Avoid storing some chorus and flanger properties in the effect state

This commit is contained in:
Chris Robinson 2013-05-21 01:38:43 -07:00
parent c6872d4d86
commit 7e9960f7f1
2 changed files with 32 additions and 52 deletions

View File

@ -45,8 +45,6 @@ typedef struct ALchorusState {
/* effect parameters */
ALint waveform;
ALint phase;
ALfloat rate;
ALfloat depth;
ALfloat feedback;
ALfloat delay;
@ -82,17 +80,11 @@ static ALboolean ChorusDeviceUpdate(ALeffectState *effect, ALCdevice *Device)
void *temp;
temp = realloc(state->SampleBufferLeft, maxlen * sizeof(ALfloat));
if (!temp)
{
return AL_FALSE;
}
if(!temp) return AL_FALSE;
state->SampleBufferLeft = temp;
temp = realloc(state->SampleBufferRight, maxlen * sizeof(ALfloat));
if (!temp)
{
return AL_FALSE;
}
if(!temp) return AL_FALSE;
state->SampleBufferRight = temp;
state->BufferLength = maxlen;
@ -112,6 +104,8 @@ static ALboolean ChorusDeviceUpdate(ALeffectState *effect, ALCdevice *Device)
static ALvoid ChorusUpdate(ALeffectState *effect, ALCdevice *Device, const ALeffectslot *Slot)
{
ALchorusState *state = GET_PARENT_TYPE(ALchorusState, ALeffectState, effect);
ALfloat rate;
ALint phase;
ALuint it;
for (it = 0; it < MaxChannels; it++)
@ -121,8 +115,6 @@ static ALvoid ChorusUpdate(ALeffectState *effect, ALCdevice *Device, const ALeff
}
state->waveform = Slot->effect.Chorus.Waveform;
state->phase = Slot->effect.Chorus.Phase;
state->rate = Slot->effect.Chorus.Rate;
state->depth = Slot->effect.Chorus.Depth;
state->feedback = Slot->effect.Chorus.Feedback;
state->delay = Slot->effect.Chorus.Delay;
@ -132,41 +124,31 @@ static ALvoid ChorusUpdate(ALeffectState *effect, ALCdevice *Device, const ALeff
ComputeAngleGains(Device, atan2f(-1.0f, 0.0f), 0.0f, Slot->Gain, state->Gain[0]);
ComputeAngleGains(Device, atan2f(+1.0f, 0.0f), 0.0f, Slot->Gain, state->Gain[1]);
phase = Slot->effect.Chorus.Phase;
rate = Slot->effect.Chorus.Rate;
/* Calculate LFO coefficient */
switch (state->waveform)
{
case AL_CHORUS_WAVEFORM_TRIANGLE:
if (state->rate == 0.0f)
{
if(rate == 0.0f)
state->lfo_coeff = 0.0f;
}
else
{
state->lfo_coeff = 1.0f / ((ALfloat)Device->Frequency / state->rate);
}
state->lfo_coeff = 1.0f / (state->frequency / rate);
break;
case AL_CHORUS_WAVEFORM_SINUSOID:
if (state->rate == 0.0f)
{
if(rate == 0.0f)
state->lfo_coeff = 0.0f;
}
else
{
state->lfo_coeff = F_PI * 2.0f / ((ALfloat)Device->Frequency / state->rate);
}
state->lfo_coeff = F_PI*2.0f / (state->frequency / rate);
break;
}
/* Calculate lfo phase displacement */
if ((state->phase == 0) || (state->rate == 0.0f))
{
if(phase == 0 || rate == 0.0f)
state->lfo_disp = 0;
}
else
{
state->lfo_disp = (ALint) ((ALfloat)Device->Frequency /
state->rate / (360.0f / (ALfloat)state->phase));
}
state->lfo_disp = fastf2i(state->frequency / rate / (360.0f/phase));
}
static __inline void Triangle(ALint *delay_left, ALint *delay_right, ALint offset, const ALchorusState *state)
@ -176,14 +158,14 @@ static __inline void Triangle(ALint *delay_left, ALint *delay_right, ALint offse
lfo_value = 2.0f - fabsf(2.0f - fmodf(state->lfo_coeff*offset*4.0f, 4.0f));
lfo_value *= state->depth * state->delay;
lfo_value += state->delay;
*delay_left = (ALint)(lfo_value * state->frequency);
*delay_left = fastf2i(lfo_value * state->frequency);
lfo_value = 2.0f - fabsf(2.0f - fmodf(state->lfo_coeff *
(offset+state->lfo_disp)*4.0f,
4.0f));
lfo_value *= state->depth * state->delay;
lfo_value += state->delay;
*delay_right = (ALint)(lfo_value * state->frequency);
*delay_right = fastf2i(lfo_value * state->frequency);
}
static __inline void Sinusoid(ALint *delay_left, ALint *delay_right, ALint offset, const ALchorusState *state)
@ -193,13 +175,13 @@ static __inline void Sinusoid(ALint *delay_left, ALint *delay_right, ALint offse
lfo_value = 1.0f + sinf(fmodf(state->lfo_coeff*offset, 2.0f*F_PI));
lfo_value *= state->depth * state->delay;
lfo_value += state->delay;
*delay_left = (ALint)(lfo_value * state->frequency);
*delay_left = fastf2i(lfo_value * state->frequency);
lfo_value = 1.0f + sinf(fmodf(state->lfo_coeff*(offset+state->lfo_disp),
2.0f*F_PI));
lfo_value *= state->depth * state->delay;
lfo_value += state->delay;
*delay_right = (ALint)(lfo_value * state->frequency);
*delay_right = fastf2i(lfo_value * state->frequency);
}
#define DECL_TEMPLATE(func) \

View File

@ -45,8 +45,6 @@ typedef struct ALflangerState {
/* effect parameters */
ALint waveform;
ALint phase;
ALfloat rate;
ALfloat depth;
ALfloat feedback;
ALfloat delay;
@ -106,6 +104,8 @@ static ALboolean FlangerDeviceUpdate(ALeffectState *effect, ALCdevice *Device)
static ALvoid FlangerUpdate(ALeffectState *effect, ALCdevice *Device, const ALeffectslot *Slot)
{
ALflangerState *state = GET_PARENT_TYPE(ALflangerState, ALeffectState, effect);
ALfloat rate;
ALint phase;
ALuint it;
for(it = 0;it < MaxChannels;it++)
@ -115,8 +115,6 @@ static ALvoid FlangerUpdate(ALeffectState *effect, ALCdevice *Device, const ALef
}
state->waveform = Slot->effect.Flanger.Waveform;
state->phase = Slot->effect.Flanger.Phase;
state->rate = Slot->effect.Flanger.Rate;
state->depth = Slot->effect.Flanger.Depth;
state->feedback = Slot->effect.Flanger.Feedback;
state->delay = Slot->effect.Flanger.Delay;
@ -126,31 +124,31 @@ static ALvoid FlangerUpdate(ALeffectState *effect, ALCdevice *Device, const ALef
ComputeAngleGains(Device, atan2f(-1.0f, 0.0f), 0.0f, Slot->Gain, state->Gain[0]);
ComputeAngleGains(Device, atan2f(+1.0f, 0.0f), 0.0f, Slot->Gain, state->Gain[1]);
phase = Slot->effect.Flanger.Phase;
rate = Slot->effect.Flanger.Rate;
/* Calculate LFO coefficient */
switch(state->waveform)
{
case AL_FLANGER_WAVEFORM_TRIANGLE:
if(state->rate == 0.0f)
if(rate == 0.0f)
state->lfo_coeff = 0.0f;
else
state->lfo_coeff = 1.0f / (state->frequency / state->rate);
state->lfo_coeff = 1.0f / (state->frequency / rate);
break;
case AL_FLANGER_WAVEFORM_SINUSOID:
if (state->rate == 0.0f)
if(rate == 0.0f)
state->lfo_coeff = 0.0f;
else
state->lfo_coeff = F_PI * 2.0f / (state->frequency / state->rate);
state->lfo_coeff = F_PI * 2.0f / (state->frequency / rate);
break;
}
/* Calculate lfo phase displacement */
if(state->phase == 0 || state->rate == 0.0f)
if(phase == 0 || rate == 0.0f)
state->lfo_disp = 0;
else
{
state->lfo_disp = (ALint)(state->frequency / state->rate /
(360.0f / (ALfloat)state->phase));
}
state->lfo_disp = fastf2i(state->frequency / rate / (360.0f/phase));
}
static __inline void Triangle(ALint *delay_left, ALint *delay_right, ALint offset, const ALflangerState *state)
@ -160,14 +158,14 @@ static __inline void Triangle(ALint *delay_left, ALint *delay_right, ALint offse
lfo_value = 2.0f - fabsf(2.0f - fmodf(state->lfo_coeff * offset * 4.0f, 4.0f));
lfo_value *= state->depth * state->delay;
lfo_value += state->delay;
*delay_left = (ALint)(lfo_value * state->frequency);
*delay_left = fastf2i(lfo_value * state->frequency);
lfo_value = 2.0f - fabsf(2.0f - fmodf(state->lfo_coeff *
(offset+state->lfo_disp) * 4.0f,
4.0f));
lfo_value *= state->depth * state->delay;
lfo_value += state->delay;
*delay_right = (ALint)(lfo_value * state->frequency);
*delay_right = fastf2i(lfo_value * state->frequency);
}
static __inline void Sinusoid(ALint *delay_left, ALint *delay_right, ALint offset, const ALflangerState *state)
@ -177,13 +175,13 @@ static __inline void Sinusoid(ALint *delay_left, ALint *delay_right, ALint offse
lfo_value = 1.0f + sinf(fmodf(state->lfo_coeff * offset, 2.0f*F_PI));
lfo_value *= state->depth * state->delay;
lfo_value += state->delay;
*delay_left = (ALint)(lfo_value * state->frequency);
*delay_left = fastf2i(lfo_value * state->frequency);
lfo_value = 1.0f + sinf(fmodf(state->lfo_coeff * (offset+state->lfo_disp),
2.0f*F_PI));
lfo_value *= state->depth * state->delay;
lfo_value += state->delay;
*delay_right = (ALint)(lfo_value * state->frequency);
*delay_right = fastf2i(lfo_value * state->frequency);
}
#define DECL_TEMPLATE(func) \