bps*par.rchan, 0);
if(!self->ring)
{
ERR("Failed to allocate %u-byte ringbuffer\n",
device->UpdateSize*device->NumUpdates*par.bps*par.rchan);
return ALC_OUT_OF_MEMORY;
}
SetDefaultChannelOrder(device);
device->DeviceName = name;
return ALC_NO_ERROR;
}
static ALCboolean SndioCapture_start(SndioCapture *self)
{
if(!sio_start(self->sndHandle))
{
ERR("Error starting playback\n");
return ALC_FALSE;
}
try {
self->mKillNow.store(AL_FALSE, std::memory_order_release);
self->mThread = std::thread(SndioCapture_recordProc, self);
return ALC_TRUE;
}
catch(std::exception& e) {
ERR("Could not create record thread: %s\n", e.what());
}
catch(...) {
}
sio_stop(self->sndHandle);
return ALC_FALSE;
}
static void SndioCapture_stop(SndioCapture *self)
{
if(self->mKillNow.exchange(AL_TRUE, std::memory_order_acq_rel) || !self->mThread.joinable())
return;
self->mThread.join();
if(!sio_stop(self->sndHandle))
ERR("Error stopping device\n");
}
static ALCenum SndioCapture_captureSamples(SndioCapture *self, void *buffer, ALCuint samples)
{
ll_ringbuffer_read(self->ring, static_cast<char*>(buffer), samples);
return ALC_NO_ERROR;
}
static ALCuint SndioCapture_availableSamples(SndioCapture *self)
{
return ll_ringbuffer_read_space(self->ring);
}
BackendFactory &SndIOBackendFactory::getFactory()
{
static SndIOBackendFactory factory{};
return factory;
}
bool SndIOBackendFactory::init()
{ return true; }
bool SndIOBackendFactory::querySupport(ALCbackend_Type type)
{ return (type == ALCbackend_Playback || type == ALCbackend_Capture); }
void SndIOBackendFactory::probe(enum DevProbe type, std::string *outnames)
{
switch(type)
{
case ALL_DEVICE_PROBE:
case CAPTURE_DEVICE_PROBE:
/* Includes null char. */
outnames->append(sndio_device, sizeof(sndio_device));
break;
}
}
ALCbackend *SndIOBackendFactory::createBackend(ALCdevice *device, ALCbackend_Type type)
{
if(type == ALCbackend_Playback)
{
SndioPlayback *backend;
NEW_OBJ(backend, SndioPlayback)(device);
if(!backend) return nullptr;
return STATIC_CAST(ALCbackend, backend);
}
if(type == ALCbackend_Capture)
{
SndioCapture *backend;
NEW_OBJ(backend, SndioCapture)(device);
if(!backend) return nullptr;
return STATIC_CAST(ALCbackend, backend);
}
return nullptr;
}