openal-soft/Alc/mixer_sse41.c
Chris Robinson b9e192b78a Implement a band-limited sinc resampler
This is essentially a 12-point sinc resampler, unless it's resampling to a rate
higher than the output, at which point it will vary between 12 and 24 points
and do anti-aliasing to avoid/reduce frequencies going over nyquist.

Code provided by Christopher Fitzgerald.
2015-11-05 09:42:08 -08:00

225 lines
8.0 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 2014 by Timothy Arceri <t_arceri@yahoo.com.au>.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <xmmintrin.h>
#include <emmintrin.h>
#include <smmintrin.h>
#include "alu.h"
#include "mixer_defs.h"
const ALfloat *Resample_lerp32_SSE41(const BsincState* UNUSED(state), const ALfloat *src, ALuint frac, ALuint increment,
ALfloat *restrict dst, ALuint numsamples)
{
const __m128i increment4 = _mm_set1_epi32(increment*4);
const __m128 fracOne4 = _mm_set1_ps(1.0f/FRACTIONONE);
const __m128i fracMask4 = _mm_set1_epi32(FRACTIONMASK);
alignas(16) union { ALuint i[4]; float f[4]; } pos_;
alignas(16) union { ALuint i[4]; float f[4]; } frac_;
__m128i frac4, pos4;
ALuint pos;
ALuint i;
InitiatePositionArrays(frac, increment, frac_.i, pos_.i, 4);
frac4 = _mm_castps_si128(_mm_load_ps(frac_.f));
pos4 = _mm_castps_si128(_mm_load_ps(pos_.f));
for(i = 0;numsamples-i > 3;i += 4)
{
const __m128 val1 = _mm_setr_ps(src[pos_.i[0]], src[pos_.i[1]], src[pos_.i[2]], src[pos_.i[3]]);
const __m128 val2 = _mm_setr_ps(src[pos_.i[0]+1], src[pos_.i[1]+1], src[pos_.i[2]+1], src[pos_.i[3]+1]);
/* val1 + (val2-val1)*mu */
const __m128 r0 = _mm_sub_ps(val2, val1);
const __m128 mu = _mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4);
const __m128 out = _mm_add_ps(val1, _mm_mul_ps(mu, r0));
_mm_store_ps(&dst[i], out);
frac4 = _mm_add_epi32(frac4, increment4);
pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS));
frac4 = _mm_and_si128(frac4, fracMask4);
pos_.i[0] = _mm_extract_epi32(pos4, 0);
pos_.i[1] = _mm_extract_epi32(pos4, 1);
pos_.i[2] = _mm_extract_epi32(pos4, 2);
pos_.i[3] = _mm_extract_epi32(pos4, 3);
}
/* NOTE: These four elements represent the position *after* the last four
* samples, so the lowest element is the next position to resample.
*/
pos = pos_.i[0];
frac = _mm_cvtsi128_si32(frac4);
for(;i < numsamples;i++)
{
dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE));
frac += increment;
pos += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
return dst;
}
const ALfloat *Resample_fir4_32_SSE41(const BsincState* UNUSED(state), const ALfloat *src, ALuint frac, ALuint increment,
ALfloat *restrict dst, ALuint numsamples)
{
const __m128i increment4 = _mm_set1_epi32(increment*4);
const __m128i fracMask4 = _mm_set1_epi32(FRACTIONMASK);
alignas(16) union { ALuint i[4]; float f[4]; } pos_;
alignas(16) union { ALuint i[4]; float f[4]; } frac_;
__m128i frac4, pos4;
ALuint pos;
ALuint i;
InitiatePositionArrays(frac, increment, frac_.i, pos_.i, 4);
frac4 = _mm_castps_si128(_mm_load_ps(frac_.f));
pos4 = _mm_castps_si128(_mm_load_ps(pos_.f));
--src;
for(i = 0;numsamples-i > 3;i += 4)
{
const __m128 val0 = _mm_loadu_ps(&src[pos_.i[0]]);
const __m128 val1 = _mm_loadu_ps(&src[pos_.i[1]]);
const __m128 val2 = _mm_loadu_ps(&src[pos_.i[2]]);
const __m128 val3 = _mm_loadu_ps(&src[pos_.i[3]]);
__m128 k0 = _mm_load_ps(ResampleCoeffs.FIR4[frac_.i[0]]);
__m128 k1 = _mm_load_ps(ResampleCoeffs.FIR4[frac_.i[1]]);
__m128 k2 = _mm_load_ps(ResampleCoeffs.FIR4[frac_.i[2]]);
__m128 k3 = _mm_load_ps(ResampleCoeffs.FIR4[frac_.i[3]]);
__m128 out;
k0 = _mm_mul_ps(k0, val0);
k1 = _mm_mul_ps(k1, val1);
k2 = _mm_mul_ps(k2, val2);
k3 = _mm_mul_ps(k3, val3);
k0 = _mm_hadd_ps(k0, k1);
k2 = _mm_hadd_ps(k2, k3);
out = _mm_hadd_ps(k0, k2);
_mm_store_ps(&dst[i], out);
frac4 = _mm_add_epi32(frac4, increment4);
pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS));
frac4 = _mm_and_si128(frac4, fracMask4);
pos_.i[0] = _mm_extract_epi32(pos4, 0);
pos_.i[1] = _mm_extract_epi32(pos4, 1);
pos_.i[2] = _mm_extract_epi32(pos4, 2);
pos_.i[3] = _mm_extract_epi32(pos4, 3);
frac_.i[0] = _mm_extract_epi32(frac4, 0);
frac_.i[1] = _mm_extract_epi32(frac4, 1);
frac_.i[2] = _mm_extract_epi32(frac4, 2);
frac_.i[3] = _mm_extract_epi32(frac4, 3);
}
pos = pos_.i[0];
frac = frac_.i[0];
for(;i < numsamples;i++)
{
dst[i] = resample_fir4(src[pos], src[pos+1], src[pos+2], src[pos+3], frac);
frac += increment;
pos += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
return dst;
}
const ALfloat *Resample_fir8_32_SSE41(const BsincState* UNUSED(state), const ALfloat *src, ALuint frac, ALuint increment,
ALfloat *restrict dst, ALuint numsamples)
{
const __m128i increment4 = _mm_set1_epi32(increment*4);
const __m128i fracMask4 = _mm_set1_epi32(FRACTIONMASK);
alignas(16) union { ALuint i[4]; float f[4]; } pos_;
alignas(16) union { ALuint i[4]; float f[4]; } frac_;
__m128i frac4, pos4;
ALuint pos;
ALuint i, j;
InitiatePositionArrays(frac, increment, frac_.i, pos_.i, 4);
frac4 = _mm_castps_si128(_mm_load_ps(frac_.f));
pos4 = _mm_castps_si128(_mm_load_ps(pos_.f));
src -= 3;
for(i = 0;numsamples-i > 3;i += 4)
{
__m128 out[2];
for(j = 0;j < 8;j+=4)
{
const __m128 val0 = _mm_loadu_ps(&src[pos_.i[0]+j]);
const __m128 val1 = _mm_loadu_ps(&src[pos_.i[1]+j]);
const __m128 val2 = _mm_loadu_ps(&src[pos_.i[2]+j]);
const __m128 val3 = _mm_loadu_ps(&src[pos_.i[3]+j]);
__m128 k0 = _mm_load_ps(&ResampleCoeffs.FIR8[frac_.i[0]][j]);
__m128 k1 = _mm_load_ps(&ResampleCoeffs.FIR8[frac_.i[1]][j]);
__m128 k2 = _mm_load_ps(&ResampleCoeffs.FIR8[frac_.i[2]][j]);
__m128 k3 = _mm_load_ps(&ResampleCoeffs.FIR8[frac_.i[3]][j]);
k0 = _mm_mul_ps(k0, val0);
k1 = _mm_mul_ps(k1, val1);
k2 = _mm_mul_ps(k2, val2);
k3 = _mm_mul_ps(k3, val3);
k0 = _mm_hadd_ps(k0, k1);
k2 = _mm_hadd_ps(k2, k3);
out[j>>2] = _mm_hadd_ps(k0, k2);
}
out[0] = _mm_add_ps(out[0], out[1]);
_mm_store_ps(&dst[i], out[0]);
frac4 = _mm_add_epi32(frac4, increment4);
pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS));
frac4 = _mm_and_si128(frac4, fracMask4);
pos_.i[0] = _mm_extract_epi32(pos4, 0);
pos_.i[1] = _mm_extract_epi32(pos4, 1);
pos_.i[2] = _mm_extract_epi32(pos4, 2);
pos_.i[3] = _mm_extract_epi32(pos4, 3);
frac_.i[0] = _mm_extract_epi32(frac4, 0);
frac_.i[1] = _mm_extract_epi32(frac4, 1);
frac_.i[2] = _mm_extract_epi32(frac4, 2);
frac_.i[3] = _mm_extract_epi32(frac4, 3);
}
pos = pos_.i[0];
frac = frac_.i[0];
for(;i < numsamples;i++)
{
dst[i] = resample_fir8(src[pos ], src[pos+1], src[pos+2], src[pos+3],
src[pos+4], src[pos+5], src[pos+6], src[pos+7], frac);
frac += increment;
pos += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
return dst;
}