Combine two function calls into one

master
Chris Robinson 2019-09-28 03:42:17 -07:00
parent f7b574c8f2
commit cbc00bcffe
4 changed files with 108 additions and 111 deletions

View File

@ -147,6 +147,83 @@ inline HrtfDirectMixerFunc SelectHrtfMixer(void)
return MixDirectHrtf_<CTag>;
}
inline void BsincPrepare(const ALuint increment, BsincState *state, const BSincTable *table)
{
size_t si{BSINC_SCALE_COUNT - 1};
float sf{0.0f};
if(increment > FRACTIONONE)
{
sf = FRACTIONONE / static_cast<float>(increment);
sf = maxf(0.0f, (BSINC_SCALE_COUNT-1) * (sf-table->scaleBase) * table->scaleRange);
si = float2uint(sf);
/* The interpolation factor is fit to this diagonally-symmetric curve
* to reduce the transition ripple caused by interpolating different
* scales of the sinc function.
*/
sf = 1.0f - std::cos(std::asin(sf - static_cast<float>(si)));
}
state->sf = sf;
state->m = table->m[si];
state->l = (state->m/2) - 1;
state->filter = table->Tab + table->filterOffset[si];
}
inline ResamplerFunc SelectResampler(Resampler resampler, ALuint increment)
{
switch(resampler)
{
case Resampler::Point:
return Resample_<PointTag,CTag>;
case Resampler::Linear:
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_<LerpTag,NEONTag>;
#endif
#ifdef HAVE_SSE4_1
if((CPUCapFlags&CPU_CAP_SSE4_1))
return Resample_<LerpTag,SSE4Tag>;
#endif
#ifdef HAVE_SSE2
if((CPUCapFlags&CPU_CAP_SSE2))
return Resample_<LerpTag,SSE2Tag>;
#endif
return Resample_<LerpTag,CTag>;
case Resampler::Cubic:
return Resample_<CubicTag,CTag>;
case Resampler::BSinc12:
case Resampler::BSinc24:
if(increment <= FRACTIONONE)
{
/* fall-through */
case Resampler::FastBSinc12:
case Resampler::FastBSinc24:
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_<FastBSincTag,NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return Resample_<FastBSincTag,SSETag>;
#endif
return Resample_<FastBSincTag,CTag>;
}
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_<BSincTag,NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return Resample_<BSincTag,SSETag>;
#endif
return Resample_<BSincTag,CTag>;
}
return Resample_<PointTag,CTag>;
}
} // namespace
void aluInit(void)
@ -155,6 +232,27 @@ void aluInit(void)
}
ResamplerFunc PrepareResampler(Resampler resampler, ALuint increment, InterpState *state)
{
switch(resampler)
{
case Resampler::Point:
case Resampler::Linear:
case Resampler::Cubic:
break;
case Resampler::FastBSinc12:
case Resampler::BSinc12:
BsincPrepare(increment, &state->bsinc, &bsinc12);
break;
case Resampler::FastBSinc24:
case Resampler::BSinc24:
BsincPrepare(increment, &state->bsinc, &bsinc24);
break;
}
return SelectResampler(resampler, increment);
}
void ALCdevice::ProcessHrtf(const size_t SamplesToDo)
{
/* HRTF is stereo output only. */
@ -196,36 +294,6 @@ void ALCdevice::ProcessBs2b(const size_t SamplesToDo)
}
/* Prepares the interpolator for a given rate (determined by increment).
*
* With a bit of work, and a trade of memory for CPU cost, this could be
* modified for use with an interpolated increment for buttery-smooth pitch
* changes.
*/
void BsincPrepare(const ALuint increment, BsincState *state, const BSincTable *table)
{
size_t si{BSINC_SCALE_COUNT - 1};
float sf{0.0f};
if(increment > FRACTIONONE)
{
sf = FRACTIONONE / static_cast<float>(increment);
sf = maxf(0.0f, (BSINC_SCALE_COUNT-1) * (sf-table->scaleBase) * table->scaleRange);
si = float2uint(sf);
/* The interpolation factor is fit to this diagonally-symmetric curve
* to reduce the transition ripple caused by interpolating different
* scales of the sinc function.
*/
sf = 1.0f - std::cos(std::asin(sf - static_cast<float>(si)));
}
state->sf = sf;
state->m = table->m[si];
state->l = (state->m/2) - 1;
state->filter = table->Tab + table->filterOffset[si];
}
namespace {
/* This RNG method was created based on the math found in opusdec. It's quick,
@ -943,15 +1011,11 @@ void CalcNonAttnSourceParams(ALvoice *voice, const ALvoicePropsBase *props, cons
/* Calculate the stepping value */
const auto Pitch = static_cast<ALfloat>(voice->mFrequency) /
static_cast<ALfloat>(Device->Frequency) * props->Pitch;
if(Pitch > static_cast<ALfloat>(MAX_PITCH))
if(Pitch > float{MAX_PITCH})
voice->mStep = MAX_PITCH<<FRACTIONBITS;
else
voice->mStep = maxu(fastf2u(Pitch * FRACTIONONE), 1);
if(props->mResampler == Resampler::BSinc24 || props->mResampler == Resampler::FastBSinc24)
BsincPrepare(voice->mStep, &voice->mResampleState.bsinc, &bsinc24);
else if(props->mResampler == Resampler::BSinc12 || props->mResampler == Resampler::FastBSinc12)
BsincPrepare(voice->mStep, &voice->mResampleState.bsinc, &bsinc12);
voice->mResampler = SelectResampler(props->mResampler, voice->mStep);
voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState);
/* Calculate gains */
const ALlistener &Listener = ALContext->mListener;
@ -1273,15 +1337,11 @@ void CalcAttnSourceParams(ALvoice *voice, const ALvoicePropsBase *props, const A
* fixed-point stepping value.
*/
Pitch *= static_cast<ALfloat>(voice->mFrequency)/static_cast<ALfloat>(Device->Frequency);
if(Pitch > static_cast<ALfloat>(MAX_PITCH))
if(Pitch > float{MAX_PITCH})
voice->mStep = MAX_PITCH<<FRACTIONBITS;
else
voice->mStep = maxu(fastf2u(Pitch * FRACTIONONE), 1);
if(props->mResampler == Resampler::BSinc24 || props->mResampler == Resampler::FastBSinc24)
BsincPrepare(voice->mStep, &voice->mResampleState.bsinc, &bsinc24);
else if(props->mResampler == Resampler::BSinc12 || props->mResampler == Resampler::FastBSinc12)
BsincPrepare(voice->mStep, &voice->mResampleState.bsinc, &bsinc12);
voice->mResampler = SelectResampler(props->mResampler, voice->mStep);
voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState);
ALfloat spread{0.0f};
if(props->Radius > Distance)

View File

@ -85,11 +85,6 @@ union InterpState {
using ResamplerFunc = const ALfloat*(*)(const InterpState *state, const ALfloat *RESTRICT src,
ALuint frac, ALuint increment, const al::span<float> dst);
void BsincPrepare(const ALuint increment, BsincState *state, const BSincTable *table);
extern const BSincTable bsinc12;
extern const BSincTable bsinc24;
enum {
AF_None = 0,
@ -372,8 +367,6 @@ void aluInit(void);
void aluInitMixer(void);
ResamplerFunc SelectResampler(Resampler resampler, ALuint increment);
/* aluInitRenderer
*
* Set up the appropriate panning method and mixing method given the device
@ -383,6 +376,8 @@ void aluInitRenderer(ALCdevice *device, ALint hrtf_id, HrtfRequestMode hrtf_appr
void aluInitEffectPanning(ALeffectslot *slot, ALCdevice *device);
ResamplerFunc PrepareResampler(Resampler resampler, ALuint increment, InterpState *state);
/**
* Calculates ambisonic encoder coefficients using the X, Y, and Z direction
* components, which must represent a normalized (unit length) vector, and the

View File

@ -10,6 +10,7 @@
#include "AL/al.h"
#include "albyte.h"
#include "alu.h"
#include "fpu_modes.h"
#include "mixer/defs.h"
@ -161,18 +162,13 @@ SampleConverterPtr CreateSampleConverter(DevFmtType srcType, DevFmtType dstType,
/* Have to set the mixer FPU mode since that's what the resampler code expects. */
FPUCtl mixer_mode{};
auto step = static_cast<ALuint>(
mind(srcRate*ALdouble{FRACTIONONE}/dstRate + 0.5, MAX_PITCH*FRACTIONONE));
mind(srcRate*double{FRACTIONONE}/dstRate + 0.5, MAX_PITCH*FRACTIONONE));
converter->mIncrement = maxu(step, 1);
if(converter->mIncrement == FRACTIONONE)
converter->mResample = Resample_<CopyTag,CTag>;
else
{
if(resampler == Resampler::BSinc24 || resampler == Resampler::FastBSinc24)
BsincPrepare(converter->mIncrement, &converter->mState.bsinc, &bsinc24);
else if(resampler == Resampler::BSinc12 || resampler == Resampler::FastBSinc12)
BsincPrepare(converter->mIncrement, &converter->mState.bsinc, &bsinc12);
converter->mResample = SelectResampler(resampler, converter->mIncrement);
}
converter->mResample = PrepareResampler(resampler, converter->mIncrement,
&converter->mState);
return converter;
}

View File

@ -135,60 +135,6 @@ inline HrtfMixerBlendFunc SelectHrtfBlendMixer()
} // namespace
ResamplerFunc SelectResampler(Resampler resampler, ALuint increment)
{
switch(resampler)
{
case Resampler::Point:
return Resample_<PointTag,CTag>;
case Resampler::Linear:
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_<LerpTag,NEONTag>;
#endif
#ifdef HAVE_SSE4_1
if((CPUCapFlags&CPU_CAP_SSE4_1))
return Resample_<LerpTag,SSE4Tag>;
#endif
#ifdef HAVE_SSE2
if((CPUCapFlags&CPU_CAP_SSE2))
return Resample_<LerpTag,SSE2Tag>;
#endif
return Resample_<LerpTag,CTag>;
case Resampler::Cubic:
return Resample_<CubicTag,CTag>;
case Resampler::BSinc12:
case Resampler::BSinc24:
if(increment <= FRACTIONONE)
{
/* fall-through */
case Resampler::FastBSinc12:
case Resampler::FastBSinc24:
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_<FastBSincTag,NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return Resample_<FastBSincTag,SSETag>;
#endif
return Resample_<FastBSincTag,CTag>;
}
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_<BSincTag,NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return Resample_<BSincTag,SSETag>;
#endif
return Resample_<BSincTag,CTag>;
}
return Resample_<PointTag,CTag>;
}
void aluInitMixer()
{
if(auto resopt = ConfigValueStr(nullptr, nullptr, "resampler"))