214 lines
6.0 KiB
C

#ifndef _ALU_H_
#define _ALU_H_
#include <limits.h>
#include <math.h>
#ifdef HAVE_FLOAT_H
#include <float.h>
#endif
#ifdef HAVE_IEEEFP_H
#include <ieeefp.h>
#endif
#include "alMain.h"
#include "alBuffer.h"
#include "alFilter.h"
#include "hrtf.h"
#define F_PI (3.14159265358979323846f)
#define F_PI_2 (1.57079632679489661923f)
#define F_2PI (6.28318530717958647692f)
#ifndef FLT_EPSILON
#define FLT_EPSILON (1.19209290e-07f)
#endif
#define DEG2RAD(x) ((ALfloat)(x) * (F_PI/180.0f))
#define RAD2DEG(x) ((ALfloat)(x) * (180.0f/F_PI))
#define SRC_HISTORY_BITS (6)
#define SRC_HISTORY_LENGTH (1<<SRC_HISTORY_BITS)
#define SRC_HISTORY_MASK (SRC_HISTORY_LENGTH-1)
#ifdef __cplusplus
extern "C" {
#endif
typedef struct HrtfState {
ALIGN(16) ALfloat History[MAX_INPUT_CHANNELS][SRC_HISTORY_LENGTH];
ALIGN(16) ALfloat Values[MAX_INPUT_CHANNELS][HRIR_LENGTH][2];
ALuint Offset;
} HrtfState;
typedef struct HrtfParams {
ALfloat Gain;
ALfloat Dir[3];
ALIGN(16) ALfloat Coeffs[MAX_INPUT_CHANNELS][HRIR_LENGTH][2];
ALIGN(16) ALfloat CoeffStep[HRIR_LENGTH][2];
ALuint Delay[MAX_INPUT_CHANNELS][2];
ALint DelayStep[2];
ALuint IrSize;
} HrtfParams;
typedef struct DirectParams {
ALfloat (*OutBuffer)[BUFFERSIZE];
ALfloat *ClickRemoval;
ALfloat *PendingClicks;
union {
struct {
HrtfParams Params;
HrtfState State;
} Hrtf;
/* A mixing matrix. First subscript is the channel number of the input
* data (regardless of channel configuration) and the second is the
* channel target (eg. FrontLeft). Not used with HRTF. */
ALfloat Gains[MAX_INPUT_CHANNELS][MaxChannels];
} Mix;
/* If not 'moving', gain/coefficients are set directly without fading. */
ALboolean Moving;
/* Stepping counter for gain/coefficient fading. */
ALuint Counter;
ALfilterState LpFilter[MAX_INPUT_CHANNELS];
} DirectParams;
typedef struct SendParams {
ALfloat (*OutBuffer)[BUFFERSIZE];
ALfloat *ClickRemoval;
ALfloat *PendingClicks;
/* Gain control, which applies to all input channels to a single (mono)
* output buffer. */
ALfloat Gain;
ALfilterState LpFilter[MAX_INPUT_CHANNELS];
} SendParams;
typedef void (*ResamplerFunc)(const ALfloat *src, ALuint frac, ALuint increment,
ALfloat *restrict dst, ALuint dstlen);
typedef ALvoid (*DryMixerFunc)(struct DirectParams *params,
const ALfloat *restrict data, ALuint srcchan,
ALuint OutPos, ALuint SamplesToDo,
ALuint BufferSize);
typedef ALvoid (*WetMixerFunc)(struct SendParams *params,
const ALfloat *restrict data,
ALuint OutPos, ALuint SamplesToDo,
ALuint BufferSize);
#define GAIN_SILENCE_THRESHOLD (0.00001f)
#define SPEEDOFSOUNDMETRESPERSEC (343.3f)
#define AIRABSORBGAINHF (0.99426f) /* -0.05dB */
#define FRACTIONBITS (14)
#define FRACTIONONE (1<<FRACTIONBITS)
#define FRACTIONMASK (FRACTIONONE-1)
inline ALfloat minf(ALfloat a, ALfloat b)
{ return ((a > b) ? b : a); }
inline ALfloat maxf(ALfloat a, ALfloat b)
{ return ((a > b) ? a : b); }
inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max)
{ return minf(max, maxf(min, val)); }
inline ALdouble mind(ALdouble a, ALdouble b)
{ return ((a > b) ? b : a); }
inline ALdouble maxd(ALdouble a, ALdouble b)
{ return ((a > b) ? a : b); }
inline ALdouble clampd(ALdouble val, ALdouble min, ALdouble max)
{ return mind(max, maxd(min, val)); }
inline ALuint minu(ALuint a, ALuint b)
{ return ((a > b) ? b : a); }
inline ALuint maxu(ALuint a, ALuint b)
{ return ((a > b) ? a : b); }
inline ALuint clampu(ALuint val, ALuint min, ALuint max)
{ return minu(max, maxu(min, val)); }
inline ALint mini(ALint a, ALint b)
{ return ((a > b) ? b : a); }
inline ALint maxi(ALint a, ALint b)
{ return ((a > b) ? a : b); }
inline ALint clampi(ALint val, ALint min, ALint max)
{ return mini(max, maxi(min, val)); }
inline ALint64 mini64(ALint64 a, ALint64 b)
{ return ((a > b) ? b : a); }
inline ALint64 maxi64(ALint64 a, ALint64 b)
{ return ((a > b) ? a : b); }
inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max)
{ return mini64(max, maxi64(min, val)); }
inline ALuint64 minu64(ALuint64 a, ALuint64 b)
{ return ((a > b) ? b : a); }
inline ALuint64 maxu64(ALuint64 a, ALuint64 b)
{ return ((a > b) ? a : b); }
inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max)
{ return minu64(max, maxu64(min, val)); }
inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu)
{
return val1 + (val2-val1)*mu;
}
inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat mu)
{
ALfloat mu2 = mu*mu;
ALfloat a0 = -0.5f*val0 + 1.5f*val1 + -1.5f*val2 + 0.5f*val3;
ALfloat a1 = val0 + -2.5f*val1 + 2.0f*val2 + -0.5f*val3;
ALfloat a2 = -0.5f*val0 + 0.5f*val2;
ALfloat a3 = val1;
return a0*mu*mu2 + a1*mu2 + a2*mu + a3;
}
ALvoid aluInitPanning(ALCdevice *Device);
/**
* ComputeAngleGains
*
* Sets channel gains based on a given source's angle and its half-width. The
* angle and hwidth parameters are in radians.
*/
void ComputeAngleGains(const ALCdevice *device, ALfloat angle, ALfloat hwidth, ALfloat ingain, ALfloat gains[MaxChannels]);
/**
* SetGains
*
* Helper to set the appropriate channels to the specified gain.
*/
inline void SetGains(const ALCdevice *device, ALfloat ingain, ALfloat gains[MaxChannels])
{
ComputeAngleGains(device, 0.0f, F_PI, ingain, gains);
}
ALvoid CalcSourceParams(struct ALactivesource *src, const ALCcontext *ALContext);
ALvoid CalcNonAttnSourceParams(struct ALactivesource *src, const ALCcontext *ALContext);
ALvoid MixSource(struct ALactivesource *src, ALCdevice *Device, ALuint SamplesToDo);
ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size);
/* Caller must lock the device. */
ALvoid aluHandleDisconnect(ALCdevice *device);
extern ALfloat ConeScale;
extern ALfloat ZScale;
#ifdef __cplusplus
}
#endif
#endif