The context state properties are less likely to change compared to the listener
state, and future changes may prefer more infrequent updates to the context
state.
Note that this puts the MetersPerUnit in as a context state, even though it's
handled through the listener functions. Considering the infrequency that it's
updated at (generally set just once for the context's lifetime), it makes more
sense to put it there than with the more frequently updated listener
properties. The aforementioned future changes would also prefer MetersPerUnit
to not be updated unnecessarily.
The source's voice holds a copy of the last properties it received, so listener
updates can make sources recalculate internal properties from that stored copy.
This necessitates a change in how source updates are handled. Rather than just
being able to update sources when a dependent object state is changed (e.g. a
listener gain change), now all source updates must be proactively provided.
Consequently, apps that do not utilize any deferring (AL_SOFT_defer_updates or
alcSuspendContext/alcProcessContext) may utilize more CPU since it'll be
filling out more update containers for the mixer thread to use.
The upside is that there's less blocking between the app's calling thread and
the mixer thread, particularly for vectors and other multi-value properties
(filters and sends). Deferring behavior when used is also improved, since
updates that shouldn't be applied yet are simply not provided. And when they
are provided, the mixer doesn't have to ignore them, meaning the actual
deferring of a context doesn't have to synchrnously force an update -- the
process call will send any pending updates, which the mixer will apply even if
another deferral occurs before the mixer runs, because it'll still be there
waiting on the next mixer invocation.
There is one slight bug introduced by this commit. When a listener change is
made, or changes to multiple sources while updates are being deferred, it is
possible for the mixer to run while the sources are prepping their updates,
causing some of the source updates to be seen before the other. This will be
fixed in short order.
This uses a separate container to provide the relevant properties to the
internal update method, using atomic pointer swaps. A free-list is used to
avoid having too many individual containers.
This allows the mixer to update the internal listener properties without
requiring the lock to protect against async updates. It also allows concurrent
read access to the user-facing property values, even the multi-value ones (e.g.
the vectors).
There are still some more occurances to clear out (deletion in gen error,
effects, some filters), which shall be coming up. There is a possibility for a
deadlock between the listlock and the global/context lock, if another attempt
to get the listlock is made while under the context lock.