For mono sources, third-order ambisonics is utilized to generate panning gains.
The general idea is that a panned mono sound can be encoded into b-format
ambisonics as:
w[i] = sample[i] * 0.7071;
x[i] = sample[i] * dir[0];
y[i] = sample[i] * dir[1];
...
and subsequently rendered using:
output[chan][i] = w[i] * w_coeffs[chan] +
x[i] * x_coeffs[chan] +
y[i] * y_coeffs[chan] +
...;
By reordering the math, channel gains can be generated by doing:
gain[chan] = 0.7071 * w_coeffs[chan] +
dir[0] * x_coeffs[chan] +
dir[1] * y_coeffs[chan] +
...;
which then get applied as normal:
output[chan][i] = sample[i] * gain[chan];
One of the reasons to use ambisonics for panning is that it provides arguably
better reproduction for sounds emanating from between two speakers. As well,
this makes it easier to pan in all 3 dimensions, with for instance a "3D7.1" or
8-channel cube speaker configuration by simply providing the necessary
coefficients (this will need some work since some methods still use angle-based
panpot, particularly multi-channel sources).
Unfortunately, the math to reliably generate the coefficients for a given
speaker configuration is too costly to do at run-time. They have to be pre-
generated based on a pre-specified speaker arangement, which means the config
options for tweaking speaker angles are no longer supportable. Eventually I
hope to provide config options for custom coefficients, which can either be
generated and written in manually, or via alsoft-config from user-specified
speaker positions.
The current default set of coefficients were generated using the MATLAB scripts
(compatible with GNU Octave) from the excellent Ambisonic Decoder Toolbox, at
https://bitbucket.org/ambidecodertoolbox/adt/
OpenAL's capture API guarantees the application gets the format requested, or
else the device will fail to open. The only valid change is that the capture
buffer can be larger than requested.
This makes it possible to append alpha-numeric characters directly to an
environment variable value, e.g. ${FOO}bar will use "FOO" as the variable name
and keep the "bar" as-is, whereas $FOObar will take "FOObar" as the variable
name.
There's apparently some issues with it causing noise or killing the output. It
might be due to the per-sample changes being too harsh for the filter to keep
up with, but it's not something I can take care of in time for release.
This commit should be reverted after release when work on fixing it can resume.