Unfortunately they conflict with AL_EXT_SOURCE_RADIUS, as AL_SOURCE_RADIUS and
AL_BYTE_RW_OFFSETS_SOFT share the same source property value. A replacement for
AL_SOFT_buffer_samples will eventually be made.
This helps avoid different results when looping is toggled within a couple
samples of the loop point, or when a processed buffer is removed while the
source is only a couple samples into the next buffer.
The sound localization with virtual channel mixing was just too poor, so while
it's more costly to do per-source HRTF mixing, it's unavoidable if you want
good localization.
This is only partially reverted because having the virtual channel is still
beneficial, particularly with B-Format rendering and effect mixing which
otherwise skip HRTF processing. As before, the number of virtual channels can
potentially be customized, specifying more or less channels depending on the
system's needs.
This new method mixes sources normally into a 14-channel buffer with the
channels placed all around the listener. HRTF is then applied to the channels
given their positions and written to a 2-channel buffer, which gets written out
to the device.
This method has the benefit that HRTF processing becomes more scalable. The
costly HRTF filters are applied to the 14-channel buffer after the mix is done,
turning it into a post-process with a fixed overhead. Mixing sources is done
with normal non-HRTF methods, so increasing the number of playing sources only
incurs normal mixing costs.
Another benefit is that it improves B-Format playback since the soundfield gets
mixed into speakers covering all three dimensions, which then get filtered
based on their locations.
The main downside to this is that the spatial resolution of the HRTF dataset
does not play a big role anymore. However, the hope is that with ambisonics-
based panning, the perceptual position of panned sounds will still be good. It
is also an option to increase the number of virtual channels for systems that
can handle it, or maybe even decrease it for weaker systems.
If the source is stopped, changes its buffer, then played again quickly, the
source will never be removed from the active source list causing the update
method to remain as it was. If the buffer was changed between mono and multi-
channel, this causes it to use the wrong method.
At 0 distance from the listener, the sound is omni-directional. As the source
and listener become 'radius' units apart, the sound becomes more directional.
With HRTF, an omni-directional sound is handled using 0-delay, pass-through
filter coefficients, which is blended with the real delay and coefficients as
needed to become more directional.
It should not be possible for a playing or paused source to not have a
valid buffer, but Clang's static analyzer doesn't know that. Hopefully
an assert will convince it.