Some type cleanup

This commit is contained in:
Chris Robinson 2020-03-22 10:20:41 -07:00
parent d30d9a2c9f
commit f3ff28fb2a
2 changed files with 39 additions and 42 deletions

View File

@ -61,20 +61,19 @@ alignas(16) const std::array<double,HIL_SIZE> HannWindow = InitHannWindow();
struct FshifterState final : public EffectState {
/* Effect parameters */
size_t mCount{};
ALsizei mPhaseStep[2]{};
ALsizei mPhase[2]{};
ALdouble mSign[2]{};
size_t mCount{};
ALuint mPhaseStep[2]{};
ALuint mPhase[2]{};
double mSign[2]{};
/*Effects buffers*/
/* Effects buffers */
double mInFIFO[HIL_SIZE]{};
complex_d mOutFIFO[HIL_STEP]{};
complex_d mOutputAccum[HIL_SIZE]{};
complex_d mAnalytic[HIL_SIZE]{};
complex_d mOutdata[BUFFERSIZE]{};
alignas(16) ALfloat mBufferOut[BUFFERSIZE]{};
alignas(16) float mBufferOut[BUFFERSIZE]{};
/* Effect gains for each output channel */
struct {
@ -95,8 +94,8 @@ ALboolean FshifterState::deviceUpdate(const ALCdevice*)
/* (Re-)initializing parameters and clear the buffers. */
mCount = FIFO_LATENCY;
std::fill(std::begin(mPhaseStep), std::end(mPhaseStep), 0);
std::fill(std::begin(mPhase), std::end(mPhase), 0);
std::fill(std::begin(mPhaseStep), std::end(mPhaseStep), 0u);
std::fill(std::begin(mPhase), std::end(mPhase), 0u);
std::fill(std::begin(mSign), std::end(mSign), 1.0);
std::fill(std::begin(mInFIFO), std::end(mInFIFO), 0.0);
std::fill(std::begin(mOutFIFO), std::end(mOutFIFO), complex_d{});
@ -116,8 +115,8 @@ void FshifterState::update(const ALCcontext *context, const ALeffectslot *slot,
{
const ALCdevice *device{context->mDevice.get()};
ALfloat step{props->Fshifter.Frequency / static_cast<ALfloat>(device->Frequency)};
mPhaseStep[0] = mPhaseStep[1] = fastf2i(minf(step, 0.5f) * FRACTIONONE);
const float step{props->Fshifter.Frequency / static_cast<float>(device->Frequency)};
mPhaseStep[0] = mPhaseStep[1] = fastf2u(minf(step, 1.0f) * FRACTIONONE);
switch(props->Fshifter.LeftDirection)
{
@ -135,7 +134,7 @@ void FshifterState::update(const ALCcontext *context, const ALeffectslot *slot,
break;
}
switch (props->Fshifter.RightDirection)
switch(props->Fshifter.RightDirection)
{
case AL_FREQUENCY_SHIFTER_DIRECTION_DOWN:
mSign[1] = -1.0;
@ -202,8 +201,8 @@ void FshifterState::process(const size_t samplesToDo, const al::span<const Float
ALfloat *RESTRICT BufferOut{mBufferOut};
for(ALsizei c{0};c < 2;++c)
{
const int phase_step{mPhaseStep[c]};
int phase_idx{mPhase[c]};
const ALuint phase_step{mPhaseStep[c]};
ALuint phase_idx{mPhase[c]};
for(size_t k{0};k < samplesToDo;++k)
{
const double phase{phase_idx * ((1.0 / FRACTIONONE) * al::MathDefs<double>::Tau())};

View File

@ -66,13 +66,13 @@ alignas(16) const std::array<double,STFT_SIZE> HannWindow = InitHannWindow();
struct ALphasor {
ALdouble Amplitude;
ALdouble Phase;
double Amplitude;
double Phase;
};
struct ALfrequencyDomain {
ALdouble Amplitude;
ALdouble Frequency;
double Amplitude;
double Frequency;
};
@ -92,24 +92,24 @@ inline complex_d polar2rect(const ALphasor &number)
struct PshifterState final : public EffectState {
/* Effect parameters */
size_t mCount;
ALuint mPitchShiftI;
ALfloat mPitchShift;
ALfloat mFreqPerBin;
size_t mCount;
ALuint mPitchShiftI;
double mPitchShift;
double mFreqPerBin;
/* Effects buffers */
double mInFIFO[STFT_SIZE];
double mOutFIFO[STFT_STEP];
ALdouble mLastPhase[STFT_HALF_SIZE+1];
ALdouble mSumPhase[STFT_HALF_SIZE+1];
ALdouble mOutputAccum[STFT_SIZE];
double mLastPhase[STFT_HALF_SIZE+1];
double mSumPhase[STFT_HALF_SIZE+1];
double mOutputAccum[STFT_SIZE];
complex_d mFFTbuffer[STFT_SIZE];
ALfrequencyDomain mAnalysis_buffer[STFT_HALF_SIZE+1];
ALfrequencyDomain mSyntesis_buffer[STFT_HALF_SIZE+1];
alignas(16) ALfloat mBufferOut[BUFFERSIZE];
alignas(16) float mBufferOut[BUFFERSIZE];
/* Effect gains for each output channel */
ALfloat mCurrentGains[MAX_OUTPUT_CHANNELS];
@ -128,11 +128,11 @@ ALboolean PshifterState::deviceUpdate(const ALCdevice *device)
/* (Re-)initializing parameters and clear the buffers. */
mCount = FIFO_LATENCY;
mPitchShiftI = FRACTIONONE;
mPitchShift = 1.0f;
mFreqPerBin = static_cast<float>(device->Frequency) / float{STFT_SIZE};
mPitchShift = 1.0;
mFreqPerBin = device->Frequency / double{STFT_SIZE};
std::fill(std::begin(mInFIFO), std::end(mInFIFO), 0.0f);
std::fill(std::begin(mOutFIFO), std::end(mOutFIFO), 0.0f);
std::fill(std::begin(mInFIFO), std::end(mInFIFO), 0.0);
std::fill(std::begin(mOutFIFO), std::end(mOutFIFO), 0.0);
std::fill(std::begin(mLastPhase), std::end(mLastPhase), 0.0);
std::fill(std::begin(mSumPhase), std::end(mSumPhase), 0.0);
std::fill(std::begin(mOutputAccum), std::end(mOutputAccum), 0.0);
@ -148,11 +148,10 @@ ALboolean PshifterState::deviceUpdate(const ALCdevice *device)
void PshifterState::update(const ALCcontext*, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target)
{
const float pitch{std::pow(2.0f,
static_cast<ALfloat>(props->Pshifter.CoarseTune*100 + props->Pshifter.FineTune) / 1200.0f
)};
const int tune{props->Pshifter.CoarseTune*100 + props->Pshifter.FineTune};
const float pitch{std::pow(2.0f, static_cast<float>(tune) / 1200.0f)};
mPitchShiftI = fastf2u(pitch*FRACTIONONE);
mPitchShift = static_cast<float>(mPitchShiftI) * (1.0f/FRACTIONONE);
mPitchShift = mPitchShiftI * double{1.0/FRACTIONONE};
ALfloat coeffs[MAX_AMBI_CHANNELS];
CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f, coeffs);
@ -167,8 +166,8 @@ void PshifterState::process(const size_t samplesToDo, const al::span<const Float
* http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/
*/
static constexpr ALdouble expected{al::MathDefs<double>::Tau() / OVERSAMP};
const ALdouble freq_per_bin{mFreqPerBin};
static constexpr double expected{al::MathDefs<double>::Tau() / OVERSAMP};
const double freq_per_bin{mFreqPerBin};
for(size_t base{0u};base < samplesToDo;)
{
@ -207,7 +206,7 @@ void PshifterState::process(const size_t samplesToDo, const al::span<const Float
ALphasor component{rect2polar(mFFTbuffer[k])};
/* Compute phase difference and subtract expected phase difference */
double tmp{(component.Phase - mLastPhase[k]) - k*expected};
double tmp{(component.Phase - mLastPhase[k]) - static_cast<double>(k)*expected};
/* Map delta phase into +/- Pi interval */
int qpd{double2int(tmp / al::MathDefs<double>::Pi())};
@ -221,7 +220,7 @@ void PshifterState::process(const size_t samplesToDo, const al::span<const Float
* amplitude and true frequency in analysis buffer.
*/
mAnalysis_buffer[k].Amplitude = 2.0 * component.Amplitude;
mAnalysis_buffer[k].Frequency = (k + tmp) * freq_per_bin;
mAnalysis_buffer[k].Frequency = (static_cast<double>(k) + tmp) * freq_per_bin;
/* Store actual phase[k] for the calculations in the next frame*/
mLastPhase[k] = component.Phase;
@ -249,10 +248,10 @@ void PshifterState::process(const size_t samplesToDo, const al::span<const Float
for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
{
/* Compute bin deviation from scaled freq */
const double tmp{mSyntesis_buffer[k].Frequency/freq_per_bin - k};
const double tmp{mSyntesis_buffer[k].Frequency / freq_per_bin};
/* Calculate actual delta phase and accumulate it to get bin phase */
mSumPhase[k] += (k + tmp) * expected;
mSumPhase[k] += tmp * expected;
ALphasor component;
component.Amplitude = mSyntesis_buffer[k].Amplitude;
@ -270,8 +269,7 @@ void PshifterState::process(const size_t samplesToDo, const al::span<const Float
/* Windowing and add to output */
for(size_t k{0u};k < STFT_SIZE;k++)
mOutputAccum[k] += HannWindow[k] * mFFTbuffer[k].real() /
(0.5 * STFT_HALF_SIZE * OVERSAMP);
mOutputAccum[k] += HannWindow[k]*mFFTbuffer[k].real() * (2.0/STFT_HALF_SIZE/OVERSAMP);
/* Shift accumulator, input & output FIFO */
std::copy_n(mOutputAccum, STFT_STEP, mOutFIFO);