More cleanup for the pitch shifter

This commit is contained in:
Chris Robinson 2020-03-22 20:48:02 -07:00
parent 813d4ed566
commit dc8ccc06ce

View File

@ -65,31 +65,12 @@ std::array<double,STFT_SIZE> InitHannWindow()
alignas(16) const std::array<double,STFT_SIZE> HannWindow = InitHannWindow();
struct ALphasor {
double Amplitude;
double Phase;
};
struct ALfrequencyDomain {
struct FrequencyBin {
double Amplitude;
double Frequency;
};
/* Converts complex to ALphasor */
inline ALphasor rect2polar(const complex_d &number)
{
ALphasor polar;
polar.Amplitude = std::abs(number);
polar.Phase = std::arg(number);
return polar;
}
/* Converts ALphasor to complex */
inline complex_d polar2rect(const ALphasor &number)
{ return std::polar<double>(number.Amplitude, number.Phase); }
struct PshifterState final : public EffectState {
/* Effect parameters */
size_t mCount;
@ -98,22 +79,21 @@ struct PshifterState final : public EffectState {
double mFreqPerBin;
/* Effects buffers */
double mInFIFO[STFT_SIZE];
double mOutFIFO[STFT_STEP];
double mLastPhase[STFT_HALF_SIZE+1];
double mSumPhase[STFT_HALF_SIZE+1];
double mOutputAccum[STFT_SIZE];
std::array<double,STFT_SIZE> mFIFO;
std::array<double,STFT_HALF_SIZE+1> mLastPhase;
std::array<double,STFT_HALF_SIZE+1> mSumPhase;
std::array<double,STFT_SIZE> mOutputAccum;
complex_d mFFTbuffer[STFT_SIZE];
std::array<complex_d,STFT_SIZE> mFftBuffer;
ALfrequencyDomain mAnalysis_buffer[STFT_HALF_SIZE+1];
ALfrequencyDomain mSyntesis_buffer[STFT_HALF_SIZE+1];
std::array<FrequencyBin,STFT_HALF_SIZE+1> mAnalysisBuffer;
std::array<FrequencyBin,STFT_HALF_SIZE+1> mSynthesisBuffer;
alignas(16) float mBufferOut[BUFFERSIZE];
alignas(16) FloatBufferLine mBufferOut;
/* Effect gains for each output channel */
ALfloat mCurrentGains[MAX_OUTPUT_CHANNELS];
ALfloat mTargetGains[MAX_OUTPUT_CHANNELS];
float mCurrentGains[MAX_OUTPUT_CHANNELS];
float mTargetGains[MAX_OUTPUT_CHANNELS];
ALboolean deviceUpdate(const ALCdevice *device) override;
@ -131,14 +111,13 @@ ALboolean PshifterState::deviceUpdate(const ALCdevice *device)
mPitchShift = 1.0;
mFreqPerBin = device->Frequency / double{STFT_SIZE};
std::fill(std::begin(mInFIFO), std::end(mInFIFO), 0.0);
std::fill(std::begin(mOutFIFO), std::end(mOutFIFO), 0.0);
std::fill(std::begin(mLastPhase), std::end(mLastPhase), 0.0);
std::fill(std::begin(mSumPhase), std::end(mSumPhase), 0.0);
std::fill(std::begin(mOutputAccum), std::end(mOutputAccum), 0.0);
std::fill(std::begin(mFFTbuffer), std::end(mFFTbuffer), complex_d{});
std::fill(std::begin(mAnalysis_buffer), std::end(mAnalysis_buffer), ALfrequencyDomain{});
std::fill(std::begin(mSyntesis_buffer), std::end(mSyntesis_buffer), ALfrequencyDomain{});
std::fill(mFIFO.begin(), mFIFO.end(), 0.0);
std::fill(mLastPhase.begin(), mLastPhase.end(), 0.0);
std::fill(mSumPhase.begin(), mSumPhase.end(), 0.0);
std::fill(mOutputAccum.begin(), mOutputAccum.end(), 0.0);
std::fill(mFftBuffer.begin(), mFftBuffer.end(), complex_d{});
std::fill(mAnalysisBuffer.begin(), mAnalysisBuffer.end(), FrequencyBin{});
std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{});
std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f);
std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f);
@ -171,42 +150,40 @@ void PshifterState::process(const size_t samplesToDo, const al::span<const Float
for(size_t base{0u};base < samplesToDo;)
{
size_t todo{minz(STFT_SIZE-mCount, samplesToDo-base)};
const size_t todo{minz(STFT_SIZE-mCount, samplesToDo-base)};
/* Fill FIFO buffer with samples data */
size_t count{mCount};
do {
mInFIFO[count] = samplesIn[0][base];
mBufferOut[base] = static_cast<float>(mOutFIFO[count-FIFO_LATENCY]);
++base; ++count;
} while(--todo);
mCount = count;
/* Retrieve the output samples from the FIFO and fill in the new input
* samples.
*/
auto fifo_iter = mFIFO.begin() + mCount;
std::transform(fifo_iter, fifo_iter+todo, mBufferOut.begin()+base,
[](double d) noexcept -> float { return static_cast<float>(d); });
/* Check whether FIFO buffer is filled */
std::copy_n(samplesIn[0].begin()+base, todo, fifo_iter);
mCount += todo;
base += todo;
/* Check whether FIFO buffer is filled with new samples. */
if(mCount < STFT_SIZE) break;
mCount = FIFO_LATENCY;
/* Real signal windowing and store in FFTbuffer */
/* Time-domain signal windowing, store in FftBuffer, and apply a
* forward FFT to get the frequency-domain signal.
*/
for(size_t k{0u};k < STFT_SIZE;k++)
{
mFFTbuffer[k].real(mInFIFO[k] * HannWindow[k]);
mFFTbuffer[k].imag(0.0);
}
/* ANALYSIS */
/* Apply FFT to FFTbuffer data */
complex_fft(mFFTbuffer, -1.0);
mFftBuffer[k] = mFIFO[k] * HannWindow[k];
complex_fft(mFftBuffer, -1.0);
/* Analyze the obtained data. Since the real FFT is symmetric, only
* STFT_HALF_SIZE+1 samples are needed.
*/
for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
{
/* Compute amplitude and phase */
ALphasor component{rect2polar(mFFTbuffer[k])};
const double amplitude{std::abs(mFftBuffer[k])};
const double phase{std::arg(mFftBuffer[k])};
/* Compute phase difference and subtract expected phase difference */
double tmp{(component.Phase - mLastPhase[k]) - static_cast<double>(k)*expected};
double tmp{(phase - mLastPhase[k]) - static_cast<double>(k)*expected};
/* Map delta phase into +/- Pi interval */
int qpd{double2int(tmp / al::MathDefs<double>::Pi())};
@ -219,68 +196,59 @@ void PshifterState::process(const size_t samplesToDo, const al::span<const Float
* for maintain the gain (because half of bins are used) and store
* amplitude and true frequency in analysis buffer.
*/
mAnalysis_buffer[k].Amplitude = 2.0 * component.Amplitude;
mAnalysis_buffer[k].Frequency = (static_cast<double>(k) + tmp) * freq_per_bin;
mAnalysisBuffer[k].Amplitude = 2.0 * amplitude;
mAnalysisBuffer[k].Frequency = (static_cast<double>(k) + tmp) * freq_per_bin;
/* Store actual phase[k] for the calculations in the next frame*/
mLastPhase[k] = component.Phase;
}
/* PROCESSING */
/* pitch shifting */
for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
{
mSyntesis_buffer[k].Amplitude = 0.0;
mSyntesis_buffer[k].Frequency = 0.0;
/* Store the actual phase[k] for the next frame. */
mLastPhase[k] = phase;
}
/* Shift the frequency bins according to the pitch adjustment,
* accumulating the amplitudes of overlapping frequency bins.
*/
std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{});
for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
{
size_t j{(k*mPitchShiftI) >> FRACTIONBITS};
if(j >= STFT_HALF_SIZE+1) break;
mSyntesis_buffer[j].Amplitude += mAnalysis_buffer[k].Amplitude;
mSyntesis_buffer[j].Frequency = mAnalysis_buffer[k].Frequency * mPitchShift;
mSynthesisBuffer[j].Amplitude += mAnalysisBuffer[k].Amplitude;
mSynthesisBuffer[j].Frequency = mAnalysisBuffer[k].Frequency * mPitchShift;
}
/* SYNTHESIS */
/* Synthesis the processing data */
/* Reconstruct the frequency-domain signal from the adjusted frequency
* bins.
*/
for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
{
/* Compute bin deviation from scaled freq */
const double tmp{mSyntesis_buffer[k].Frequency / freq_per_bin};
const double tmp{mSynthesisBuffer[k].Frequency / freq_per_bin};
/* Calculate actual delta phase and accumulate it to get bin phase */
mSumPhase[k] += tmp * expected;
ALphasor component;
component.Amplitude = mSyntesis_buffer[k].Amplitude;
component.Phase = mSumPhase[k];
/* Compute phasor component to cartesian complex number and storage it into FFTbuffer*/
mFFTbuffer[k] = polar2rect(component);
mFftBuffer[k] = std::polar(mSynthesisBuffer[k].Amplitude, mSumPhase[k]);
}
/* zero negative frequencies for recontruct a real signal */
for(size_t k{STFT_HALF_SIZE+1};k < STFT_SIZE;k++)
mFFTbuffer[k] = complex_d{};
/* Clear negative frequencies to recontruct the time-domain signal. */
std::fill(mFftBuffer.begin()+STFT_HALF_SIZE+1, mFftBuffer.end(), complex_d{});
/* Apply iFFT to buffer data */
complex_fft(mFFTbuffer, 1.0);
/* Windowing and add to output */
/* Apply an inverse FFT to get the time-domain siganl, and accumulate
* for the output with windowing.
*/
complex_fft(mFftBuffer, 1.0);
for(size_t k{0u};k < STFT_SIZE;k++)
mOutputAccum[k] += HannWindow[k]*mFFTbuffer[k].real() * (2.0/STFT_HALF_SIZE/OVERSAMP);
mOutputAccum[k] += HannWindow[k]*mFftBuffer[k].real() * (2.0/STFT_HALF_SIZE/OVERSAMP);
/* Shift accumulator, input & output FIFO */
std::copy_n(mOutputAccum, STFT_STEP, mOutFIFO);
auto accum_iter = std::copy(std::begin(mOutputAccum)+STFT_STEP, std::end(mOutputAccum),
std::begin(mOutputAccum));
std::fill(accum_iter, std::end(mOutputAccum), 0.0);
std::copy(std::begin(mInFIFO)+STFT_STEP, std::end(mInFIFO), std::begin(mInFIFO));
/* Shift FIFO and accumulator. */
fifo_iter = std::copy(mFIFO.begin()+STFT_STEP, mFIFO.end(), mFIFO.begin());
std::copy_n(mOutputAccum.begin(), STFT_STEP, fifo_iter);
auto accum_iter = std::copy(mOutputAccum.begin()+STFT_STEP, mOutputAccum.end(),
mOutputAccum.begin());
std::fill(accum_iter, mOutputAccum.end(), 0.0);
}
/* Now, mix the processed sound data to the output. */
MixSamples({mBufferOut, samplesToDo}, samplesOut, mCurrentGains, mTargetGains,
MixSamples({mBufferOut.data(), samplesToDo}, samplesOut, mCurrentGains, mTargetGains,
maxz(samplesToDo, 512), 0);
}