openal-soft/Alc/bformatdec.cpp

369 lines
14 KiB
C++
Raw Normal View History

#include "config.h"
2018-12-08 04:10:45 -08:00
#include <cmath>
#include <array>
#include <vector>
2018-12-08 01:32:43 -08:00
#include <numeric>
2018-12-08 04:10:45 -08:00
#include <algorithm>
2018-12-08 01:32:43 -08:00
#include <functional>
#include "bformatdec.h"
#include "ambdec.h"
#include "filters/splitter.h"
#include "alu.h"
#include "threads.h"
#include "almalloc.h"
namespace {
2018-02-12 20:58:39 -08:00
#define HF_BAND 0
#define LF_BAND 1
static_assert(BFormatDec::sNumBands == 2, "Unexpected BFormatDec::sNumBands");
static_assert(AmbiUpsampler::sNumBands == 2, "Unexpected AmbiUpsampler::sNumBands");
2016-09-06 03:10:38 -07:00
/* These points are in AL coordinates! */
constexpr ALfloat Ambi3DPoints[8][3] = {
{ -0.577350269f, 0.577350269f, -0.577350269f },
{ 0.577350269f, 0.577350269f, -0.577350269f },
{ -0.577350269f, 0.577350269f, 0.577350269f },
{ 0.577350269f, 0.577350269f, 0.577350269f },
{ -0.577350269f, -0.577350269f, -0.577350269f },
{ 0.577350269f, -0.577350269f, -0.577350269f },
{ -0.577350269f, -0.577350269f, 0.577350269f },
{ 0.577350269f, -0.577350269f, 0.577350269f },
};
constexpr ALfloat Ambi3DDecoder[8][MAX_AMBI_COEFFS] = {
{ 0.125f, 0.125f, 0.125f, 0.125f },
{ 0.125f, -0.125f, 0.125f, 0.125f },
{ 0.125f, 0.125f, 0.125f, -0.125f },
{ 0.125f, -0.125f, 0.125f, -0.125f },
{ 0.125f, 0.125f, -0.125f, 0.125f },
{ 0.125f, -0.125f, -0.125f, 0.125f },
{ 0.125f, 0.125f, -0.125f, -0.125f },
{ 0.125f, -0.125f, -0.125f, -0.125f },
};
constexpr ALfloat Ambi3DDecoderHFScale[MAX_AMBI_COEFFS] = {
2.0f,
1.15470054f, 1.15470054f, 1.15470054f
};
constexpr ALfloat Ambi3DDecoderHFScale2O[MAX_AMBI_COEFFS] = {
1.49071198f,
1.15470054f, 1.15470054f, 1.15470054f
};
constexpr ALfloat Ambi3DDecoderHFScale3O[MAX_AMBI_COEFFS] = {
1.17958441f,
1.01578297f, 1.01578297f, 1.01578297f
};
inline auto GetDecoderHFScales(ALsizei order) noexcept -> const ALfloat(&)[MAX_AMBI_COEFFS]
{
if(order >= 3) return Ambi3DDecoderHFScale3O;
if(order == 2) return Ambi3DDecoderHFScale2O;
return Ambi3DDecoderHFScale;
}
inline auto GetAmbiScales(AmbDecScale scaletype) noexcept -> const std::array<float,MAX_AMBI_COEFFS>&
{
2018-12-20 02:46:59 -08:00
if(scaletype == AmbDecScale::FuMa) return AmbiScale::FromFuMa;
if(scaletype == AmbDecScale::SN3D) return AmbiScale::FromSN3D;
return AmbiScale::FromN3D;
}
} // namespace
void BFormatDec::reset(const AmbDecConf *conf, bool allow_2band, ALsizei inchans, ALuint srate, const ALsizei (&chanmap)[MAX_OUTPUT_CHANNELS])
{
mSamples.clear();
mSamplesHF = nullptr;
mSamplesLF = nullptr;
mMatrix = MatrixU{};
mDualBand = allow_2band && (conf->FreqBands == 2);
if(!mDualBand)
mSamples.resize(1);
else
{
mSamples.resize(inchans * 2);
mSamplesHF = mSamples.data();
mSamplesLF = mSamplesHF + inchans;
}
mNumChannels = inchans;
mEnabled = std::accumulate(std::begin(chanmap), std::begin(chanmap)+conf->Speakers.size(), 0u,
2018-12-08 01:32:43 -08:00
[](ALuint mask, const ALsizei &chan) noexcept -> ALuint
{ return mask | (1 << chan); }
);
const ALfloat xover_norm{conf->XOverFreq / (float)srate};
const ALsizei out_order{
(conf->ChanMask > AMBI_3ORDER_MASK) ? 4 :
(conf->ChanMask > AMBI_2ORDER_MASK) ? 3 :
(conf->ChanMask > AMBI_1ORDER_MASK) ? 2 : 1};
2018-12-08 01:32:43 -08:00
{
const ALfloat (&hfscales)[MAX_AMBI_COEFFS] = GetDecoderHFScales(out_order);
/* The specified filter gain is for the mid-point/reference gain. The
* gain at the shelf itself will be the square of that, so specify the
* square-root of the desired shelf gain.
*/
const ALfloat gain0{std::sqrt(Ambi3DDecoderHFScale[0] / hfscales[0])};
const ALfloat gain1{std::sqrt(Ambi3DDecoderHFScale[1] / hfscales[1])};
mUpSampler[0].Shelf.setParams(BiquadType::HighShelf, gain0, xover_norm,
calc_rcpQ_from_slope(gain0, 1.0f));
mUpSampler[1].Shelf.setParams(BiquadType::HighShelf, gain1, xover_norm,
calc_rcpQ_from_slope(gain1, 1.0f));
for(ALsizei i{2};i < 4;i++)
mUpSampler[i].Shelf.copyParamsFrom(mUpSampler[1].Shelf);
}
const bool periphonic{(conf->ChanMask&AMBI_PERIPHONIC_MASK) != 0};
const std::array<float,MAX_AMBI_COEFFS> &coeff_scale = GetAmbiScales(conf->CoeffScale);
2018-12-13 22:48:02 -08:00
const ALsizei coeff_count{periphonic ? MAX_AMBI_COEFFS : MAX_AMBI2D_COEFFS};
2018-12-10 21:30:22 -08:00
2018-12-13 22:48:02 -08:00
if(!mDualBand)
{
for(size_t i{0u};i < conf->Speakers.size();i++)
{
2018-12-13 22:48:02 -08:00
ALfloat (&mtx)[MAX_AMBI_COEFFS] = mMatrix.Single[chanmap[i]];
for(ALsizei j{0},k{0};j < coeff_count;j++)
{
2018-12-20 04:19:35 -08:00
const ALsizei l{periphonic ? j : AmbiIndex::From2D[j]};
2018-12-13 22:48:02 -08:00
if(!(conf->ChanMask&(1<<l))) continue;
mtx[j] = conf->HFMatrix[i][k] / coeff_scale[l] *
((l>=9) ? conf->HFOrderGain[3] :
(l>=4) ? conf->HFOrderGain[2] :
(l>=1) ? conf->HFOrderGain[1] : conf->HFOrderGain[0]);
++k;
}
}
}
else
{
mXOver[0].init(xover_norm);
2018-12-08 04:10:45 -08:00
std::fill(std::begin(mXOver)+1, std::end(mXOver), mXOver[0]);
2018-12-10 21:30:22 -08:00
const float ratio{std::pow(10.0f, conf->XOverRatio / 40.0f)};
for(size_t i{0u};i < conf->Speakers.size();i++)
{
2018-12-13 22:48:02 -08:00
ALfloat (&mtx)[sNumBands][MAX_AMBI_COEFFS] = mMatrix.Dual[chanmap[i]];
for(ALsizei j{0},k{0};j < coeff_count;j++)
{
2018-12-20 04:19:35 -08:00
const ALsizei l{periphonic ? j : AmbiIndex::From2D[j]};
2018-12-13 22:48:02 -08:00
if(!(conf->ChanMask&(1<<l))) continue;
mtx[HF_BAND][j] = conf->HFMatrix[i][k] / coeff_scale[l] *
((l>=9) ? conf->HFOrderGain[3] :
(l>=4) ? conf->HFOrderGain[2] :
(l>=1) ? conf->HFOrderGain[1] : conf->HFOrderGain[0]) * ratio;
mtx[LF_BAND][j] = conf->LFMatrix[i][k] / coeff_scale[l] *
((l>=9) ? conf->LFOrderGain[3] :
(l>=4) ? conf->LFOrderGain[2] :
(l>=1) ? conf->LFOrderGain[1] : conf->LFOrderGain[0]) / ratio;
++k;
}
}
}
}
void BFormatDec::reset(ALsizei inchans, ALuint srate, ALsizei chancount, const ChannelDec (&chancoeffs)[MAX_OUTPUT_CHANNELS], const ALsizei (&chanmap)[MAX_OUTPUT_CHANNELS])
{
mSamples.clear();
mSamplesHF = nullptr;
mSamplesLF = nullptr;
mMatrix = MatrixU{};
mDualBand = false;
mSamples.resize(1);
mNumChannels = inchans;
mEnabled = std::accumulate(std::begin(chanmap), std::begin(chanmap)+chancount, 0u,
[](ALuint mask, const ALsizei &chan) noexcept -> ALuint
{ return mask | (1 << chan); }
);
const ALfloat xover_norm{400.0f / (float)srate};
const ALsizei out_order{
(inchans > 7) ? 4 :
(inchans > 5) ? 3 :
(inchans > 3) ? 2 : 1};
{
const ALfloat (&hfscales)[MAX_AMBI_COEFFS] = GetDecoderHFScales(out_order);
/* The specified filter gain is for the mid-point/reference gain. The
* gain at the shelf itself will be the square of that, so specify the
* square-root of the desired shelf gain.
*/
const ALfloat gain0{std::sqrt(Ambi3DDecoderHFScale[0] / hfscales[0])};
const ALfloat gain1{std::sqrt(Ambi3DDecoderHFScale[1] / hfscales[1])};
mUpSampler[0].Shelf.setParams(BiquadType::HighShelf, gain0, xover_norm,
calc_rcpQ_from_slope(gain0, 1.0f));
mUpSampler[1].Shelf.setParams(BiquadType::HighShelf, gain1, xover_norm,
calc_rcpQ_from_slope(gain1, 1.0f));
for(ALsizei i{2};i < 4;i++)
mUpSampler[i].Shelf.copyParamsFrom(mUpSampler[1].Shelf);
}
for(size_t i{0u};i < chancount;i++)
{
const ALfloat (&coeffs)[MAX_AMBI_COEFFS] = chancoeffs[chanmap[i]];
ALfloat (&mtx)[MAX_AMBI_COEFFS] = mMatrix.Single[chanmap[i]];
std::copy_n(std::begin(coeffs), inchans, std::begin(mtx));
}
}
2018-12-24 20:44:55 -08:00
void BFormatDec::process(ALfloat (*OutBuffer)[BUFFERSIZE], const ALsizei OutChannels, const ALfloat (*InSamples)[BUFFERSIZE], const ALsizei SamplesToDo)
{
2018-12-08 01:32:43 -08:00
ASSUME(OutChannels > 0);
2018-12-24 20:44:55 -08:00
ASSUME(mNumChannels > 0);
if(mDualBand)
{
2018-12-10 21:30:22 -08:00
for(ALsizei i{0};i < mNumChannels;i++)
mXOver[i].process(mSamplesHF[i].data(), mSamplesLF[i].data(), InSamples[i],
SamplesToDo);
2018-12-10 21:30:22 -08:00
for(ALsizei chan{0};chan < OutChannels;chan++)
{
if(UNLIKELY(!(mEnabled&(1<<chan))))
continue;
2018-12-24 20:44:55 -08:00
MixRowSamples(OutBuffer[chan], mMatrix.Dual[chan][HF_BAND],
&reinterpret_cast<ALfloat(&)[BUFFERSIZE]>(mSamplesHF[0]),
mNumChannels, 0, SamplesToDo);
2018-12-24 20:44:55 -08:00
MixRowSamples(OutBuffer[chan], mMatrix.Dual[chan][LF_BAND],
&reinterpret_cast<ALfloat(&)[BUFFERSIZE]>(mSamplesLF[0]),
mNumChannels, 0, SamplesToDo);
}
}
else
{
2018-12-10 21:30:22 -08:00
for(ALsizei chan{0};chan < OutChannels;chan++)
{
if(UNLIKELY(!(mEnabled&(1<<chan))))
continue;
2018-12-24 20:44:55 -08:00
MixRowSamples(OutBuffer[chan], mMatrix.Single[chan], InSamples,
mNumChannels, 0, SamplesToDo);
}
}
}
2018-12-24 20:44:55 -08:00
void BFormatDec::upSample(ALfloat (*OutBuffer)[BUFFERSIZE], const ALfloat (*InSamples)[BUFFERSIZE], const ALsizei InChannels, const ALsizei SamplesToDo)
{
2018-12-08 01:32:43 -08:00
ASSUME(InChannels > 0);
ASSUME(SamplesToDo > 0);
/* This up-sampler leverages the differences observed in dual-band higher-
* order decoder matrices compared to first-order. For the same output
* channel configuration, the low-frequency matrix has identical
* coefficients in the shared input channels, while the high-frequency
* matrix has extra scalars applied to the W channel and X/Y/Z channels.
* Using a high-shelf filter to mix the first-order content into the
* higher-order stream, with the appropriate counter-scales applied to the
* HF response, results in the subsequent higher-order decode generating
* the same response as a first-order decode.
*/
2018-12-08 01:32:43 -08:00
for(ALsizei i{0};i < InChannels;i++)
{
mUpSampler[i].Shelf.process(mSamples[0].data(), InSamples[i], SamplesToDo);
const ALfloat *RESTRICT src{al::assume_aligned<16>(mSamples[0].data())};
ALfloat *dst{al::assume_aligned<16>(OutBuffer[i])};
std::transform(src, src+SamplesToDo, dst, dst, std::plus<float>{});
}
}
void AmbiUpsampler::reset(const ALCdevice *device)
{
const ALfloat xover_norm{400.0f / (float)device->Frequency};
mSimpleUp = (device->Dry.CoeffCount == 0);
if(mSimpleUp)
{
const ALfloat (&hfscales)[MAX_AMBI_COEFFS] = GetDecoderHFScales(
(device->Dry.NumChannels > 16) ? 4 :
(device->Dry.NumChannels > 9) ? 3 :
(device->Dry.NumChannels > 4) ? 2 : 1);
const ALfloat gain0{std::sqrt(Ambi3DDecoderHFScale[0] / hfscales[0])};
const ALfloat gain1{std::sqrt(Ambi3DDecoderHFScale[1] / hfscales[1])};
mShelf[0].setParams(BiquadType::HighShelf, gain0, xover_norm,
calc_rcpQ_from_slope(gain0, 1.0f));
mShelf[1].setParams(BiquadType::HighShelf, gain1, xover_norm,
calc_rcpQ_from_slope(gain1, 1.0f));
for(ALsizei i{2};i < 4;i++)
mShelf[i].copyParamsFrom(mShelf[1]);
}
else
{
mInput[0].XOver.init(xover_norm);
for(auto input = std::begin(mInput)+1;input != std::end(mInput);++input)
input->XOver = mInput[0].XOver;
ALfloat encgains[8][MAX_OUTPUT_CHANNELS];
for(size_t k{0u};k < COUNTOF(Ambi3DPoints);k++)
{
ALfloat coeffs[MAX_AMBI_COEFFS];
CalcDirectionCoeffs(Ambi3DPoints[k], 0.0f, coeffs);
ComputePanGains(&device->Dry, coeffs, 1.0f, encgains[k]);
}
/* Combine the matrices that do the in->virt and virt->out conversions
* so we get a single in->out conversion. NOTE: the Encoder matrix
* (encgains) and output are transposed, so the input channels line up
* with the rows and the output channels line up with the columns.
*/
const ALfloat (&hfscales)[MAX_AMBI_COEFFS] = GetDecoderHFScales(
(device->Dry.CoeffCount > 16) ? 4 :
(device->Dry.CoeffCount > 9) ? 3 :
(device->Dry.CoeffCount > 4) ? 2 : 1);
for(ALsizei i{0};i < 4;i++)
{
mInput[i].Gains.fill({});
const ALdouble hfscale = static_cast<ALdouble>(Ambi3DDecoderHFScale[i]) / hfscales[i];
for(ALsizei j{0};j < device->Dry.NumChannels;j++)
{
ALdouble gain{0.0};
for(size_t k{0u};k < COUNTOF(Ambi3DDecoder);k++)
gain += (ALdouble)Ambi3DDecoder[k][i] * encgains[k][j];
mInput[i].Gains[HF_BAND][j] = (ALfloat)(gain * hfscale);
mInput[i].Gains[LF_BAND][j] = (ALfloat)gain;
}
}
}
}
void AmbiUpsampler::process(ALfloat (*OutBuffer)[BUFFERSIZE], const ALsizei OutChannels, const ALfloat (*InSamples)[BUFFERSIZE], const ALsizei SamplesToDo)
{
ASSUME(SamplesToDo > 0);
if(mSimpleUp)
{
for(ALsizei i{0};i < 4;i++)
{
mShelf[i].process(mSamples[0], InSamples[i], SamplesToDo);
const ALfloat *RESTRICT src{al::assume_aligned<16>(mSamples[0])};
ALfloat *dst{al::assume_aligned<16>(OutBuffer[i])};
std::transform(src, src+SamplesToDo, dst, dst, std::plus<float>{});
}
}
else for(auto input = std::begin(mInput);input != std::end(mInput);++input)
{
input->XOver.process(mSamples[HF_BAND], mSamples[LF_BAND], *(InSamples++), SamplesToDo);
MixSamples(mSamples[HF_BAND], OutChannels, OutBuffer, input->Gains[HF_BAND].data(),
input->Gains[HF_BAND].data(), 0, 0, SamplesToDo);
MixSamples(mSamples[LF_BAND], OutChannels, OutBuffer, input->Gains[LF_BAND].data(),
input->Gains[LF_BAND].data(), 0, 0, SamplesToDo);
}
}