More cleanup for the pitch shifter
This commit is contained in:
parent
813d4ed566
commit
dc8ccc06ce
@ -65,31 +65,12 @@ std::array<double,STFT_SIZE> InitHannWindow()
|
||||
alignas(16) const std::array<double,STFT_SIZE> HannWindow = InitHannWindow();
|
||||
|
||||
|
||||
struct ALphasor {
|
||||
double Amplitude;
|
||||
double Phase;
|
||||
};
|
||||
|
||||
struct ALfrequencyDomain {
|
||||
struct FrequencyBin {
|
||||
double Amplitude;
|
||||
double Frequency;
|
||||
};
|
||||
|
||||
|
||||
/* Converts complex to ALphasor */
|
||||
inline ALphasor rect2polar(const complex_d &number)
|
||||
{
|
||||
ALphasor polar;
|
||||
polar.Amplitude = std::abs(number);
|
||||
polar.Phase = std::arg(number);
|
||||
return polar;
|
||||
}
|
||||
|
||||
/* Converts ALphasor to complex */
|
||||
inline complex_d polar2rect(const ALphasor &number)
|
||||
{ return std::polar<double>(number.Amplitude, number.Phase); }
|
||||
|
||||
|
||||
struct PshifterState final : public EffectState {
|
||||
/* Effect parameters */
|
||||
size_t mCount;
|
||||
@ -98,22 +79,21 @@ struct PshifterState final : public EffectState {
|
||||
double mFreqPerBin;
|
||||
|
||||
/* Effects buffers */
|
||||
double mInFIFO[STFT_SIZE];
|
||||
double mOutFIFO[STFT_STEP];
|
||||
double mLastPhase[STFT_HALF_SIZE+1];
|
||||
double mSumPhase[STFT_HALF_SIZE+1];
|
||||
double mOutputAccum[STFT_SIZE];
|
||||
std::array<double,STFT_SIZE> mFIFO;
|
||||
std::array<double,STFT_HALF_SIZE+1> mLastPhase;
|
||||
std::array<double,STFT_HALF_SIZE+1> mSumPhase;
|
||||
std::array<double,STFT_SIZE> mOutputAccum;
|
||||
|
||||
complex_d mFFTbuffer[STFT_SIZE];
|
||||
std::array<complex_d,STFT_SIZE> mFftBuffer;
|
||||
|
||||
ALfrequencyDomain mAnalysis_buffer[STFT_HALF_SIZE+1];
|
||||
ALfrequencyDomain mSyntesis_buffer[STFT_HALF_SIZE+1];
|
||||
std::array<FrequencyBin,STFT_HALF_SIZE+1> mAnalysisBuffer;
|
||||
std::array<FrequencyBin,STFT_HALF_SIZE+1> mSynthesisBuffer;
|
||||
|
||||
alignas(16) float mBufferOut[BUFFERSIZE];
|
||||
alignas(16) FloatBufferLine mBufferOut;
|
||||
|
||||
/* Effect gains for each output channel */
|
||||
ALfloat mCurrentGains[MAX_OUTPUT_CHANNELS];
|
||||
ALfloat mTargetGains[MAX_OUTPUT_CHANNELS];
|
||||
float mCurrentGains[MAX_OUTPUT_CHANNELS];
|
||||
float mTargetGains[MAX_OUTPUT_CHANNELS];
|
||||
|
||||
|
||||
ALboolean deviceUpdate(const ALCdevice *device) override;
|
||||
@ -131,14 +111,13 @@ ALboolean PshifterState::deviceUpdate(const ALCdevice *device)
|
||||
mPitchShift = 1.0;
|
||||
mFreqPerBin = device->Frequency / double{STFT_SIZE};
|
||||
|
||||
std::fill(std::begin(mInFIFO), std::end(mInFIFO), 0.0);
|
||||
std::fill(std::begin(mOutFIFO), std::end(mOutFIFO), 0.0);
|
||||
std::fill(std::begin(mLastPhase), std::end(mLastPhase), 0.0);
|
||||
std::fill(std::begin(mSumPhase), std::end(mSumPhase), 0.0);
|
||||
std::fill(std::begin(mOutputAccum), std::end(mOutputAccum), 0.0);
|
||||
std::fill(std::begin(mFFTbuffer), std::end(mFFTbuffer), complex_d{});
|
||||
std::fill(std::begin(mAnalysis_buffer), std::end(mAnalysis_buffer), ALfrequencyDomain{});
|
||||
std::fill(std::begin(mSyntesis_buffer), std::end(mSyntesis_buffer), ALfrequencyDomain{});
|
||||
std::fill(mFIFO.begin(), mFIFO.end(), 0.0);
|
||||
std::fill(mLastPhase.begin(), mLastPhase.end(), 0.0);
|
||||
std::fill(mSumPhase.begin(), mSumPhase.end(), 0.0);
|
||||
std::fill(mOutputAccum.begin(), mOutputAccum.end(), 0.0);
|
||||
std::fill(mFftBuffer.begin(), mFftBuffer.end(), complex_d{});
|
||||
std::fill(mAnalysisBuffer.begin(), mAnalysisBuffer.end(), FrequencyBin{});
|
||||
std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{});
|
||||
|
||||
std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f);
|
||||
std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f);
|
||||
@ -171,42 +150,40 @@ void PshifterState::process(const size_t samplesToDo, const al::span<const Float
|
||||
|
||||
for(size_t base{0u};base < samplesToDo;)
|
||||
{
|
||||
size_t todo{minz(STFT_SIZE-mCount, samplesToDo-base)};
|
||||
const size_t todo{minz(STFT_SIZE-mCount, samplesToDo-base)};
|
||||
|
||||
/* Fill FIFO buffer with samples data */
|
||||
size_t count{mCount};
|
||||
do {
|
||||
mInFIFO[count] = samplesIn[0][base];
|
||||
mBufferOut[base] = static_cast<float>(mOutFIFO[count-FIFO_LATENCY]);
|
||||
++base; ++count;
|
||||
} while(--todo);
|
||||
mCount = count;
|
||||
/* Retrieve the output samples from the FIFO and fill in the new input
|
||||
* samples.
|
||||
*/
|
||||
auto fifo_iter = mFIFO.begin() + mCount;
|
||||
std::transform(fifo_iter, fifo_iter+todo, mBufferOut.begin()+base,
|
||||
[](double d) noexcept -> float { return static_cast<float>(d); });
|
||||
|
||||
/* Check whether FIFO buffer is filled */
|
||||
std::copy_n(samplesIn[0].begin()+base, todo, fifo_iter);
|
||||
mCount += todo;
|
||||
base += todo;
|
||||
|
||||
/* Check whether FIFO buffer is filled with new samples. */
|
||||
if(mCount < STFT_SIZE) break;
|
||||
mCount = FIFO_LATENCY;
|
||||
|
||||
/* Real signal windowing and store in FFTbuffer */
|
||||
/* Time-domain signal windowing, store in FftBuffer, and apply a
|
||||
* forward FFT to get the frequency-domain signal.
|
||||
*/
|
||||
for(size_t k{0u};k < STFT_SIZE;k++)
|
||||
{
|
||||
mFFTbuffer[k].real(mInFIFO[k] * HannWindow[k]);
|
||||
mFFTbuffer[k].imag(0.0);
|
||||
}
|
||||
|
||||
/* ANALYSIS */
|
||||
/* Apply FFT to FFTbuffer data */
|
||||
complex_fft(mFFTbuffer, -1.0);
|
||||
mFftBuffer[k] = mFIFO[k] * HannWindow[k];
|
||||
complex_fft(mFftBuffer, -1.0);
|
||||
|
||||
/* Analyze the obtained data. Since the real FFT is symmetric, only
|
||||
* STFT_HALF_SIZE+1 samples are needed.
|
||||
*/
|
||||
for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
|
||||
{
|
||||
/* Compute amplitude and phase */
|
||||
ALphasor component{rect2polar(mFFTbuffer[k])};
|
||||
const double amplitude{std::abs(mFftBuffer[k])};
|
||||
const double phase{std::arg(mFftBuffer[k])};
|
||||
|
||||
/* Compute phase difference and subtract expected phase difference */
|
||||
double tmp{(component.Phase - mLastPhase[k]) - static_cast<double>(k)*expected};
|
||||
double tmp{(phase - mLastPhase[k]) - static_cast<double>(k)*expected};
|
||||
|
||||
/* Map delta phase into +/- Pi interval */
|
||||
int qpd{double2int(tmp / al::MathDefs<double>::Pi())};
|
||||
@ -219,68 +196,59 @@ void PshifterState::process(const size_t samplesToDo, const al::span<const Float
|
||||
* for maintain the gain (because half of bins are used) and store
|
||||
* amplitude and true frequency in analysis buffer.
|
||||
*/
|
||||
mAnalysis_buffer[k].Amplitude = 2.0 * component.Amplitude;
|
||||
mAnalysis_buffer[k].Frequency = (static_cast<double>(k) + tmp) * freq_per_bin;
|
||||
mAnalysisBuffer[k].Amplitude = 2.0 * amplitude;
|
||||
mAnalysisBuffer[k].Frequency = (static_cast<double>(k) + tmp) * freq_per_bin;
|
||||
|
||||
/* Store actual phase[k] for the calculations in the next frame*/
|
||||
mLastPhase[k] = component.Phase;
|
||||
}
|
||||
|
||||
/* PROCESSING */
|
||||
/* pitch shifting */
|
||||
for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
|
||||
{
|
||||
mSyntesis_buffer[k].Amplitude = 0.0;
|
||||
mSyntesis_buffer[k].Frequency = 0.0;
|
||||
/* Store the actual phase[k] for the next frame. */
|
||||
mLastPhase[k] = phase;
|
||||
}
|
||||
|
||||
/* Shift the frequency bins according to the pitch adjustment,
|
||||
* accumulating the amplitudes of overlapping frequency bins.
|
||||
*/
|
||||
std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{});
|
||||
for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
|
||||
{
|
||||
size_t j{(k*mPitchShiftI) >> FRACTIONBITS};
|
||||
if(j >= STFT_HALF_SIZE+1) break;
|
||||
|
||||
mSyntesis_buffer[j].Amplitude += mAnalysis_buffer[k].Amplitude;
|
||||
mSyntesis_buffer[j].Frequency = mAnalysis_buffer[k].Frequency * mPitchShift;
|
||||
mSynthesisBuffer[j].Amplitude += mAnalysisBuffer[k].Amplitude;
|
||||
mSynthesisBuffer[j].Frequency = mAnalysisBuffer[k].Frequency * mPitchShift;
|
||||
}
|
||||
|
||||
/* SYNTHESIS */
|
||||
/* Synthesis the processing data */
|
||||
/* Reconstruct the frequency-domain signal from the adjusted frequency
|
||||
* bins.
|
||||
*/
|
||||
for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
|
||||
{
|
||||
/* Compute bin deviation from scaled freq */
|
||||
const double tmp{mSyntesis_buffer[k].Frequency / freq_per_bin};
|
||||
const double tmp{mSynthesisBuffer[k].Frequency / freq_per_bin};
|
||||
|
||||
/* Calculate actual delta phase and accumulate it to get bin phase */
|
||||
mSumPhase[k] += tmp * expected;
|
||||
|
||||
ALphasor component;
|
||||
component.Amplitude = mSyntesis_buffer[k].Amplitude;
|
||||
component.Phase = mSumPhase[k];
|
||||
|
||||
/* Compute phasor component to cartesian complex number and storage it into FFTbuffer*/
|
||||
mFFTbuffer[k] = polar2rect(component);
|
||||
mFftBuffer[k] = std::polar(mSynthesisBuffer[k].Amplitude, mSumPhase[k]);
|
||||
}
|
||||
/* zero negative frequencies for recontruct a real signal */
|
||||
for(size_t k{STFT_HALF_SIZE+1};k < STFT_SIZE;k++)
|
||||
mFFTbuffer[k] = complex_d{};
|
||||
/* Clear negative frequencies to recontruct the time-domain signal. */
|
||||
std::fill(mFftBuffer.begin()+STFT_HALF_SIZE+1, mFftBuffer.end(), complex_d{});
|
||||
|
||||
/* Apply iFFT to buffer data */
|
||||
complex_fft(mFFTbuffer, 1.0);
|
||||
|
||||
/* Windowing and add to output */
|
||||
/* Apply an inverse FFT to get the time-domain siganl, and accumulate
|
||||
* for the output with windowing.
|
||||
*/
|
||||
complex_fft(mFftBuffer, 1.0);
|
||||
for(size_t k{0u};k < STFT_SIZE;k++)
|
||||
mOutputAccum[k] += HannWindow[k]*mFFTbuffer[k].real() * (2.0/STFT_HALF_SIZE/OVERSAMP);
|
||||
mOutputAccum[k] += HannWindow[k]*mFftBuffer[k].real() * (2.0/STFT_HALF_SIZE/OVERSAMP);
|
||||
|
||||
/* Shift accumulator, input & output FIFO */
|
||||
std::copy_n(mOutputAccum, STFT_STEP, mOutFIFO);
|
||||
auto accum_iter = std::copy(std::begin(mOutputAccum)+STFT_STEP, std::end(mOutputAccum),
|
||||
std::begin(mOutputAccum));
|
||||
std::fill(accum_iter, std::end(mOutputAccum), 0.0);
|
||||
std::copy(std::begin(mInFIFO)+STFT_STEP, std::end(mInFIFO), std::begin(mInFIFO));
|
||||
/* Shift FIFO and accumulator. */
|
||||
fifo_iter = std::copy(mFIFO.begin()+STFT_STEP, mFIFO.end(), mFIFO.begin());
|
||||
std::copy_n(mOutputAccum.begin(), STFT_STEP, fifo_iter);
|
||||
auto accum_iter = std::copy(mOutputAccum.begin()+STFT_STEP, mOutputAccum.end(),
|
||||
mOutputAccum.begin());
|
||||
std::fill(accum_iter, mOutputAccum.end(), 0.0);
|
||||
}
|
||||
|
||||
/* Now, mix the processed sound data to the output. */
|
||||
MixSamples({mBufferOut, samplesToDo}, samplesOut, mCurrentGains, mTargetGains,
|
||||
MixSamples({mBufferOut.data(), samplesToDo}, samplesOut, mCurrentGains, mTargetGains,
|
||||
maxz(samplesToDo, 512), 0);
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user