2017-06-25 08:00:55 -07:00

307 lines
9.6 KiB
C

/*
* OpenAL Tone Generator Test
*
* Copyright (c) 2015 by Chris Robinson <chris.kcat@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* This file contains a test for generating waveforms and plays them for a
* given length of time. Intended to inspect the behavior of the mixer by
* checking the output with a spectrum analyzer and oscilloscope.
*
* TODO: This would actually be nicer as a GUI app with buttons to start and
* stop individual waveforms, include additional whitenoise and pinknoise
* generators, and have the ability to hook up EFX filters and effects.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <limits.h>
#include <math.h>
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "common/alhelpers.h"
#ifndef M_PI
#define M_PI (3.14159265358979323846)
#endif
enum WaveType {
WT_Sine,
WT_Square,
WT_Sawtooth,
WT_Triangle,
WT_Impulse,
WT_WhiteNoise,
};
static const char *GetWaveTypeName(enum WaveType type)
{
switch(type)
{
case WT_Sine: return "sine";
case WT_Square: return "square";
case WT_Sawtooth: return "sawtooth";
case WT_Triangle: return "triangle";
case WT_Impulse: return "impulse";
case WT_WhiteNoise: return "noise";
}
return "(unknown)";
}
static inline ALuint dither_rng(ALuint *seed)
{
*seed = (*seed * 96314165) + 907633515;
return *seed;
}
static void ApplySin(ALfloat *data, ALdouble g, ALuint srate, ALuint freq)
{
ALdouble smps_per_cycle = (ALdouble)srate / freq;
ALuint i;
for(i = 0;i < srate;i++)
data[i] += (ALfloat)(sin(i/smps_per_cycle * 2.0*M_PI) * g);
}
/* Generates waveforms using additive synthesis. Each waveform is constructed
* by summing one or more sine waves, up to (and excluding) nyquist.
*/
static ALuint CreateWave(enum WaveType type, ALuint freq, ALuint srate)
{
ALuint seed = 22222;
ALint data_size;
ALfloat *data;
ALuint buffer;
ALenum err;
ALuint i;
data_size = srate * sizeof(ALfloat);
data = calloc(1, data_size);
switch(type)
{
case WT_Sine:
ApplySin(data, 1.0, srate, freq);
break;
case WT_Square:
for(i = 1;freq*i < srate/2;i+=2)
ApplySin(data, 4.0/M_PI * 1.0/i, srate, freq*i);
break;
case WT_Sawtooth:
for(i = 1;freq*i < srate/2;i++)
ApplySin(data, 2.0/M_PI * ((i&1)*2 - 1.0) / i, srate, freq*i);
break;
case WT_Triangle:
for(i = 1;freq*i < srate/2;i+=2)
ApplySin(data, 8.0/(M_PI*M_PI) * (1.0 - (i&2)) / (i*i), srate, freq*i);
break;
case WT_Impulse:
/* NOTE: Impulse isn't handled using additive synthesis, and is
* instead just a non-0 sample at a given rate. This can still be
* useful to test (other than resampling, the ALSOFT_DEFAULT_REVERB
* environment variable can prove useful here to test the reverb
* response).
*/
for(i = 0;i < srate;i++)
data[i] = (i%(srate/freq)) ? 0.0f : 1.0f;
break;
case WT_WhiteNoise:
/* NOTE: WhiteNoise is just uniform set of uncorrelated values, and
* is not influenced by the waveform frequency.
*/
for(i = 0;i < srate;i++)
{
ALuint rng0 = dither_rng(&seed);
ALuint rng1 = dither_rng(&seed);
data[i] = (ALfloat)(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX));
}
break;
}
/* Buffer the audio data into a new buffer object. */
buffer = 0;
alGenBuffers(1, &buffer);
alBufferData(buffer, AL_FORMAT_MONO_FLOAT32, data, data_size, srate);
free(data);
/* Check if an error occured, and clean up if so. */
err = alGetError();
if(err != AL_NO_ERROR)
{
fprintf(stderr, "OpenAL Error: %s\n", alGetString(err));
if(alIsBuffer(buffer))
alDeleteBuffers(1, &buffer);
return 0;
}
return buffer;
}
int main(int argc, char *argv[])
{
enum WaveType wavetype = WT_Sine;
const char *appname = argv[0];
ALuint source, buffer;
ALint last_pos, num_loops;
ALint max_loops = 4;
ALint srate = -1;
ALint tone_freq = 1000;
ALCint dev_rate;
ALenum state;
int i;
argv++; argc--;
if(InitAL(&argv, &argc) != 0)
return 1;
if(!alIsExtensionPresent("AL_EXT_FLOAT32"))
{
fprintf(stderr, "Required AL_EXT_FLOAT32 extension not supported on this device!\n");
CloseAL();
return 1;
}
for(i = 0;i < argc;i++)
{
if(strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "--help") == 0)
{
fprintf(stderr, "OpenAL Tone Generator\n"
"\n"
"Usage: %s [-device <name>] <options>\n"
"\n"
"Available options:\n"
" --help/-h This help text\n"
" -t <seconds> Time to play a tone (default 5 seconds)\n"
" --waveform/-w <type> Waveform type: sine (default), square, sawtooth,\n"
" triangle, impulse, noise\n"
" --freq/-f <hz> Tone frequency (default 1000 hz)\n"
" --srate/-s <sample rate> Sampling rate (default output rate)\n",
appname
);
CloseAL();
return 1;
}
else if(i+1 < argc && strcmp(argv[i], "-t") == 0)
{
i++;
max_loops = atoi(argv[i]) - 1;
}
else if(i+1 < argc && (strcmp(argv[i], "--waveform") == 0 || strcmp(argv[i], "-w") == 0))
{
i++;
if(strcmp(argv[i], "sine") == 0)
wavetype = WT_Sine;
else if(strcmp(argv[i], "square") == 0)
wavetype = WT_Square;
else if(strcmp(argv[i], "sawtooth") == 0)
wavetype = WT_Sawtooth;
else if(strcmp(argv[i], "triangle") == 0)
wavetype = WT_Triangle;
else if(strcmp(argv[i], "impulse") == 0)
wavetype = WT_Impulse;
else if(strcmp(argv[i], "noise") == 0)
wavetype = WT_WhiteNoise;
else
fprintf(stderr, "Unhandled waveform: %s\n", argv[i]);
}
else if(i+1 < argc && (strcmp(argv[i], "--freq") == 0 || strcmp(argv[i], "-f") == 0))
{
i++;
tone_freq = atoi(argv[i]);
if(tone_freq < 1)
{
fprintf(stderr, "Invalid tone frequency: %s (min: 1hz)\n", argv[i]);
tone_freq = 1;
}
}
else if(i+1 < argc && (strcmp(argv[i], "--srate") == 0 || strcmp(argv[i], "-s") == 0))
{
i++;
srate = atoi(argv[i]);
if(srate < 40)
{
fprintf(stderr, "Invalid sample rate: %s (min: 40hz)\n", argv[i]);
srate = 40;
}
}
}
{
ALCdevice *device = alcGetContextsDevice(alcGetCurrentContext());
alcGetIntegerv(device, ALC_FREQUENCY, 1, &dev_rate);
assert(alcGetError(device)==ALC_NO_ERROR && "Failed to get device sample rate");
}
if(srate < 0)
srate = dev_rate;
/* Load the sound into a buffer. */
buffer = CreateWave(wavetype, tone_freq, srate);
if(!buffer)
{
CloseAL();
return 1;
}
printf("Playing %dhz %s-wave tone with %dhz sample rate and %dhz output, for %d second%s...\n",
tone_freq, GetWaveTypeName(wavetype), srate, dev_rate, max_loops+1, max_loops?"s":"");
fflush(stdout);
/* Create the source to play the sound with. */
source = 0;
alGenSources(1, &source);
alSourcei(source, AL_BUFFER, buffer);
assert(alGetError()==AL_NO_ERROR && "Failed to setup sound source");
/* Play the sound for a while. */
num_loops = 0;
last_pos = 0;
alSourcei(source, AL_LOOPING, (max_loops > 0) ? AL_TRUE : AL_FALSE);
alSourcePlay(source);
do {
ALint pos;
al_nssleep(10000000);
alGetSourcei(source, AL_SAMPLE_OFFSET, &pos);
alGetSourcei(source, AL_SOURCE_STATE, &state);
if(pos < last_pos && state == AL_PLAYING)
{
++num_loops;
if(num_loops >= max_loops)
alSourcei(source, AL_LOOPING, AL_FALSE);
printf("%d...\n", max_loops - num_loops + 1);
fflush(stdout);
}
last_pos = pos;
} while(alGetError() == AL_NO_ERROR && state == AL_PLAYING);
/* All done. Delete resources, and close OpenAL. */
alDeleteSources(1, &source);
alDeleteBuffers(1, &buffer);
/* Close up OpenAL. */
CloseAL();
return 0;
}