Use a single delay line for chorus feedback on a fixed tap
The outputs themselves use a variale-delay tap, but using a separate fixed- delay tap on the feedback helps improve the perceived "wobble" with sustained notes. This also applies to the flanger effect.
This commit is contained in:
parent
eee4aca40b
commit
661bd054aa
@ -38,7 +38,7 @@ enum ChorusWaveForm {
|
||||
typedef struct ALchorusState {
|
||||
DERIVE_FROM_TYPE(ALeffectState);
|
||||
|
||||
ALfloat *SampleBuffer[2];
|
||||
ALfloat *SampleBuffer;
|
||||
ALsizei BufferLength;
|
||||
ALsizei offset;
|
||||
|
||||
@ -72,8 +72,7 @@ static void ALchorusState_Construct(ALchorusState *state)
|
||||
SET_VTABLE2(ALchorusState, ALeffectState, state);
|
||||
|
||||
state->BufferLength = 0;
|
||||
state->SampleBuffer[0] = NULL;
|
||||
state->SampleBuffer[1] = NULL;
|
||||
state->SampleBuffer = NULL;
|
||||
state->offset = 0;
|
||||
state->lfo_offset = 0;
|
||||
state->lfo_range = 1;
|
||||
@ -82,9 +81,8 @@ static void ALchorusState_Construct(ALchorusState *state)
|
||||
|
||||
static ALvoid ALchorusState_Destruct(ALchorusState *state)
|
||||
{
|
||||
al_free(state->SampleBuffer[0]);
|
||||
state->SampleBuffer[0] = NULL;
|
||||
state->SampleBuffer[1] = NULL;
|
||||
al_free(state->SampleBuffer);
|
||||
state->SampleBuffer = NULL;
|
||||
|
||||
ALeffectState_Destruct(STATIC_CAST(ALeffectState,state));
|
||||
}
|
||||
@ -99,21 +97,17 @@ static ALboolean ALchorusState_deviceUpdate(ALchorusState *state, ALCdevice *Dev
|
||||
|
||||
if(maxlen != state->BufferLength)
|
||||
{
|
||||
void *temp = al_calloc(16, maxlen * sizeof(ALfloat) * 2);
|
||||
void *temp = al_calloc(16, maxlen * sizeof(ALfloat));
|
||||
if(!temp) return AL_FALSE;
|
||||
|
||||
al_free(state->SampleBuffer[0]);
|
||||
state->SampleBuffer[0] = temp;
|
||||
state->SampleBuffer[1] = state->SampleBuffer[0] + maxlen;
|
||||
al_free(state->SampleBuffer);
|
||||
state->SampleBuffer = temp;
|
||||
|
||||
state->BufferLength = maxlen;
|
||||
}
|
||||
|
||||
for(it = 0;it < state->BufferLength;it++)
|
||||
{
|
||||
state->SampleBuffer[0][it] = 0.0f;
|
||||
state->SampleBuffer[1][it] = 0.0f;
|
||||
}
|
||||
state->SampleBuffer[it] = 0.0f;
|
||||
|
||||
return AL_TRUE;
|
||||
}
|
||||
@ -144,7 +138,7 @@ static ALvoid ALchorusState_update(ALchorusState *state, const ALCcontext *Conte
|
||||
/* Offset the delay so that the center point remains the same with the LFO
|
||||
* ranging from 0...2 instead of -1...+1.
|
||||
*/
|
||||
state->delay = fastf2i(delay - state->depth + 0.5f);
|
||||
state->delay = fastf2i(delay-state->depth + 0.5f);
|
||||
|
||||
state->feedback = props->Chorus.Feedback;
|
||||
|
||||
@ -218,49 +212,68 @@ static ALvoid ALchorusState_process(ALchorusState *state, ALsizei SamplesToDo, c
|
||||
{
|
||||
const ALsizei bufmask = state->BufferLength-1;
|
||||
const ALfloat feedback = state->feedback;
|
||||
const ALsizei avgdelay = (state->delay+fastf2i(state->depth) + (FRACTIONONE>>1)) >>
|
||||
FRACTIONBITS;
|
||||
ALfloat *restrict delaybuf = state->SampleBuffer;
|
||||
ALsizei i, c;
|
||||
ALsizei base;
|
||||
|
||||
for(base = 0;base < SamplesToDo;)
|
||||
{
|
||||
const ALsizei todo = mini(256, SamplesToDo-base);
|
||||
ALfloat temps[256];
|
||||
ALint moddelays[2][256];
|
||||
ALfloat temps[2][256];
|
||||
ALsizei offset;
|
||||
|
||||
for(c = 0;c < 2;c++)
|
||||
if(state->waveform == CWF_Triangle)
|
||||
{
|
||||
ALfloat *restrict sampbuf = state->SampleBuffer[c];
|
||||
ALint disp_offset = state->lfo_disp*c;
|
||||
ALint moddelays[256];
|
||||
ALsizei offset;
|
||||
GetTriangleDelays(moddelays[0], state->lfo_offset, state->lfo_range, state->lfo_scale,
|
||||
state->depth, state->delay, todo);
|
||||
GetTriangleDelays(moddelays[1], (state->lfo_offset+state->lfo_disp)%state->lfo_range,
|
||||
state->lfo_range, state->lfo_scale, state->depth, state->delay,
|
||||
todo);
|
||||
}
|
||||
else /*if(state->waveform == CWF_Sinusoid)*/
|
||||
{
|
||||
GetSinusoidDelays(moddelays[0], state->lfo_offset, state->lfo_range, state->lfo_scale,
|
||||
state->depth, state->delay, todo);
|
||||
GetSinusoidDelays(moddelays[1], (state->lfo_offset+state->lfo_disp)%state->lfo_range,
|
||||
state->lfo_range, state->lfo_scale, state->depth, state->delay,
|
||||
todo);
|
||||
}
|
||||
|
||||
if(state->waveform == CWF_Triangle)
|
||||
GetTriangleDelays(moddelays, (state->lfo_offset+disp_offset)%state->lfo_range,
|
||||
state->lfo_range, state->lfo_scale, state->depth, state->delay,
|
||||
todo);
|
||||
else /*if(state->waveform == CWF_Sinusoid)*/
|
||||
GetSinusoidDelays(moddelays, (state->lfo_offset+disp_offset)%state->lfo_range,
|
||||
state->lfo_range, state->lfo_scale, state->depth, state->delay,
|
||||
todo);
|
||||
offset = state->offset;
|
||||
for(i = 0;i < todo;i++)
|
||||
{
|
||||
ALint delay;
|
||||
ALfloat mu;
|
||||
|
||||
offset = state->offset;
|
||||
for(i = 0;i < todo;i++)
|
||||
{
|
||||
ALint delay = moddelays[i] >> FRACTIONBITS;
|
||||
ALfloat mu = (moddelays[i]&FRACTIONMASK) * (1.0f/FRACTIONONE);
|
||||
// Feed the buffer's input first (necessary for delays < 1).
|
||||
delaybuf[offset&bufmask] = SamplesIn[0][base+i];
|
||||
|
||||
sampbuf[offset&bufmask] = SamplesIn[0][base+i];
|
||||
temps[i] = sampbuf[(offset-delay) & bufmask]*(1.0f-mu) +
|
||||
sampbuf[(offset-(delay+1)) & bufmask]*mu;
|
||||
sampbuf[offset&bufmask] += temps[i] * feedback;
|
||||
offset++;
|
||||
}
|
||||
// Tap for the left output.
|
||||
delay = moddelays[0][i] >> FRACTIONBITS;
|
||||
mu = (moddelays[0][i]&FRACTIONMASK) * (1.0f/FRACTIONONE);
|
||||
temps[0][i] = delaybuf[(offset-delay) & bufmask]*(1.0f-mu) +
|
||||
delaybuf[(offset-(delay+1)) & bufmask]*mu;
|
||||
|
||||
MixSamples(temps, NumChannels, SamplesOut, state->Gain[c], state->Gain[c],
|
||||
0, base, todo);
|
||||
// Tap for the right output.
|
||||
delay = moddelays[1][i] >> FRACTIONBITS;
|
||||
mu = (moddelays[1][i]&FRACTIONMASK) * (1.0f/FRACTIONONE);
|
||||
temps[1][i] = delaybuf[(offset-delay) & bufmask]*(1.0f-mu) +
|
||||
delaybuf[(offset-(delay+1)) & bufmask]*mu;
|
||||
|
||||
// Accumulate feedback from the average delay of the taps.
|
||||
delaybuf[offset&bufmask] += delaybuf[(offset-avgdelay) & bufmask] * feedback;
|
||||
offset++;
|
||||
}
|
||||
state->offset += todo;
|
||||
state->lfo_offset = (state->lfo_offset+todo) % state->lfo_range;
|
||||
|
||||
for(c = 0;c < 2;c++)
|
||||
MixSamples(temps[c], NumChannels, SamplesOut, state->Gain[c], state->Gain[c],
|
||||
0, base, todo);
|
||||
|
||||
base += todo;
|
||||
}
|
||||
}
|
||||
|
@ -38,7 +38,7 @@ enum FlangerWaveForm {
|
||||
typedef struct ALflangerState {
|
||||
DERIVE_FROM_TYPE(ALeffectState);
|
||||
|
||||
ALfloat *SampleBuffer[2];
|
||||
ALfloat *SampleBuffer;
|
||||
ALsizei BufferLength;
|
||||
ALsizei offset;
|
||||
|
||||
@ -72,8 +72,7 @@ static void ALflangerState_Construct(ALflangerState *state)
|
||||
SET_VTABLE2(ALflangerState, ALeffectState, state);
|
||||
|
||||
state->BufferLength = 0;
|
||||
state->SampleBuffer[0] = NULL;
|
||||
state->SampleBuffer[1] = NULL;
|
||||
state->SampleBuffer = NULL;
|
||||
state->offset = 0;
|
||||
state->lfo_offset = 0;
|
||||
state->lfo_range = 1;
|
||||
@ -82,9 +81,8 @@ static void ALflangerState_Construct(ALflangerState *state)
|
||||
|
||||
static ALvoid ALflangerState_Destruct(ALflangerState *state)
|
||||
{
|
||||
al_free(state->SampleBuffer[0]);
|
||||
state->SampleBuffer[0] = NULL;
|
||||
state->SampleBuffer[1] = NULL;
|
||||
al_free(state->SampleBuffer);
|
||||
state->SampleBuffer = NULL;
|
||||
|
||||
ALeffectState_Destruct(STATIC_CAST(ALeffectState,state));
|
||||
}
|
||||
@ -99,21 +97,17 @@ static ALboolean ALflangerState_deviceUpdate(ALflangerState *state, ALCdevice *D
|
||||
|
||||
if(maxlen != state->BufferLength)
|
||||
{
|
||||
void *temp = al_calloc(16, maxlen * sizeof(ALfloat) * 2);
|
||||
void *temp = al_calloc(16, maxlen * sizeof(ALfloat));
|
||||
if(!temp) return AL_FALSE;
|
||||
|
||||
al_free(state->SampleBuffer[0]);
|
||||
state->SampleBuffer[0] = temp;
|
||||
state->SampleBuffer[1] = state->SampleBuffer[0] + maxlen;
|
||||
al_free(state->SampleBuffer);
|
||||
state->SampleBuffer = temp;
|
||||
|
||||
state->BufferLength = maxlen;
|
||||
}
|
||||
|
||||
for(it = 0;it < state->BufferLength;it++)
|
||||
{
|
||||
state->SampleBuffer[0][it] = 0.0f;
|
||||
state->SampleBuffer[1][it] = 0.0f;
|
||||
}
|
||||
state->SampleBuffer[it] = 0.0f;
|
||||
|
||||
return AL_TRUE;
|
||||
}
|
||||
@ -144,7 +138,7 @@ static ALvoid ALflangerState_update(ALflangerState *state, const ALCcontext *con
|
||||
/* Offset the delay so that the center point remains the same with the LFO
|
||||
* ranging from 0...2 instead of -1...+1.
|
||||
*/
|
||||
state->delay = fastf2i(delay - state->depth + 0.5f);
|
||||
state->delay = fastf2i(delay-state->depth + 0.5f);
|
||||
|
||||
state->feedback = props->Flanger.Feedback;
|
||||
|
||||
@ -217,49 +211,68 @@ static ALvoid ALflangerState_process(ALflangerState *state, ALsizei SamplesToDo,
|
||||
{
|
||||
const ALsizei bufmask = state->BufferLength-1;
|
||||
const ALfloat feedback = state->feedback;
|
||||
const ALsizei avgdelay = (state->delay+fastf2i(state->depth) + (FRACTIONONE>>1)) >>
|
||||
FRACTIONBITS;
|
||||
ALfloat *restrict delaybuf = state->SampleBuffer;
|
||||
ALsizei i, c;
|
||||
ALsizei base;
|
||||
|
||||
for(base = 0;base < SamplesToDo;)
|
||||
{
|
||||
const ALsizei todo = mini(256, SamplesToDo-base);
|
||||
ALfloat temps[256];
|
||||
ALint moddelays[2][256];
|
||||
ALfloat temps[2][256];
|
||||
ALsizei offset;
|
||||
|
||||
for(c = 0;c < 2;c++)
|
||||
if(state->waveform == FWF_Triangle)
|
||||
{
|
||||
ALfloat *restrict sampbuf = state->SampleBuffer[c];
|
||||
ALint disp_offset = state->lfo_disp*c;
|
||||
ALint moddelays[256];
|
||||
ALsizei offset;
|
||||
GetTriangleDelays(moddelays[0], state->lfo_offset, state->lfo_range, state->lfo_scale,
|
||||
state->depth, state->delay, todo);
|
||||
GetTriangleDelays(moddelays[1], (state->lfo_offset+state->lfo_disp)%state->lfo_range,
|
||||
state->lfo_range, state->lfo_scale, state->depth, state->delay,
|
||||
todo);
|
||||
}
|
||||
else /*if(state->waveform == FWF_Sinusoid)*/
|
||||
{
|
||||
GetSinusoidDelays(moddelays[0], state->lfo_offset, state->lfo_range, state->lfo_scale,
|
||||
state->depth, state->delay, todo);
|
||||
GetSinusoidDelays(moddelays[1], (state->lfo_offset+state->lfo_disp)%state->lfo_range,
|
||||
state->lfo_range, state->lfo_scale, state->depth, state->delay,
|
||||
todo);
|
||||
}
|
||||
|
||||
if(state->waveform == FWF_Triangle)
|
||||
GetTriangleDelays(moddelays, (state->lfo_offset+disp_offset)%state->lfo_range,
|
||||
state->lfo_range, state->lfo_scale, state->depth, state->delay,
|
||||
todo);
|
||||
else /*if(state->waveform == FWF_Sinusoid)*/
|
||||
GetSinusoidDelays(moddelays, (state->lfo_offset+disp_offset)%state->lfo_range,
|
||||
state->lfo_range, state->lfo_scale, state->depth, state->delay,
|
||||
todo);
|
||||
offset = state->offset;
|
||||
for(i = 0;i < todo;i++)
|
||||
{
|
||||
ALint delay;
|
||||
ALfloat mu;
|
||||
|
||||
offset = state->offset;
|
||||
for(i = 0;i < todo;i++)
|
||||
{
|
||||
ALint delay = moddelays[i] >> FRACTIONBITS;
|
||||
ALfloat mu = (moddelays[i]&FRACTIONMASK) * (1.0f/FRACTIONONE);
|
||||
// Feed the buffer's input first (necessary for delays < 1).
|
||||
delaybuf[offset&bufmask] = SamplesIn[0][base+i];
|
||||
|
||||
sampbuf[offset&bufmask] = SamplesIn[0][base+i];
|
||||
temps[i] = sampbuf[(offset-delay) & bufmask]*(1.0f-mu) +
|
||||
sampbuf[(offset-(delay+1)) & bufmask]*mu;
|
||||
sampbuf[offset&bufmask] += temps[i] * feedback;
|
||||
offset++;
|
||||
}
|
||||
// Tap for the left output.
|
||||
delay = moddelays[0][i] >> FRACTIONBITS;
|
||||
mu = (moddelays[0][i]&FRACTIONMASK) * (1.0f/FRACTIONONE);
|
||||
temps[0][i] = delaybuf[(offset-delay) & bufmask]*(1.0f-mu) +
|
||||
delaybuf[(offset-(delay+1)) & bufmask]*mu;
|
||||
|
||||
MixSamples(temps, NumChannels, SamplesOut, state->Gain[c], state->Gain[c],
|
||||
0, base, todo);
|
||||
// Tap for the right output.
|
||||
delay = moddelays[1][i] >> FRACTIONBITS;
|
||||
mu = (moddelays[1][i]&FRACTIONMASK) * (1.0f/FRACTIONONE);
|
||||
temps[1][i] = delaybuf[(offset-delay) & bufmask]*(1.0f-mu) +
|
||||
delaybuf[(offset-(delay+1)) & bufmask]*mu;
|
||||
|
||||
// Accumulate feedback from the average delay.
|
||||
delaybuf[offset&bufmask] += delaybuf[(offset-avgdelay) & bufmask] * feedback;
|
||||
offset++;
|
||||
}
|
||||
state->offset += todo;
|
||||
state->lfo_offset = (state->lfo_offset+todo) % state->lfo_range;
|
||||
|
||||
for(c = 0;c < 2;c++)
|
||||
MixSamples(temps[c], NumChannels, SamplesOut, state->Gain[c], state->Gain[c],
|
||||
0, base, todo);
|
||||
|
||||
base += todo;
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user