Move duplicate SOFA-related functions to a reusable library

master
Chris Robinson 2019-12-11 00:48:03 -08:00
parent ae916929c9
commit 4867f93a34
5 changed files with 355 additions and 514 deletions

View File

@ -1393,6 +1393,15 @@ IF(ALSOFT_UTILS)
find_package(MySOFA)
if(MYSOFA_FOUND)
set(SOFA_SUPPORT_SRCS
utils/sofa-support.cpp
utils/sofa-support.h)
add_library(sofa-support STATIC EXCLUDE_FROM_ALL ${SOFA_SUPPORT_SRCS})
target_compile_definitions(sofa-support PRIVATE ${CPP_DEFS})
target_include_directories(sofa-support PUBLIC ${OpenAL_SOURCE_DIR}/common)
target_compile_options(sofa-support PRIVATE ${C_FLAGS})
target_link_libraries(sofa-support PUBLIC common MySOFA::MySOFA PRIVATE ${LINKER_FLAGS})
set(MAKEMHR_SRCS
utils/makemhr/loaddef.cpp
utils/makemhr/loaddef.h
@ -1406,17 +1415,17 @@ IF(ALSOFT_UTILS)
add_executable(makemhr ${MAKEMHR_SRCS})
target_compile_definitions(makemhr PRIVATE ${CPP_DEFS})
target_include_directories(makemhr
PRIVATE ${OpenAL_SOURCE_DIR}/common ${OpenAL_BINARY_DIR})
PRIVATE ${OpenAL_BINARY_DIR} ${OpenAL_SOURCE_DIR}/utils)
target_compile_options(makemhr PRIVATE ${C_FLAGS})
target_link_libraries(makemhr PRIVATE common ${LINKER_FLAGS} MySOFA::MySOFA)
target_link_libraries(makemhr PRIVATE ${LINKER_FLAGS} sofa-support)
set(UTIL_TARGETS ${UTIL_TARGETS} makemhr)
set(SOFAINFO_SRCS utils/sofa-info.cpp)
add_executable(sofa-info ${SOFAINFO_SRCS})
target_compile_definitions(sofa-info PRIVATE ${CPP_DEFS})
target_include_directories(sofa-info PRIVATE ${OpenAL_SOURCE_DIR}/common)
target_include_directories(sofa-info PRIVATE ${OpenAL_SOURCE_DIR}/utils)
target_compile_options(sofa-info PRIVATE ${C_FLAGS})
target_link_libraries(sofa-info PRIVATE ${LINKER_FLAGS} MySOFA::MySOFA)
target_link_libraries(sofa-info PRIVATE ${LINKER_FLAGS} sofa-support)
endif()
IF(ALSOFT_INSTALL)

View File

@ -24,11 +24,10 @@
#include "loadsofa.h"
#include <algorithm>
#include <array>
#include <atomic>
#include <chrono>
#include <cmath>
#include <cstdio>
#include <functional>
#include <future>
#include <iterator>
#include <memory>
@ -37,148 +36,13 @@
#include <vector>
#include "makemhr.h"
#include "polyphase_resampler.h"
#include "sofa-support.h"
#include "mysofa.h"
using namespace std::placeholders;
using double3 = std::array<double,3>;
static const char *SofaErrorStr(int err)
{
switch(err)
{
case MYSOFA_OK: return "OK";
case MYSOFA_INVALID_FORMAT: return "Invalid format";
case MYSOFA_UNSUPPORTED_FORMAT: return "Unsupported format";
case MYSOFA_INTERNAL_ERROR: return "Internal error";
case MYSOFA_NO_MEMORY: return "Out of memory";
case MYSOFA_READ_ERROR: return "Read error";
}
return "Unknown";
}
/* Produces a sorted array of unique elements from a particular axis of the
* triplets array. The filters are used to focus on particular coordinates
* of other axes as necessary. The epsilons are used to constrain the
* equality of unique elements.
*/
static std::vector<double> GetUniquelySortedElems(const std::vector<double3> &aers,
const uint axis, const double *const (&filters)[3], const double (&epsilons)[3])
{
std::vector<double> elems;
for(const double3 &aer : aers)
{
const double elem{aer[axis]};
uint j;
for(j = 0;j < 3;j++)
{
if(filters[j] && std::abs(aer[j] - *filters[j]) > epsilons[j])
break;
}
if(j < 3)
continue;
auto iter = elems.begin();
for(;iter != elems.end();++iter)
{
const double delta{elem - *iter};
if(delta > epsilons[axis]) continue;
if(delta >= -epsilons[axis]) break;
iter = elems.emplace(iter, elem);
break;
}
if(iter == elems.end())
elems.emplace_back(elem);
}
return elems;
}
/* Given a list of azimuths, this will produce the smallest step size that can
* uniformly cover the list. Ideally this will be over half, but in degenerate
* cases this can fall to a minimum of 5 (the lower limit).
*/
static double GetUniformAzimStep(const double epsilon, const std::vector<double> &elems)
{
if(elems.size() < 5) return 0.0;
/* Get the maximum count possible, given the first two elements. It would
* be impossible to have more than this since the first element must be
* included.
*/
uint count{static_cast<uint>(std::ceil(360.0 / (elems[1]-elems[0])))};
count = std::min(count, uint{MAX_AZ_COUNT});
for(;count >= 5;--count)
{
/* Given the stepping value for this number of elements, check each
* multiple to ensure there's a matching element.
*/
const double step{360.0 / count};
bool good{true};
size_t idx{1u};
for(uint mult{1u};mult < count && good;++mult)
{
const double target{step*mult + elems[0]};
while(idx < elems.size() && target-elems[idx] > epsilon)
++idx;
good &= (idx < elems.size()) && !(std::abs(target-elems[idx++]) > epsilon);
}
if(good)
return step;
}
return 0.0;
}
/* Given a list of elevations, this will produce the smallest step size that
* can uniformly cover the list. Ideally this will be over half, but in
* degenerate cases this can fall to a minimum of 5 (the lower limit).
*/
static double GetUniformElevStep(const double epsilon, std::vector<double> &elems)
{
if(elems.size() < 5) return 0.0;
/* Reverse the elevations so it increments starting with -90 (flipped from
* +90). This makes it easier to work out a proper stepping value.
*/
std::reverse(elems.begin(), elems.end());
for(auto &v : elems) v *= -1.0;
uint count{static_cast<uint>(std::ceil(180.0 / (elems[1]-elems[0])))};
count = std::min(count, uint{MAX_EV_COUNT-1u});
double ret{0.0};
for(;count >= 5;--count)
{
const double step{180.0 / count};
bool good{true};
size_t idx{1u};
/* Elevations don't need to match all multiples if there's not enough
* elements to check. Missing elevations can be synthesized.
*/
for(uint mult{1u};mult <= count && idx < elems.size() && good;++mult)
{
const double target{step*mult + elems[0]};
while(idx < elems.size() && target-elems[idx] > epsilon)
++idx;
good &= !(idx < elems.size()) || !(std::abs(target-elems[idx++]) > epsilon);
}
if(good)
{
ret = step;
break;
}
}
/* Re-reverse the elevations to restore the correct order. */
for(auto &v : elems) v *= -1.0;
std::reverse(elems.begin(), elems.end());
return ret;
}
using uint = unsigned int;
/* Attempts to produce a compatible layout. Most data sets tend to be
* uniform and have the same major axis as used by OpenAL Soft's HRTF model.
@ -190,16 +54,8 @@ static bool PrepareLayout(const uint m, const float *xyzs, HrirDataT *hData)
{
fprintf(stdout, "Detecting compatible layout...\n");
auto aers = std::vector<double3>(m, double3{});
for(uint i{0u};i < m;++i)
{
float vals[3]{xyzs[i*3], xyzs[i*3 + 1], xyzs[i*3 + 2]};
mysofa_c2s(&vals[0]);
aers[i] = {vals[0], vals[1], vals[2]};
}
auto radii = GetUniquelySortedElems(aers, 2, {}, {0.1, 0.1, 0.001});
if(radii.size() > MAX_FD_COUNT)
auto fds = GetCompatibleLayout(m, xyzs);
if(fds.size() > MAX_FD_COUNT)
{
fprintf(stdout, "Incompatible layout (inumerable radii).\n");
return false;
@ -209,104 +65,24 @@ static bool PrepareLayout(const uint m, const float *xyzs, HrirDataT *hData)
uint evCounts[MAX_FD_COUNT]{};
auto azCounts = std::vector<uint>(MAX_FD_COUNT*MAX_EV_COUNT, 0u);
auto dist_end = std::copy_if(radii.cbegin(), radii.cend(), std::begin(distances),
std::bind(std::greater_equal<double>{}, _1, hData->mRadius));
auto fdCount = static_cast<uint>(std::distance(std::begin(distances), dist_end));
uint ir_total{0u};
for(uint fi{0u};fi < fdCount;)
uint fi{0u}, ir_total{0u};
for(const auto &field : fds)
{
const double dist{distances[fi]};
auto elevs = GetUniquelySortedElems(aers, 1, {nullptr, nullptr, &dist},
{0.1, 0.1, 0.001});
distances[fi] = field.mDistance;
evCounts[fi] = field.mEvCount;
/* Remove elevations that don't have a valid set of azimuths. */
auto invalid_elev = [&dist,&aers](const double ev) -> bool
for(uint ei{0u};ei < field.mEvStart;ei++)
azCounts[fi*MAX_EV_COUNT + ei] = field.mAzCounts[field.mEvCount-ei-1];
for(uint ei{field.mEvStart};ei < field.mEvCount;ei++)
{
auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001});
if(std::abs(ev) > 89.999)
return azims.size() != 1;
if(azims.empty() || !(std::abs(azims[0]) < 0.1))
return true;
return GetUniformAzimStep(0.1, azims) <= 0.0;
};
elevs.erase(std::remove_if(elevs.begin(), elevs.end(), invalid_elev), elevs.end());
double step{GetUniformElevStep(0.1, elevs)};
if(step <= 0.0)
{
fprintf(stdout, "Non-uniform elevations on field distance %f.\n", dist);
std::copy(&distances[fi+1], &distances[fdCount], &distances[fi]);
--fdCount;
continue;
azCounts[fi*MAX_EV_COUNT + ei] = field.mAzCounts[ei];
ir_total += field.mAzCounts[ei];
}
uint evStart{0u};
for(uint ei{0u};ei < elevs.size();ei++)
{
if(!(elevs[ei] < 0.0))
{
fprintf(stdout, "Too many missing elevations on field distance %f.\n", dist);
return false;
}
double eif{(90.0+elevs[ei]) / step};
const double ev_start{std::round(eif)};
if(std::abs(eif - ev_start) < (0.1/step))
{
evStart = static_cast<uint>(ev_start);
break;
}
}
const auto evCount = static_cast<uint>(std::round(180.0 / step)) + 1;
if(evCount < 5)
{
fprintf(stdout, "Too few uniform elevations on field distance %f.\n", dist);
std::copy(&distances[fi+1], &distances[fdCount], &distances[fi]);
--fdCount;
continue;
}
evCounts[fi] = evCount;
for(uint ei{evStart};ei < evCount;ei++)
{
const double ev{-90.0 + ei*180.0/(evCount - 1)};
auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001});
uint azCount;
if(ei == 0 || ei == (evCount-1))
{
if(azims.size() != 1)
{
fprintf(stdout, "Non-singular poles on field distance %f.\n", dist);
return false;
}
azCount = 1u;
}
else
{
step = GetUniformAzimStep(0.1, azims);
if(step <= 0.0)
{
fprintf(stdout, "Non-uniform azimuths on elevation %f, field distance %f.\n",
ev, dist);
return false;
}
azCount = static_cast<uint>(std::round(360.0 / step));
}
azCounts[fi*MAX_EV_COUNT + ei] = azCount;
ir_total += azCount;
}
for(uint ei{0u};ei < evStart;ei++)
azCounts[fi*MAX_EV_COUNT + ei] = azCounts[fi*MAX_EV_COUNT + evCount - ei - 1];
++fi;
}
fprintf(stdout, "Using %u of %u IRs.\n", ir_total, m);
return PrepareHrirData(fdCount, distances, evCounts, azCounts.data(), hData) != 0;
return PrepareHrirData(fi, distances, evCounts, azCounts.data(), hData) != 0;
}
@ -575,10 +351,6 @@ static bool LoadResponses(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
return load_future.get();
}
struct MySofaHrtfDeleter {
void operator()(MYSOFA_HRTF *ptr) { mysofa_free(ptr); }
};
using MySofaHrtfPtr = std::unique_ptr<MYSOFA_HRTF,MySofaHrtfDeleter>;
bool LoadSofaFile(const char *filename, const uint fftSize, const uint truncSize,
const ChannelModeT chanMode, HrirDataT *hData)

View File

@ -23,46 +23,16 @@
#include <stdio.h>
#include <algorithm>
#include <array>
#include <cmath>
#include <memory>
#include <vector>
#include <mysofa.h>
#include "sofa-support.h"
#include "win_main_utf8.h"
#include "mysofa.h"
using uint = unsigned int;
using double3 = std::array<double,3>;
struct MySofaDeleter {
void operator()(MYSOFA_HRTF *sofa) { mysofa_free(sofa); }
};
using MySofaHrtfPtr = std::unique_ptr<MYSOFA_HRTF,MySofaDeleter>;
// Per-field measurement info.
struct HrirFdT {
double mDistance{0.0};
uint mEvCount{0u};
uint mEvStart{0u};
std::vector<uint> mAzCounts;
};
static const char *SofaErrorStr(int err)
{
switch(err)
{
case MYSOFA_OK: return "OK";
case MYSOFA_INVALID_FORMAT: return "Invalid format";
case MYSOFA_UNSUPPORTED_FORMAT: return "Unsupported format";
case MYSOFA_INTERNAL_ERROR: return "Internal error";
case MYSOFA_NO_MEMORY: return "Out of memory";
case MYSOFA_READ_ERROR: return "Read error";
}
return "Unknown";
}
static void PrintSofaAttributes(const char *prefix, struct MYSOFA_ATTRIBUTE *attribute)
{
@ -76,131 +46,10 @@ static void PrintSofaAttributes(const char *prefix, struct MYSOFA_ATTRIBUTE *att
static void PrintSofaArray(const char *prefix, struct MYSOFA_ARRAY *array)
{
PrintSofaAttributes(prefix, array->attributes);
for(uint i{0u};i < array->elements;i++)
fprintf(stdout, "%s[%u]: %.6f\n", prefix, i, array->values[i]);
}
/* Produces a sorted array of unique elements from a particular axis of the
* triplets array. The filters are used to focus on particular coordinates
* of other axes as necessary. The epsilons are used to constrain the
* equality of unique elements.
*/
static std::vector<double> GetUniquelySortedElems(const std::vector<double3> &aers,
const uint axis, const double *const (&filters)[3], const double (&epsilons)[3])
{
std::vector<double> elems;
for(const double3 &aer : aers)
{
const double elem{aer[axis]};
uint j;
for(j = 0;j < 3;j++)
{
if(filters[j] && std::abs(aer[j] - *filters[j]) > epsilons[j])
break;
}
if(j < 3)
continue;
auto iter = elems.begin();
for(;iter != elems.end();++iter)
{
const double delta{elem - *iter};
if(delta > epsilons[axis]) continue;
if(delta >= -epsilons[axis]) break;
iter = elems.emplace(iter, elem);
break;
}
if(iter == elems.end())
elems.emplace_back(elem);
}
return elems;
}
/* Given a list of azimuths, this will produce the smallest step size that can
* uniformly cover the list. Ideally this will be over half, but in degenerate
* cases this can fall to a minimum of 5 (the lower limit).
*/
static double GetUniformAzimStep(const double epsilon, const std::vector<double> &elems)
{
if(elems.size() < 5) return 0.0;
/* Get the maximum count possible, given the first two elements. It would
* be impossible to have more than this since the first element must be
* included.
*/
uint count{static_cast<uint>(std::ceil(360.0 / (elems[1]-elems[0])))};
count = std::min(count, 255u);
for(;count >= 5;--count)
{
/* Given the stepping value for this number of elements, check each
* multiple to ensure there's a matching element.
*/
const double step{360.0 / count};
bool good{true};
size_t idx{1u};
for(uint mult{1u};mult < count && good;++mult)
{
const double target{step*mult + elems[0]};
while(idx < elems.size() && target-elems[idx] > epsilon)
++idx;
good &= (idx < elems.size()) && !(std::abs(target-elems[idx++]) > epsilon);
}
if(good)
return step;
}
return 0.0;
}
/* Given a list of elevations, this will produce the smallest step size that
* can uniformly cover the list. Ideally this will be over half, but in
* degenerate cases this can fall to a minimum of 5 (the lower limit).
*/
static double GetUniformElevStep(const double epsilon, std::vector<double> &elems)
{
if(elems.size() < 5) return 0.0;
/* Reverse the elevations so it increments starting with -90 (flipped from
* +90). This makes it easier to work out a proper stepping value.
*/
std::reverse(elems.begin(), elems.end());
for(auto &v : elems) v *= -1.0;
uint count{static_cast<uint>(std::ceil(180.0 / (elems[1]-elems[0])))};
count = std::min(count, 255u);
double ret{0.0};
for(;count >= 5;--count)
{
const double step{180.0 / count};
bool good{true};
size_t idx{1u};
/* Elevations don't need to match all multiples if there's not enough
* elements to check. Missing elevations can be synthesized.
*/
for(uint mult{1u};mult <= count && idx < elems.size() && good;++mult)
{
const double target{step*mult + elems[0]};
while(idx < elems.size() && target-elems[idx] > epsilon)
++idx;
good &= !(idx < elems.size()) || !(std::abs(target-elems[idx++]) > epsilon);
}
if(good)
{
ret = step;
break;
}
}
/* Re-reverse the elevations to restore the correct order. */
for(auto &v : elems) v *= -1.0;
std::reverse(elems.begin(), elems.end());
return ret;
}
/* Attempts to produce a compatible layout. Most data sets tend to be
* uniform and have the same major axis as used by OpenAL Soft's HRTF model.
* This will remove outliers and produce a maximally dense layout when
@ -211,118 +60,7 @@ static void PrintCompatibleLayout(const uint m, const float *xyzs)
{
fputc('\n', stdout);
auto aers = std::vector<double3>(m, double3{});
for(uint i{0u};i < m;++i)
{
float vals[3]{xyzs[i*3], xyzs[i*3 + 1], xyzs[i*3 + 2]};
mysofa_c2s(&vals[0]);
aers[i] = {vals[0], vals[1], vals[2]};
}
auto radii = GetUniquelySortedElems(aers, 2, {}, {0.1, 0.1, 0.001});
auto fds = std::vector<HrirFdT>(radii.size());
for(size_t fi{0u};fi < radii.size();fi++)
fds[fi].mDistance = radii[fi];
for(uint fi{0u};fi < fds.size();)
{
const double dist{fds[fi].mDistance};
auto elevs = GetUniquelySortedElems(aers, 1, {nullptr, nullptr, &dist}, {0.1, 0.1, 0.001});
/* Remove elevations that don't have a valid set of azimuths. */
auto invalid_elev = [&dist,&aers](const double ev) -> bool
{
auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001});
if(std::abs(ev) > 89.999)
return azims.size() != 1;
if(azims.empty() || !(std::abs(azims[0]) < 0.1))
return true;
return GetUniformAzimStep(0.1, azims) <= 0.0;
};
elevs.erase(std::remove_if(elevs.begin(), elevs.end(), invalid_elev), elevs.end());
double step{GetUniformElevStep(0.1, elevs)};
if(step <= 0.0)
{
if(elevs.empty())
fprintf(stdout, "No usable elevations on field distance %f.\n", dist);
else
{
fprintf(stdout, "Non-uniform elevations on field distance %.3f.\nGot: %+.2f", dist,
elevs[0]);
for(size_t ei{1u};ei < elevs.size();++ei)
fprintf(stdout, ", %+.2f", elevs[ei]);
fputc('\n', stdout);
}
fds.erase(fds.begin() + static_cast<ptrdiff_t>(fi));
continue;
}
uint evStart{0u};
for(uint ei{0u};ei < elevs.size();ei++)
{
if(!(elevs[ei] < 0.0))
{
fprintf(stdout, "Too many missing elevations on field distance %f.\n", dist);
return;
}
double eif{(90.0+elevs[ei]) / step};
const double ev_start{std::round(eif)};
if(std::abs(eif - ev_start) < (0.1/step))
{
evStart = static_cast<uint>(ev_start);
break;
}
}
const auto evCount = static_cast<uint>(std::round(180.0 / step)) + 1;
if(evCount < 5)
{
fprintf(stdout, "Too few uniform elevations on field distance %f.\n", dist);
fds.erase(fds.begin() + static_cast<ptrdiff_t>(fi));
continue;
}
fds[fi].mEvCount = evCount;
fds[fi].mEvStart = evStart;
fds[fi].mAzCounts.resize(evCount);
auto &azCounts = fds[fi].mAzCounts;
for(uint ei{evStart};ei < evCount;ei++)
{
double ev{-90.0 + ei*180.0/(evCount - 1)};
auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001});
if(ei == 0 || ei == (evCount-1))
{
if(azims.size() != 1)
{
fprintf(stdout, "Non-singular poles on field distance %f.\n", dist);
return;
}
azCounts[ei] = 1;
}
else
{
step = GetUniformAzimStep(0.1, azims);
if(step <= 0.0)
{
fprintf(stdout, "Non-uniform azimuths on elevation %f, field distance %f.\n",
ev, dist);
return;
}
azCounts[ei] = static_cast<uint>(std::round(360.0f / step));
}
}
for(uint ei{0u};ei < evStart;ei++)
azCounts[ei] = azCounts[evCount - ei - 1];
++fi;
}
auto fds = GetCompatibleLayout(m, xyzs);
if(fds.empty())
{
fprintf(stdout, "No compatible field layouts in SOFA file.\n");

292
utils/sofa-support.cpp Normal file
View File

@ -0,0 +1,292 @@
/*
* SOFA utility methods for inspecting SOFA file metrics and determining HRTF
* utility compatible layouts.
*
* Copyright (C) 2018-2019 Christopher Fitzgerald
* Copyright (C) 2019 Christopher Robinson
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
*/
#include "sofa-support.h"
#include <stdio.h>
#include <algorithm>
#include <array>
#include <cmath>
#include <utility>
#include <vector>
#include "mysofa.h"
namespace {
using uint = unsigned int;
using double3 = std::array<double,3>;
/* Produces a sorted array of unique elements from a particular axis of the
* triplets array. The filters are used to focus on particular coordinates
* of other axes as necessary. The epsilons are used to constrain the
* equality of unique elements.
*/
std::vector<double> GetUniquelySortedElems(const std::vector<double3> &aers, const uint axis,
const double *const (&filters)[3], const double (&epsilons)[3])
{
std::vector<double> elems;
for(const double3 &aer : aers)
{
const double elem{aer[axis]};
uint j;
for(j = 0;j < 3;j++)
{
if(filters[j] && std::abs(aer[j] - *filters[j]) > epsilons[j])
break;
}
if(j < 3)
continue;
auto iter = elems.begin();
for(;iter != elems.end();++iter)
{
const double delta{elem - *iter};
if(delta > epsilons[axis]) continue;
if(delta >= -epsilons[axis]) break;
iter = elems.emplace(iter, elem);
break;
}
if(iter == elems.end())
elems.emplace_back(elem);
}
return elems;
}
/* Given a list of azimuths, this will produce the smallest step size that can
* uniformly cover the list. Ideally this will be over half, but in degenerate
* cases this can fall to a minimum of 5 (the lower limit).
*/
double GetUniformAzimStep(const double epsilon, const std::vector<double> &elems)
{
if(elems.size() < 5) return 0.0;
/* Get the maximum count possible, given the first two elements. It would
* be impossible to have more than this since the first element must be
* included.
*/
uint count{static_cast<uint>(std::ceil(360.0 / (elems[1]-elems[0])))};
count = std::min(count, 255u);
for(;count >= 5;--count)
{
/* Given the stepping value for this number of elements, check each
* multiple to ensure there's a matching element.
*/
const double step{360.0 / count};
bool good{true};
size_t idx{1u};
for(uint mult{1u};mult < count && good;++mult)
{
const double target{step*mult + elems[0]};
while(idx < elems.size() && target-elems[idx] > epsilon)
++idx;
good &= (idx < elems.size()) && !(std::abs(target-elems[idx++]) > epsilon);
}
if(good)
return step;
}
return 0.0;
}
/* Given a list of elevations, this will produce the smallest step size that
* can uniformly cover the list. Ideally this will be over half, but in
* degenerate cases this can fall to a minimum of 5 (the lower limit).
*/
double GetUniformElevStep(const double epsilon, std::vector<double> &elems)
{
if(elems.size() < 5) return 0.0;
/* Reverse the elevations so it increments starting with -90 (flipped from
* +90). This makes it easier to work out a proper stepping value.
*/
std::reverse(elems.begin(), elems.end());
for(auto &v : elems) v *= -1.0;
uint count{static_cast<uint>(std::ceil(180.0 / (elems[1]-elems[0])))};
count = std::min(count, 255u);
double ret{0.0};
for(;count >= 5;--count)
{
const double step{180.0 / count};
bool good{true};
size_t idx{1u};
/* Elevations don't need to match all multiples if there's not enough
* elements to check. Missing elevations can be synthesized.
*/
for(uint mult{1u};mult <= count && idx < elems.size() && good;++mult)
{
const double target{step*mult + elems[0]};
while(idx < elems.size() && target-elems[idx] > epsilon)
++idx;
good &= !(idx < elems.size()) || !(std::abs(target-elems[idx++]) > epsilon);
}
if(good)
{
ret = step;
break;
}
}
/* Re-reverse the elevations to restore the correct order. */
for(auto &v : elems) v *= -1.0;
std::reverse(elems.begin(), elems.end());
return ret;
}
} // namespace
const char *SofaErrorStr(int err)
{
switch(err)
{
case MYSOFA_OK: return "OK";
case MYSOFA_INVALID_FORMAT: return "Invalid format";
case MYSOFA_UNSUPPORTED_FORMAT: return "Unsupported format";
case MYSOFA_INTERNAL_ERROR: return "Internal error";
case MYSOFA_NO_MEMORY: return "Out of memory";
case MYSOFA_READ_ERROR: return "Read error";
}
return "Unknown";
}
std::vector<SofaField> GetCompatibleLayout(const size_t m, const float *xyzs)
{
auto aers = std::vector<double3>(m, double3{});
for(size_t i{0u};i < m;++i)
{
float vals[3]{xyzs[i*3], xyzs[i*3 + 1], xyzs[i*3 + 2]};
mysofa_c2s(&vals[0]);
aers[i] = {vals[0], vals[1], vals[2]};
}
auto radii = GetUniquelySortedElems(aers, 2, {}, {0.1, 0.1, 0.001});
std::vector<SofaField> fds;
fds.reserve(radii.size());
for(const double dist : radii)
{
auto elevs = GetUniquelySortedElems(aers, 1, {nullptr, nullptr, &dist}, {0.1, 0.1, 0.001});
/* Remove elevations that don't have a valid set of azimuths. */
auto invalid_elev = [&dist,&aers](const double ev) -> bool
{
auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001});
if(std::abs(ev) > 89.999)
return azims.size() != 1;
if(azims.empty() || !(std::abs(azims[0]) < 0.1))
return true;
return GetUniformAzimStep(0.1, azims) <= 0.0;
};
elevs.erase(std::remove_if(elevs.begin(), elevs.end(), invalid_elev), elevs.end());
double step{GetUniformElevStep(0.1, elevs)};
if(step <= 0.0)
{
if(elevs.empty())
fprintf(stdout, "No usable elevations on field distance %f.\n", dist);
else
{
fprintf(stdout, "Non-uniform elevations on field distance %.3f.\nGot: %+.2f", dist,
elevs[0]);
for(size_t ei{1u};ei < elevs.size();++ei)
fprintf(stdout, ", %+.2f", elevs[ei]);
fputc('\n', stdout);
}
continue;
}
uint evStart{0u};
for(uint ei{0u};ei < elevs.size();ei++)
{
if(!(elevs[ei] < 0.0))
{
fprintf(stdout, "Too many missing elevations on field distance %f.\n", dist);
return fds;
}
double eif{(90.0+elevs[ei]) / step};
const double ev_start{std::round(eif)};
if(std::abs(eif - ev_start) < (0.1/step))
{
evStart = static_cast<uint>(ev_start);
break;
}
}
const auto evCount = static_cast<uint>(std::round(180.0 / step)) + 1;
if(evCount < 5)
{
fprintf(stdout, "Too few uniform elevations on field distance %f.\n", dist);
continue;
}
SofaField field{};
field.mDistance = dist;
field.mEvCount = evCount;
field.mEvStart = evStart;
field.mAzCounts.resize(evCount, 0u);
auto &azCounts = field.mAzCounts;
for(uint ei{evStart};ei < evCount;ei++)
{
double ev{-90.0 + ei*180.0/(evCount - 1)};
auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001});
if(ei == 0 || ei == (evCount-1))
{
if(azims.size() != 1)
{
fprintf(stdout, "Non-singular poles on field distance %f.\n", dist);
return fds;
}
azCounts[ei] = 1;
}
else
{
step = GetUniformAzimStep(0.1, azims);
if(step <= 0.0)
{
fprintf(stdout, "Non-uniform azimuths on elevation %f, field distance %f.\n",
ev, dist);
return fds;
}
azCounts[ei] = static_cast<uint>(std::round(360.0f / step));
}
}
fds.emplace_back(std::move(field));
}
return fds;
}

30
utils/sofa-support.h Normal file
View File

@ -0,0 +1,30 @@
#ifndef UTILS_SOFA_SUPPORT_H
#define UTILS_SOFA_SUPPORT_H
#include <cstddef>
#include <memory>
#include <vector>
#include "mysofa.h"
struct MySofaDeleter {
void operator()(MYSOFA_HRTF *sofa) { mysofa_free(sofa); }
};
using MySofaHrtfPtr = std::unique_ptr<MYSOFA_HRTF,MySofaDeleter>;
// Per-field measurement info.
struct SofaField {
using uint = unsigned int;
double mDistance{0.0};
uint mEvCount{0u};
uint mEvStart{0u};
std::vector<uint> mAzCounts;
};
const char *SofaErrorStr(int err);
std::vector<SofaField> GetCompatibleLayout(const size_t m, const float *xyzs);
#endif /* UTILS_SOFA_SUPPORT_H */