openal-soft/Alc/hrtf.cpp
2018-12-09 13:36:13 -08:00

1285 lines
39 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 2011 by Chris Robinson
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <stdlib.h>
#include <ctype.h>
#include <mutex>
#include <array>
#include <vector>
#include <memory>
#include <istream>
#include <algorithm>
#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alSource.h"
#include "alu.h"
#include "hrtf.h"
#include "alconfig.h"
#include "filters/splitter.h"
#include "compat.h"
#include "almalloc.h"
struct HrtfEntry {
Hrtf *handle{nullptr};
char filename[];
DEF_PLACE_NEWDEL()
};
namespace {
using HrtfEntryPtr = std::unique_ptr<HrtfEntry>;
/* Current data set limits defined by the makehrtf utility. */
#define MIN_IR_SIZE (8)
#define MAX_IR_SIZE (512)
#define MOD_IR_SIZE (8)
#define MIN_FD_COUNT (1)
#define MAX_FD_COUNT (16)
#define MIN_FD_DISTANCE (50)
#define MAX_FD_DISTANCE (2500)
#define MIN_EV_COUNT (5)
#define MAX_EV_COUNT (128)
#define MIN_AZ_COUNT (1)
#define MAX_AZ_COUNT (128)
#define MAX_HRIR_DELAY (HRTF_HISTORY_LENGTH-1)
constexpr ALchar magicMarker00[8]{'M','i','n','P','H','R','0','0'};
constexpr ALchar magicMarker01[8]{'M','i','n','P','H','R','0','1'};
constexpr ALchar magicMarker02[8]{'M','i','n','P','H','R','0','2'};
/* First value for pass-through coefficients (remaining are 0), used for omni-
* directional sounds. */
constexpr ALfloat PassthruCoeff{0.707106781187f/*sqrt(0.5)*/};
std::mutex LoadedHrtfLock;
al::vector<HrtfEntryPtr> LoadedHrtfs;
class databuf final : public std::streambuf {
int_type underflow() override
{ return traits_type::eof(); }
pos_type seekoff(off_type offset, std::ios_base::seekdir whence, std::ios_base::openmode mode) override
{
if((mode&std::ios_base::out) || !(mode&std::ios_base::in))
return traits_type::eof();
char_type *cur;
switch(whence)
{
case std::ios_base::beg:
if(offset < 0 || offset > egptr()-eback())
return traits_type::eof();
cur = eback() + offset;
break;
case std::ios_base::cur:
if((offset >= 0 && offset > egptr()-gptr()) ||
(offset < 0 && -offset > gptr()-eback()))
return traits_type::eof();
cur = gptr() + offset;
break;
case std::ios_base::end:
if(offset > 0 || -offset > egptr()-eback())
return traits_type::eof();
cur = egptr() + offset;
break;
default:
return traits_type::eof();
}
setg(eback(), cur, egptr());
return cur - eback();
}
pos_type seekpos(pos_type pos, std::ios_base::openmode mode) override
{
// Simplified version of seekoff
if((mode&std::ios_base::out) || !(mode&std::ios_base::in))
return traits_type::eof();
if(pos < 0 || pos > egptr()-eback())
return traits_type::eof();
setg(eback(), eback() + pos, egptr());
return pos;
}
public:
databuf(const char_type *start, const char_type *end) noexcept
{
setg(const_cast<char_type*>(start), const_cast<char_type*>(start),
const_cast<char_type*>(end));
}
};
class idstream final : public std::istream {
databuf mStreamBuf;
public:
idstream(const char *start, const char *end)
: std::istream{nullptr}, mStreamBuf{start, end}
{ init(&mStreamBuf); }
};
/* Calculate the elevation index given the polar elevation in radians. This
* will return an index between 0 and (evcount - 1).
*/
ALsizei CalcEvIndex(ALsizei evcount, ALfloat ev, ALfloat *mu)
{
ev = (F_PI_2+ev) * (evcount-1) / F_PI;
ALsizei idx{float2int(ev)};
*mu = ev - idx;
return mini(idx, evcount-1);
}
/* Calculate the azimuth index given the polar azimuth in radians. This will
* return an index between 0 and (azcount - 1).
*/
ALsizei CalcAzIndex(ALsizei azcount, ALfloat az, ALfloat *mu)
{
az = (F_TAU+az) * azcount / F_TAU;
ALsizei idx{float2int(az)};
*mu = az - idx;
return idx % azcount;
}
} // namespace
/* Calculates static HRIR coefficients and delays for the given polar elevation
* and azimuth in radians. The coefficients are normalized.
*/
void GetHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat spread,
ALfloat (*RESTRICT coeffs)[2], ALsizei *delays)
{
ALfloat dirfact{1.0f - (spread / F_TAU)};
/* Claculate the lower elevation index. */
ALfloat emu;
ALsizei evidx{CalcEvIndex(Hrtf->evCount, elevation, &emu)};
ALsizei evoffset{Hrtf->evOffset[evidx]};
/* Calculate lower azimuth index. */
ALfloat amu[2];
ALsizei azidx{CalcAzIndex(Hrtf->azCount[evidx], azimuth, &amu[0])};
/* Calculate the lower HRIR indices. */
ALsizei idx[4]{
evoffset + azidx,
evoffset + ((azidx+1) % Hrtf->azCount[evidx])
};
if(evidx < Hrtf->evCount-1)
{
/* Increment elevation to the next (upper) index. */
evidx++;
evoffset = Hrtf->evOffset[evidx];
/* Calculate upper azimuth index. */
azidx = CalcAzIndex(Hrtf->azCount[evidx], azimuth, &amu[1]);
/* Calculate the upper HRIR indices. */
idx[2] = evoffset + azidx;
idx[3] = evoffset + ((azidx+1) % Hrtf->azCount[evidx]);
}
else
{
/* If the lower elevation is the top index, the upper elevation is the
* same as the lower.
*/
amu[1] = amu[0];
idx[2] = idx[0];
idx[3] = idx[1];
}
/* Calculate bilinear blending weights, attenuated according to the
* directional panning factor.
*/
ALfloat blend[4]{
(1.0f-emu) * (1.0f-amu[0]) * dirfact,
(1.0f-emu) * ( amu[0]) * dirfact,
( emu) * (1.0f-amu[1]) * dirfact,
( emu) * ( amu[1]) * dirfact
};
/* Calculate the blended HRIR delays. */
delays[0] = fastf2i(
Hrtf->delays[idx[0]][0]*blend[0] + Hrtf->delays[idx[1]][0]*blend[1] +
Hrtf->delays[idx[2]][0]*blend[2] + Hrtf->delays[idx[3]][0]*blend[3]
);
delays[1] = fastf2i(
Hrtf->delays[idx[0]][1]*blend[0] + Hrtf->delays[idx[1]][1]*blend[1] +
Hrtf->delays[idx[2]][1]*blend[2] + Hrtf->delays[idx[3]][1]*blend[3]
);
/* Calculate the sample offsets for the HRIR indices. */
idx[0] *= Hrtf->irSize;
idx[1] *= Hrtf->irSize;
idx[2] *= Hrtf->irSize;
idx[3] *= Hrtf->irSize;
ASSUME(Hrtf->irSize >= MIN_IR_SIZE && (Hrtf->irSize%MOD_IR_SIZE) == 0);
/* Calculate the blended HRIR coefficients. */
coeffs[0][0] = PassthruCoeff * (1.0f-dirfact);
coeffs[0][1] = PassthruCoeff * (1.0f-dirfact);
for(ALsizei i{1};i < Hrtf->irSize;i++)
{
coeffs[i][0] = 0.0f;
coeffs[i][1] = 0.0f;
}
for(ALsizei c{0};c < 4;c++)
{
const ALfloat (*RESTRICT srccoeffs)[2] = Hrtf->coeffs + idx[c];
for(ALsizei i{0};i < Hrtf->irSize;i++)
{
coeffs[i][0] += srccoeffs[i][0] * blend[c];
coeffs[i][1] += srccoeffs[i][1] * blend[c];
}
}
}
void BuildBFormatHrtf(const struct Hrtf *Hrtf, DirectHrtfState *state, ALsizei NumChannels, const struct AngularPoint *AmbiPoints, const ALfloat (*RESTRICT AmbiMatrix)[MAX_AMBI_COEFFS], ALsizei AmbiCount, const ALfloat *RESTRICT AmbiOrderHFGain)
{
/* Set this to 2 for dual-band HRTF processing. May require a higher quality
* band-splitter, or better calculation of the new IR length to deal with the
* tail generated by the filter.
*/
#define NUM_BANDS 2
ALsizei min_delay{HRTF_HISTORY_LENGTH};
ALsizei max_delay{0};
al::vector<ALsizei> idx(AmbiCount);
for(ALsizei c{0};c < AmbiCount;c++)
{
ALuint evidx, azidx;
ALuint evoffset;
ALuint azcount;
/* Calculate elevation index. */
evidx = (ALsizei)((F_PI_2+AmbiPoints[c].Elev) * (Hrtf->evCount-1) / F_PI + 0.5f);
evidx = clampi(evidx, 0, Hrtf->evCount-1);
azcount = Hrtf->azCount[evidx];
evoffset = Hrtf->evOffset[evidx];
/* Calculate azimuth index for this elevation. */
azidx = (ALsizei)((F_TAU+AmbiPoints[c].Azim) * azcount / F_TAU + 0.5f) % azcount;
/* Calculate indices for left and right channels. */
idx[c] = evoffset + azidx;
min_delay = mini(min_delay, mini(Hrtf->delays[idx[c]][0], Hrtf->delays[idx[c]][1]));
max_delay = maxi(max_delay, maxi(Hrtf->delays[idx[c]][0], Hrtf->delays[idx[c]][1]));
}
al::vector<std::array<std::array<ALdouble,2>,HRIR_LENGTH>> tmpres(NumChannels);
ALfloat temps[3][HRIR_LENGTH]{};
BandSplitter splitter;
splitter.init(400.0f / (ALfloat)Hrtf->sampleRate);
for(ALsizei c{0};c < AmbiCount;++c)
{
const ALfloat (*fir)[2] = &Hrtf->coeffs[idx[c] * Hrtf->irSize];
ALsizei ldelay = Hrtf->delays[idx[c]][0] - min_delay;
ALsizei rdelay = Hrtf->delays[idx[c]][1] - min_delay;
if(NUM_BANDS == 1)
{
for(ALsizei i{0};i < NumChannels;++i)
{
ALdouble mult = (ALdouble)AmbiOrderHFGain[(ALsizei)sqrt(i)] * AmbiMatrix[c][i];
ALsizei lidx = ldelay, ridx = rdelay;
ALsizei j = 0;
while(lidx < HRIR_LENGTH && ridx < HRIR_LENGTH && j < Hrtf->irSize)
{
tmpres[i][lidx++][0] += fir[j][0] * mult;
tmpres[i][ridx++][1] += fir[j][1] * mult;
j++;
}
}
}
else
{
/* Band-split left HRIR into low and high frequency responses. */
splitter.clear();
for(ALsizei i{0};i < Hrtf->irSize;++i)
temps[2][i] = fir[i][0];
splitter.process(temps[0], temps[1], temps[2], HRIR_LENGTH);
/* Apply left ear response with delay. */
for(ALsizei i{0};i < NumChannels;++i)
{
ALdouble hfgain = AmbiOrderHFGain[(ALsizei)sqrt(i)];
for(ALsizei b{0};b < NUM_BANDS;++b)
{
ALdouble mult = AmbiMatrix[c][i] * ((b==0) ? hfgain : 1.0);
ALsizei lidx = ldelay;
ALsizei j = 0;
while(lidx < HRIR_LENGTH)
tmpres[i][lidx++][0] += temps[b][j++] * mult;
}
}
/* Band-split right HRIR into low and high frequency responses. */
splitter.clear();
for(ALsizei i{0};i < Hrtf->irSize;++i)
temps[2][i] = fir[i][1];
splitter.process(temps[0], temps[1], temps[2], HRIR_LENGTH);
/* Apply right ear response with delay. */
for(ALsizei i{0};i < NumChannels;++i)
{
ALdouble hfgain = AmbiOrderHFGain[(ALsizei)sqrt(i)];
for(ALsizei b{0};b < NUM_BANDS;++b)
{
ALdouble mult = AmbiMatrix[c][i] * ((b==0) ? hfgain : 1.0);
ALsizei ridx = rdelay;
ALsizei j = 0;
while(ridx < HRIR_LENGTH)
tmpres[i][ridx++][1] += temps[b][j++] * mult;
}
}
}
}
for(ALsizei i{0};i < NumChannels;++i)
{
for(ALsizei idx{0};idx < HRIR_LENGTH;idx++)
{
state->Chan[i].Coeffs[idx][0] = (ALfloat)tmpres[i][idx][0];
state->Chan[i].Coeffs[idx][1] = (ALfloat)tmpres[i][idx][1];
}
}
tmpres.clear();
idx.clear();
ALsizei max_length;
if(NUM_BANDS == 1)
max_length = mini(max_delay-min_delay + Hrtf->irSize, HRIR_LENGTH);
else
{
/* Increase the IR size by 2/3rds to account for the tail generated by
* the band-split filter.
*/
const ALsizei irsize = mini(Hrtf->irSize*5/3, HRIR_LENGTH);
max_length = mini(max_delay-min_delay + irsize, HRIR_LENGTH);
}
/* Round up to the next IR size multiple. */
max_length += MOD_IR_SIZE-1;
max_length -= max_length%MOD_IR_SIZE;
TRACE("Skipped delay: %d, max delay: %d, new FIR length: %d\n",
min_delay, max_delay-min_delay, max_length);
state->IrSize = max_length;
#undef NUM_BANDS
}
namespace {
struct Hrtf *CreateHrtfStore(ALuint rate, ALsizei irSize, ALfloat distance, ALsizei evCount,
ALsizei irCount, const ALubyte *azCount, const ALushort *evOffset, const ALfloat (*coeffs)[2],
const ALubyte (*delays)[2], const char *filename)
{
struct Hrtf *Hrtf;
size_t total;
total = sizeof(struct Hrtf);
total += sizeof(Hrtf->azCount[0])*evCount;
total = RoundUp(total, sizeof(ALushort)); /* Align for ushort fields */
total += sizeof(Hrtf->evOffset[0])*evCount;
total = RoundUp(total, 16); /* Align for coefficients using SIMD */
total += sizeof(Hrtf->coeffs[0])*irSize*irCount;
total += sizeof(Hrtf->delays[0])*irCount;
Hrtf = static_cast<struct Hrtf*>(al_calloc(16, total));
if(Hrtf == nullptr)
ERR("Out of memory allocating storage for %s.\n", filename);
else
{
uintptr_t offset = sizeof(struct Hrtf);
char *base = (char*)Hrtf;
ALushort *_evOffset;
ALubyte *_azCount;
ALubyte (*_delays)[2];
ALfloat (*_coeffs)[2];
ALsizei i;
InitRef(&Hrtf->ref, 0);
Hrtf->sampleRate = rate;
Hrtf->irSize = irSize;
Hrtf->distance = distance;
Hrtf->evCount = evCount;
/* Set up pointers to storage following the main HRTF struct. */
_azCount = reinterpret_cast<ALubyte*>(base + offset);
offset += sizeof(_azCount[0])*evCount;
offset = RoundUp(offset, sizeof(ALushort)); /* Align for ushort fields */
_evOffset = reinterpret_cast<ALushort*>(base + offset);
offset += sizeof(_evOffset[0])*evCount;
offset = RoundUp(offset, 16); /* Align for coefficients using SIMD */
_coeffs = reinterpret_cast<ALfloat(*)[2]>(base + offset);
offset += sizeof(_coeffs[0])*irSize*irCount;
_delays = reinterpret_cast<ALubyte(*)[2]>(base + offset);
offset += sizeof(_delays[0])*irCount;
assert(offset == total);
/* Copy input data to storage. */
for(i = 0;i < evCount;i++) _azCount[i] = azCount[i];
for(i = 0;i < evCount;i++) _evOffset[i] = evOffset[i];
for(i = 0;i < irSize*irCount;i++)
{
_coeffs[i][0] = coeffs[i][0];
_coeffs[i][1] = coeffs[i][1];
}
for(i = 0;i < irCount;i++)
{
_delays[i][0] = delays[i][0];
_delays[i][1] = delays[i][1];
}
/* Finally, assign the storage pointers. */
Hrtf->azCount = _azCount;
Hrtf->evOffset = _evOffset;
Hrtf->coeffs = _coeffs;
Hrtf->delays = _delays;
}
return Hrtf;
}
ALubyte GetLE_ALubyte(std::istream &data)
{
return static_cast<ALubyte>(data.get());
}
ALshort GetLE_ALshort(std::istream &data)
{
int ret = data.get();
ret |= data.get() << 8;
return static_cast<ALshort>((ret^32768) - 32768);
}
ALushort GetLE_ALushort(std::istream &data)
{
int ret = data.get();
ret |= data.get() << 8;
return static_cast<ALushort>(ret);
}
ALint GetLE_ALint24(std::istream &data)
{
int ret = data.get();
ret |= data.get() << 8;
ret |= data.get() << 16;
return (ret^8388608) - 8388608;
}
ALuint GetLE_ALuint(std::istream &data)
{
int ret = data.get();
ret |= data.get() << 8;
ret |= data.get() << 16;
ret |= data.get() << 24;
return ret;
}
struct Hrtf *LoadHrtf00(std::istream &data, const char *filename)
{
ALuint rate{GetLE_ALuint(data)};
ALushort irCount{GetLE_ALushort(data)};
ALushort irSize{GetLE_ALushort(data)};
ALubyte evCount{GetLE_ALubyte(data)};
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
ALboolean failed{AL_FALSE};
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
{
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
failed = AL_TRUE;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
failed = AL_TRUE;
}
if(failed)
return nullptr;
al::vector<ALushort> evOffset(evCount);
for(auto &val : evOffset)
val = GetLE_ALushort(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(ALsizei i{1};i < evCount;i++)
{
if(evOffset[i] <= evOffset[i-1])
{
ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n",
i, evOffset[i], evOffset[i-1]);
failed = AL_TRUE;
}
}
if(irCount <= evOffset.back())
{
ERR("Invalid evOffset: evOffset[" SZFMT "]=%d (irCount=%d)\n",
evOffset.size()-1, evOffset.back(), irCount);
failed = AL_TRUE;
}
if(failed)
return nullptr;
al::vector<ALubyte> azCount(evCount);
for(ALsizei i{1};i < evCount;i++)
{
azCount[i-1] = evOffset[i] - evOffset[i-1];
if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
azCount.back() = irCount - evOffset.back();
if(azCount.back() < MIN_AZ_COUNT || azCount.back() > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[" SZFMT "]=%d (%d to %d)\n",
azCount.size()-1, azCount.back(), MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
if(failed)
return nullptr;
al::vector<std::array<ALfloat,2>> coeffs(irSize*irCount);
al::vector<std::array<ALubyte,2>> delays(irCount);
for(auto &val : coeffs)
val[0] = GetLE_ALshort(data) / 32768.0f;
for(auto &val : delays)
val[0] = GetLE_ALubyte(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(ALsizei i{0};i < irCount;i++)
{
if(delays[i][0] > MAX_HRIR_DELAY)
{
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
failed = AL_TRUE;
}
}
if(failed)
return nullptr;
/* Mirror the left ear responses to the right ear. */
for(ALsizei i{0};i < evCount;i++)
{
ALushort evoffset = evOffset[i];
ALubyte azcount = azCount[i];
for(ALsizei j{0};j < azcount;j++)
{
ALsizei lidx = evoffset + j;
ALsizei ridx = evoffset + ((azcount-j) % azcount);
for(ALsizei k{0};k < irSize;k++)
coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0];
delays[ridx][1] = delays[lidx][0];
}
}
return CreateHrtfStore(rate, irSize, 0.0f, evCount, irCount, azCount.data(),
evOffset.data(), &reinterpret_cast<ALfloat(&)[2]>(coeffs[0]),
&reinterpret_cast<ALubyte(&)[2]>(delays[0]), filename);
}
struct Hrtf *LoadHrtf01(std::istream &data, const char *filename)
{
ALuint rate{GetLE_ALuint(data)};
ALushort irSize{GetLE_ALubyte(data)};
ALubyte evCount{GetLE_ALubyte(data)};
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
ALboolean failed{AL_FALSE};
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
{
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
failed = AL_TRUE;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
failed = AL_TRUE;
}
if(failed)
return nullptr;
al::vector<ALubyte> azCount(evCount);
data.read(reinterpret_cast<char*>(azCount.data()), evCount);
if(!data || data.eof() || data.gcount() < evCount)
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(ALsizei i{0};i < evCount;++i)
{
if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
if(failed)
return nullptr;
al::vector<ALushort> evOffset(evCount);
evOffset[0] = 0;
ALushort irCount{azCount[0]};
for(ALsizei i{1};i < evCount;i++)
{
evOffset[i] = evOffset[i-1] + azCount[i-1];
irCount += azCount[i];
}
al::vector<std::array<ALfloat,2>> coeffs(irSize*irCount);
al::vector<std::array<ALubyte,2>> delays(irCount);
for(auto &val : coeffs)
val[0] = GetLE_ALshort(data) / 32768.0f;
for(auto &val : delays)
val[0] = GetLE_ALubyte(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(ALsizei i{0};i < irCount;i++)
{
if(delays[i][0] > MAX_HRIR_DELAY)
{
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
failed = AL_TRUE;
}
}
if(failed)
return nullptr;
/* Mirror the left ear responses to the right ear. */
for(ALsizei i{0};i < evCount;i++)
{
ALushort evoffset = evOffset[i];
ALubyte azcount = azCount[i];
for(ALsizei j{0};j < azcount;j++)
{
ALsizei lidx = evoffset + j;
ALsizei ridx = evoffset + ((azcount-j) % azcount);
for(ALsizei k{0};k < irSize;k++)
coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0];
delays[ridx][1] = delays[lidx][0];
}
}
return CreateHrtfStore(rate, irSize, 0.0f, evCount, irCount, azCount.data(),
evOffset.data(), &reinterpret_cast<ALfloat(&)[2]>(coeffs[0]),
&reinterpret_cast<ALubyte(&)[2]>(delays[0]), filename);
}
#define SAMPLETYPE_S16 0
#define SAMPLETYPE_S24 1
#define CHANTYPE_LEFTONLY 0
#define CHANTYPE_LEFTRIGHT 1
struct Hrtf *LoadHrtf02(std::istream &data, const char *filename)
{
ALuint rate{GetLE_ALuint(data)};
ALubyte sampleType{GetLE_ALubyte(data)};
ALubyte channelType{GetLE_ALubyte(data)};
ALushort irSize{GetLE_ALubyte(data)};
ALubyte fdCount{GetLE_ALubyte(data)};
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
ALboolean failed{AL_FALSE};
if(sampleType > SAMPLETYPE_S24)
{
ERR("Unsupported sample type: %d\n", sampleType);
failed = AL_TRUE;
}
if(channelType > CHANTYPE_LEFTRIGHT)
{
ERR("Unsupported channel type: %d\n", channelType);
failed = AL_TRUE;
}
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
{
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
failed = AL_TRUE;
}
if(fdCount != 1)
{
ERR("Multiple field-depths not supported: fdCount=%d (%d to %d)\n",
fdCount, MIN_FD_COUNT, MAX_FD_COUNT);
failed = AL_TRUE;
}
if(failed)
return nullptr;
ALushort distance{};
ALubyte evCount{};
al::vector<ALubyte> azCount;
for(ALsizei i{0};i < fdCount;i++)
{
distance = GetLE_ALushort(data);
evCount = GetLE_ALubyte(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
if(distance < MIN_FD_DISTANCE || distance > MAX_FD_DISTANCE)
{
ERR("Unsupported field distance: distance=%d (%dmm to %dmm)\n",
distance, MIN_FD_DISTANCE, MAX_FD_DISTANCE);
failed = AL_TRUE;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
failed = AL_TRUE;
}
if(failed)
return nullptr;
azCount.resize(evCount);
data.read(reinterpret_cast<char*>(azCount.data()), evCount);
if(!data || data.eof() || data.gcount() < evCount)
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(ALsizei j{0};j < evCount;j++)
{
if(azCount[j] < MIN_AZ_COUNT || azCount[j] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
j, azCount[j], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
if(failed)
return nullptr;
}
al::vector<ALushort> evOffset(evCount);
evOffset[0] = 0;
ALushort irCount{azCount[0]};
for(ALsizei i{1};i < evCount;++i)
{
evOffset[i] = evOffset[i-1] + azCount[i-1];
irCount += azCount[i];
}
al::vector<std::array<ALfloat,2>> coeffs(irSize*irCount);
al::vector<std::array<ALubyte,2>> delays(irCount);
if(channelType == CHANTYPE_LEFTONLY)
{
if(sampleType == SAMPLETYPE_S16)
{
for(auto &val : coeffs)
val[0] = GetLE_ALshort(data) / 32768.0f;
}
else if(sampleType == SAMPLETYPE_S24)
{
for(auto &val : coeffs)
val[0] = GetLE_ALint24(data) / 8388608.0f;
}
for(auto &val : delays)
val[0] = GetLE_ALubyte(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(ALsizei i{0};i < irCount;++i)
{
if(delays[i][0] > MAX_HRIR_DELAY)
{
ERR("Invalid delays[%d][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
failed = AL_TRUE;
}
}
}
else if(channelType == CHANTYPE_LEFTRIGHT)
{
if(sampleType == SAMPLETYPE_S16)
{
for(auto &val : coeffs)
{
val[0] = GetLE_ALshort(data) / 32768.0f;
val[1] = GetLE_ALshort(data) / 32768.0f;
}
}
else if(sampleType == SAMPLETYPE_S24)
{
for(auto &val : coeffs)
{
val[0] = GetLE_ALint24(data) / 8388608.0f;
val[1] = GetLE_ALint24(data) / 8388608.0f;
}
}
for(auto &val : delays)
{
val[0] = GetLE_ALubyte(data);
val[1] = GetLE_ALubyte(data);
}
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(ALsizei i{0};i < irCount;++i)
{
if(delays[i][0] > MAX_HRIR_DELAY)
{
ERR("Invalid delays[%d][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
failed = AL_TRUE;
}
if(delays[i][1] > MAX_HRIR_DELAY)
{
ERR("Invalid delays[%d][1]: %d (%d)\n", i, delays[i][1], MAX_HRIR_DELAY);
failed = AL_TRUE;
}
}
}
if(failed)
return nullptr;
if(channelType == CHANTYPE_LEFTONLY)
{
/* Mirror the left ear responses to the right ear. */
for(ALsizei i{0};i < evCount;i++)
{
ALushort evoffset = evOffset[i];
ALubyte azcount = azCount[i];
for(ALsizei j{0};j < azcount;j++)
{
ALsizei lidx = evoffset + j;
ALsizei ridx = evoffset + ((azcount-j) % azcount);
for(ALsizei k{0};k < irSize;k++)
coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0];
delays[ridx][1] = delays[lidx][0];
}
}
}
return CreateHrtfStore(rate, irSize,
(ALfloat)distance / 1000.0f, evCount, irCount, azCount.data(), evOffset.data(),
&reinterpret_cast<ALfloat(&)[2]>(coeffs[0]),
&reinterpret_cast<ALubyte(&)[2]>(delays[0]), filename
);
}
bool checkName(al::vector<EnumeratedHrtf> &list, const std::string &name)
{
return std::find_if(list.cbegin(), list.cend(),
[&name](const EnumeratedHrtf &entry)
{ return name == entry.name; }
) != list.cend();
}
void AddFileEntry(al::vector<EnumeratedHrtf> &list, const std::string &filename)
{
/* Check if this file has already been loaded globally. */
auto loaded_entry = LoadedHrtfs.begin();
for(;loaded_entry != LoadedHrtfs.end();++loaded_entry)
{
if(filename != (*loaded_entry)->filename)
continue;
/* Check if this entry has already been added to the list. */
auto iter = std::find_if(list.cbegin(), list.cend(),
[loaded_entry](const EnumeratedHrtf &entry) -> bool
{ return loaded_entry->get() == entry.hrtf; }
);
if(iter != list.cend())
{
TRACE("Skipping duplicate file entry %s\n", filename.c_str());
return;
}
break;
}
if(loaded_entry == LoadedHrtfs.end())
{
TRACE("Got new file \"%s\"\n", filename.c_str());
LoadedHrtfs.emplace_back(HrtfEntryPtr{new
(al_calloc(DEF_ALIGN, FAM_SIZE(HrtfEntry, filename, filename.length()+1)))
HrtfEntry{}});
loaded_entry = LoadedHrtfs.end()-1;
strcpy((*loaded_entry)->filename, filename.c_str());
}
/* TODO: Get a human-readable name from the HRTF data (possibly coming in a
* format update). */
size_t namepos = filename.find_last_of('/')+1;
if(!namepos) namepos = filename.find_last_of('\\')+1;
size_t extpos{filename.find_last_of('.')};
if(extpos <= namepos) extpos = std::string::npos;
const std::string basename{(extpos == std::string::npos) ?
filename.substr(namepos) : filename.substr(namepos, extpos-namepos)};
std::string newname{basename};
int count{1};
while(checkName(list, newname))
{
newname = basename;
newname += " #";
newname += std::to_string(++count);
}
list.emplace_back(EnumeratedHrtf{newname, loaded_entry->get()});
const EnumeratedHrtf &entry = list.back();
TRACE("Adding file entry \"%s\"\n", entry.name.c_str());
}
/* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer
* for input instead of opening the given filename.
*/
void AddBuiltInEntry(al::vector<EnumeratedHrtf> &list, const std::string &filename, ALuint residx)
{
auto loaded_entry = LoadedHrtfs.begin();
for(;loaded_entry != LoadedHrtfs.end();++loaded_entry)
{
if(filename != (*loaded_entry)->filename)
continue;
/* Check if this entry has already been added to the list. */
auto iter = std::find_if(list.cbegin(), list.cend(),
[loaded_entry](const EnumeratedHrtf &entry) -> bool
{ return loaded_entry->get() == entry.hrtf; }
);
if(iter != list.cend())
{
TRACE("Skipping duplicate file entry %s\n", filename.c_str());
return;
}
break;
}
if(loaded_entry == LoadedHrtfs.end())
{
const size_t namelen{filename.length()+32};
TRACE("Got new file \"%s\"\n", filename.c_str());
LoadedHrtfs.emplace_back(HrtfEntryPtr{new
(al_calloc(DEF_ALIGN, FAM_SIZE(HrtfEntry, filename, namelen)))
HrtfEntry{}});
loaded_entry = LoadedHrtfs.end()-1;
snprintf((*loaded_entry)->filename, namelen, "!%u_%s",
residx, filename.c_str());
}
/* TODO: Get a human-readable name from the HRTF data (possibly coming in a
* format update). */
std::string newname{filename};
int count{1};
while(checkName(list, newname))
{
newname = filename;
newname += " #";
newname += std::to_string(++count);
}
list.emplace_back(EnumeratedHrtf{newname, loaded_entry->get()});
const EnumeratedHrtf &entry = list.back();
TRACE("Adding built-in entry \"%s\"\n", entry.name.c_str());
}
#define IDR_DEFAULT_44100_MHR 1
#define IDR_DEFAULT_48000_MHR 2
struct ResData { const char *data; size_t size; };
#ifndef ALSOFT_EMBED_HRTF_DATA
ResData GetResource(int UNUSED(name))
{ return {nullptr, 0u}; }
#else
#include "default-44100.mhr.h"
#include "default-48000.mhr.h"
ResData GetResource(int name)
{
if(name == IDR_DEFAULT_44100_MHR)
return {reinterpret_cast<const char*>(hrtf_default_44100), sizeof(hrtf_default_44100)};
if(name == IDR_DEFAULT_48000_MHR)
return {reinterpret_cast<const char*>(hrtf_default_48000), sizeof(hrtf_default_48000)};
return {nullptr, 0u};
}
#endif
} // namespace
al::vector<EnumeratedHrtf> EnumerateHrtf(const char *devname)
{
al::vector<EnumeratedHrtf> list;
bool usedefaults{true};
const char *pathlist{""};
if(ConfigValueStr(devname, nullptr, "hrtf-paths", &pathlist))
{
while(pathlist && *pathlist)
{
const char *next, *end;
while(isspace(*pathlist) || *pathlist == ',')
pathlist++;
if(*pathlist == '\0')
continue;
next = strchr(pathlist, ',');
if(next)
end = next++;
else
{
end = pathlist + strlen(pathlist);
usedefaults = false;
}
while(end != pathlist && isspace(*(end-1)))
--end;
if(end != pathlist)
{
const std::string pname{pathlist, end};
for(const auto &fname : SearchDataFiles(".mhr", pname.c_str()))
AddFileEntry(list, fname);
}
pathlist = next;
}
}
else if(ConfigValueExists(devname, nullptr, "hrtf_tables"))
ERR("The hrtf_tables option is deprecated, please use hrtf-paths instead.\n");
if(usedefaults)
{
for(const auto &fname : SearchDataFiles(".mhr", "openal/hrtf"))
AddFileEntry(list, fname);
ResData res{GetResource(IDR_DEFAULT_44100_MHR)};
if(res.data != nullptr && res.size > 0)
AddBuiltInEntry(list, "Built-In 44100hz", IDR_DEFAULT_44100_MHR);
res = GetResource(IDR_DEFAULT_48000_MHR);
if(res.data != nullptr && res.size > 0)
AddBuiltInEntry(list, "Built-In 48000hz", IDR_DEFAULT_48000_MHR);
}
const char *defaulthrtf{""};
if(!list.empty() && ConfigValueStr(devname, nullptr, "default-hrtf", &defaulthrtf))
{
auto iter = std::find_if(list.begin(), list.end(),
[defaulthrtf](const EnumeratedHrtf &entry) -> bool
{ return entry.name == defaulthrtf; }
);
if(iter == list.end())
WARN("Failed to find default HRTF \"%s\"\n", defaulthrtf);
else if(iter != list.begin())
{
EnumeratedHrtf entry{*iter};
list.erase(iter);
list.insert(list.begin(), entry);
}
}
return list;
}
struct Hrtf *GetLoadedHrtf(struct HrtfEntry *entry)
{
std::lock_guard<std::mutex> _{LoadedHrtfLock};
if(entry->handle)
{
Hrtf *hrtf{entry->handle};
Hrtf_IncRef(hrtf);
return hrtf;
}
std::unique_ptr<std::istream> stream;
const char *name{""};
ALuint residx{};
char ch{};
if(sscanf(entry->filename, "!%u%c", &residx, &ch) == 2 && ch == '_')
{
name = strchr(entry->filename, ch)+1;
TRACE("Loading %s...\n", name);
ResData res{GetResource(residx)};
if(!res.data || res.size == 0)
{
ERR("Could not get resource %u, %s\n", residx, name);
return nullptr;
}
stream.reset(new idstream{res.data, res.data+res.size});
}
else
{
name = entry->filename;
TRACE("Loading %s...\n", entry->filename);
std::unique_ptr<al::ifstream> fstr{new al::ifstream{entry->filename, std::ios::binary}};
if(!fstr->is_open())
{
ERR("Could not open %s\n", entry->filename);
return nullptr;
}
stream = std::move(fstr);
}
Hrtf *hrtf{};
char magic[sizeof(magicMarker02)];
stream->read(magic, sizeof(magic));
if(stream->gcount() < static_cast<std::streamsize>(sizeof(magicMarker02)))
ERR("%s data is too short (" SZFMT " bytes)\n", name, stream->gcount());
else if(memcmp(magic, magicMarker02, sizeof(magicMarker02)) == 0)
{
TRACE("Detected data set format v2\n");
hrtf = LoadHrtf02(*stream, name);
}
else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0)
{
TRACE("Detected data set format v1\n");
hrtf = LoadHrtf01(*stream, name);
}
else if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0)
{
TRACE("Detected data set format v0\n");
hrtf = LoadHrtf00(*stream, name);
}
else
ERR("Invalid header in %s: \"%.8s\"\n", name, magic);
stream.reset();
if(!hrtf)
ERR("Failed to load %s\n", name);
else
{
entry->handle = hrtf;
Hrtf_IncRef(hrtf);
TRACE("Loaded HRTF support for format: %s %uhz\n",
DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate);
}
return hrtf;
}
void Hrtf_IncRef(struct Hrtf *hrtf)
{
auto ref = IncrementRef(&hrtf->ref);
TRACEREF("%p increasing refcount to %u\n", hrtf, ref);
}
void Hrtf_DecRef(struct Hrtf *hrtf)
{
auto ref = DecrementRef(&hrtf->ref);
TRACEREF("%p decreasing refcount to %u\n", hrtf, ref);
if(ref == 0)
{
std::lock_guard<std::mutex> _{LoadedHrtfLock};
/* Need to double-check that it's still unused, as another device
* could've reacquired this HRTF after its reference went to 0 and
* before the lock was taken.
*/
auto iter = std::find_if(LoadedHrtfs.begin(), LoadedHrtfs.end(),
[hrtf](const HrtfEntryPtr &entry) noexcept -> bool
{ return hrtf == entry->handle; }
);
if(iter != LoadedHrtfs.end() && ReadRef(&hrtf->ref) == 0)
{
al_free((*iter)->handle);
(*iter)->handle = nullptr;
TRACE("Unloaded unused HRTF %s\n", (*iter)->filename);
}
}
}