2020-08-24 20:04:16 -07:00
|
|
|
|
|
|
|
#include "config.h"
|
|
|
|
|
|
|
|
#include "AL/al.h"
|
|
|
|
#include "AL/alc.h"
|
|
|
|
|
|
|
|
#include "al/auxeffectslot.h"
|
|
|
|
#include "alcmain.h"
|
2020-08-25 02:39:11 -07:00
|
|
|
#include "alcomplex.h"
|
2020-08-24 20:04:16 -07:00
|
|
|
#include "alcontext.h"
|
|
|
|
#include "almalloc.h"
|
|
|
|
#include "alspan.h"
|
|
|
|
#include "effects/base.h"
|
2020-08-25 02:39:11 -07:00
|
|
|
#include "logging.h"
|
|
|
|
#include "polyphase_resampler.h"
|
2020-08-24 20:04:16 -07:00
|
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
2020-08-25 02:39:11 -07:00
|
|
|
/* Convolution reverb is implemented using a segmented overlap-add method. The
|
|
|
|
* impulse response is broken up into multiple segments of 512 samples, and
|
|
|
|
* each segment has an FFT applied with a 1024-sample buffer (the latter half
|
|
|
|
* left silent) to get its frequency-domain response. The resulting response
|
|
|
|
* has its positive/non-mirrored frequencies saved (513 bins) in each segment.
|
|
|
|
*
|
|
|
|
* Input samples are similarly broken up into 512-sample segments, with an FFT
|
|
|
|
* applied to each new incoming segment to get its 513 bins. A history of FFT'd
|
|
|
|
* input segments is maintained, equal to the length of the impulse response.
|
|
|
|
*
|
|
|
|
* To apply the reverberation, each impulse response segment is convolved with
|
|
|
|
* its paired input segment (using complex multiplies, far cheaper than FIRs),
|
|
|
|
* accumulating into a 1024-bin FFT buffer. The input history is then shifted
|
|
|
|
* to align with later impulse response segments for next time.
|
|
|
|
*
|
|
|
|
* An inverse FFT is then applied to the accumulated FFT buffer to get a 1024-
|
|
|
|
* sample time-domain response for output, which is split in two halves. The
|
|
|
|
* first half is the 512-sample output, and the second half is a 512-sample
|
|
|
|
* (really, 511) delayed extension, which gets added to the output next time.
|
|
|
|
* Convolving two time-domain responses of lengths N and M results in a time-
|
|
|
|
* domain signal of length N+M-1, and this holds true regardless of the
|
|
|
|
* convolution being applied in the frequency domain, so these "overflow"
|
|
|
|
* samples need to be accounted for.
|
|
|
|
*
|
|
|
|
* Limitations:
|
|
|
|
* There is currently a 512-sample delay on the output, as a result of needing
|
|
|
|
* to collect that many input samples to do an FFT with. This can be fixed by
|
|
|
|
* excluding the first impulse response segment from being FFT'd, and applying
|
|
|
|
* it directly in the time domain. This will have higher CPU consumption, but
|
|
|
|
* it won't have to wait before generating output.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/* TODO: De-duplicate this load stuff (also in voice.cpp). */
|
|
|
|
|
|
|
|
constexpr int16_t muLawDecompressionTable[256] = {
|
|
|
|
-32124,-31100,-30076,-29052,-28028,-27004,-25980,-24956,
|
|
|
|
-23932,-22908,-21884,-20860,-19836,-18812,-17788,-16764,
|
|
|
|
-15996,-15484,-14972,-14460,-13948,-13436,-12924,-12412,
|
|
|
|
-11900,-11388,-10876,-10364, -9852, -9340, -8828, -8316,
|
|
|
|
-7932, -7676, -7420, -7164, -6908, -6652, -6396, -6140,
|
|
|
|
-5884, -5628, -5372, -5116, -4860, -4604, -4348, -4092,
|
|
|
|
-3900, -3772, -3644, -3516, -3388, -3260, -3132, -3004,
|
|
|
|
-2876, -2748, -2620, -2492, -2364, -2236, -2108, -1980,
|
|
|
|
-1884, -1820, -1756, -1692, -1628, -1564, -1500, -1436,
|
|
|
|
-1372, -1308, -1244, -1180, -1116, -1052, -988, -924,
|
|
|
|
-876, -844, -812, -780, -748, -716, -684, -652,
|
|
|
|
-620, -588, -556, -524, -492, -460, -428, -396,
|
|
|
|
-372, -356, -340, -324, -308, -292, -276, -260,
|
|
|
|
-244, -228, -212, -196, -180, -164, -148, -132,
|
|
|
|
-120, -112, -104, -96, -88, -80, -72, -64,
|
|
|
|
-56, -48, -40, -32, -24, -16, -8, 0,
|
|
|
|
32124, 31100, 30076, 29052, 28028, 27004, 25980, 24956,
|
|
|
|
23932, 22908, 21884, 20860, 19836, 18812, 17788, 16764,
|
|
|
|
15996, 15484, 14972, 14460, 13948, 13436, 12924, 12412,
|
|
|
|
11900, 11388, 10876, 10364, 9852, 9340, 8828, 8316,
|
|
|
|
7932, 7676, 7420, 7164, 6908, 6652, 6396, 6140,
|
|
|
|
5884, 5628, 5372, 5116, 4860, 4604, 4348, 4092,
|
|
|
|
3900, 3772, 3644, 3516, 3388, 3260, 3132, 3004,
|
|
|
|
2876, 2748, 2620, 2492, 2364, 2236, 2108, 1980,
|
|
|
|
1884, 1820, 1756, 1692, 1628, 1564, 1500, 1436,
|
|
|
|
1372, 1308, 1244, 1180, 1116, 1052, 988, 924,
|
|
|
|
876, 844, 812, 780, 748, 716, 684, 652,
|
|
|
|
620, 588, 556, 524, 492, 460, 428, 396,
|
|
|
|
372, 356, 340, 324, 308, 292, 276, 260,
|
|
|
|
244, 228, 212, 196, 180, 164, 148, 132,
|
|
|
|
120, 112, 104, 96, 88, 80, 72, 64,
|
|
|
|
56, 48, 40, 32, 24, 16, 8, 0
|
|
|
|
};
|
|
|
|
|
|
|
|
constexpr int16_t aLawDecompressionTable[256] = {
|
|
|
|
-5504, -5248, -6016, -5760, -4480, -4224, -4992, -4736,
|
|
|
|
-7552, -7296, -8064, -7808, -6528, -6272, -7040, -6784,
|
|
|
|
-2752, -2624, -3008, -2880, -2240, -2112, -2496, -2368,
|
|
|
|
-3776, -3648, -4032, -3904, -3264, -3136, -3520, -3392,
|
|
|
|
-22016,-20992,-24064,-23040,-17920,-16896,-19968,-18944,
|
|
|
|
-30208,-29184,-32256,-31232,-26112,-25088,-28160,-27136,
|
|
|
|
-11008,-10496,-12032,-11520, -8960, -8448, -9984, -9472,
|
|
|
|
-15104,-14592,-16128,-15616,-13056,-12544,-14080,-13568,
|
|
|
|
-344, -328, -376, -360, -280, -264, -312, -296,
|
|
|
|
-472, -456, -504, -488, -408, -392, -440, -424,
|
|
|
|
-88, -72, -120, -104, -24, -8, -56, -40,
|
|
|
|
-216, -200, -248, -232, -152, -136, -184, -168,
|
|
|
|
-1376, -1312, -1504, -1440, -1120, -1056, -1248, -1184,
|
|
|
|
-1888, -1824, -2016, -1952, -1632, -1568, -1760, -1696,
|
|
|
|
-688, -656, -752, -720, -560, -528, -624, -592,
|
|
|
|
-944, -912, -1008, -976, -816, -784, -880, -848,
|
|
|
|
5504, 5248, 6016, 5760, 4480, 4224, 4992, 4736,
|
|
|
|
7552, 7296, 8064, 7808, 6528, 6272, 7040, 6784,
|
|
|
|
2752, 2624, 3008, 2880, 2240, 2112, 2496, 2368,
|
|
|
|
3776, 3648, 4032, 3904, 3264, 3136, 3520, 3392,
|
|
|
|
22016, 20992, 24064, 23040, 17920, 16896, 19968, 18944,
|
|
|
|
30208, 29184, 32256, 31232, 26112, 25088, 28160, 27136,
|
|
|
|
11008, 10496, 12032, 11520, 8960, 8448, 9984, 9472,
|
|
|
|
15104, 14592, 16128, 15616, 13056, 12544, 14080, 13568,
|
|
|
|
344, 328, 376, 360, 280, 264, 312, 296,
|
|
|
|
472, 456, 504, 488, 408, 392, 440, 424,
|
|
|
|
88, 72, 120, 104, 24, 8, 56, 40,
|
|
|
|
216, 200, 248, 232, 152, 136, 184, 168,
|
|
|
|
1376, 1312, 1504, 1440, 1120, 1056, 1248, 1184,
|
|
|
|
1888, 1824, 2016, 1952, 1632, 1568, 1760, 1696,
|
|
|
|
688, 656, 752, 720, 560, 528, 624, 592,
|
|
|
|
944, 912, 1008, 976, 816, 784, 880, 848
|
|
|
|
};
|
|
|
|
|
|
|
|
template<FmtType T>
|
|
|
|
struct FmtTypeTraits { };
|
|
|
|
|
|
|
|
template<>
|
|
|
|
struct FmtTypeTraits<FmtUByte> {
|
|
|
|
using Type = uint8_t;
|
|
|
|
static constexpr inline double to_double(const Type val) noexcept
|
|
|
|
{ return val*(1.0/128.0) - 1.0; }
|
|
|
|
};
|
|
|
|
template<>
|
|
|
|
struct FmtTypeTraits<FmtShort> {
|
|
|
|
using Type = int16_t;
|
|
|
|
static constexpr inline double to_double(const Type val) noexcept { return val*(1.0/32768.0); }
|
|
|
|
};
|
|
|
|
template<>
|
|
|
|
struct FmtTypeTraits<FmtFloat> {
|
|
|
|
using Type = float;
|
|
|
|
static constexpr inline double to_double(const Type val) noexcept { return val; }
|
|
|
|
};
|
|
|
|
template<>
|
|
|
|
struct FmtTypeTraits<FmtDouble> {
|
|
|
|
using Type = double;
|
|
|
|
static constexpr inline double to_double(const Type val) noexcept { return val; }
|
|
|
|
};
|
|
|
|
template<>
|
|
|
|
struct FmtTypeTraits<FmtMulaw> {
|
|
|
|
using Type = uint8_t;
|
|
|
|
static constexpr inline double to_double(const Type val) noexcept
|
|
|
|
{ return muLawDecompressionTable[val] * (1.0/32768.0); }
|
|
|
|
};
|
|
|
|
template<>
|
|
|
|
struct FmtTypeTraits<FmtAlaw> {
|
|
|
|
using Type = uint8_t;
|
|
|
|
static constexpr inline double to_double(const Type val) noexcept
|
|
|
|
{ return aLawDecompressionTable[val] * (1.0/32768.0); }
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
template<FmtType T>
|
|
|
|
inline void LoadSampleArray(double *RESTRICT dst, const al::byte *src, const size_t srcstep,
|
|
|
|
const size_t samples) noexcept
|
|
|
|
{
|
|
|
|
using SampleType = typename FmtTypeTraits<T>::Type;
|
|
|
|
|
|
|
|
const SampleType *RESTRICT ssrc{reinterpret_cast<const SampleType*>(src)};
|
|
|
|
for(size_t i{0u};i < samples;i++)
|
|
|
|
dst[i] = FmtTypeTraits<T>::to_double(ssrc[i*srcstep]);
|
|
|
|
}
|
|
|
|
|
|
|
|
void LoadSamples(double *RESTRICT dst, const al::byte *src, const size_t srcstep, FmtType srctype,
|
|
|
|
const size_t samples) noexcept
|
|
|
|
{
|
|
|
|
#define HANDLE_FMT(T) case T: LoadSampleArray<T>(dst, src, srcstep, samples); break
|
|
|
|
switch(srctype)
|
|
|
|
{
|
|
|
|
HANDLE_FMT(FmtUByte);
|
|
|
|
HANDLE_FMT(FmtShort);
|
|
|
|
HANDLE_FMT(FmtFloat);
|
|
|
|
HANDLE_FMT(FmtDouble);
|
|
|
|
HANDLE_FMT(FmtMulaw);
|
|
|
|
HANDLE_FMT(FmtAlaw);
|
|
|
|
}
|
|
|
|
#undef HANDLE_FMT
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
using complex_d = std::complex<double>;
|
|
|
|
|
|
|
|
constexpr size_t ConvolveUpdateSize{1024};
|
|
|
|
constexpr size_t ConvolveUpdateSamples{ConvolveUpdateSize / 2};
|
|
|
|
|
|
|
|
#define MAX_FILTER_CHANNELS 2
|
|
|
|
|
|
|
|
|
|
|
|
struct ConvolutionFilter final : public EffectBufferBase {
|
2020-08-25 15:43:48 -07:00
|
|
|
size_t mCurrentSegment{0};
|
2020-08-25 02:39:11 -07:00
|
|
|
size_t mNumConvolveSegs{0};
|
|
|
|
complex_d *mInputHistory{};
|
|
|
|
complex_d *mConvolveFilter[MAX_FILTER_CHANNELS]{};
|
|
|
|
|
|
|
|
FmtChannels mChannels;
|
|
|
|
|
|
|
|
std::unique_ptr<complex_d[]> mComplexData;
|
|
|
|
|
|
|
|
DEF_NEWDEL(ConvolutionFilter)
|
|
|
|
};
|
|
|
|
|
2020-08-24 20:04:16 -07:00
|
|
|
struct ConvolutionState final : public EffectState {
|
2020-08-25 02:39:11 -07:00
|
|
|
ConvolutionFilter *mFilter{};
|
|
|
|
|
|
|
|
size_t mFifoPos{0};
|
|
|
|
alignas(16) std::array<double,ConvolveUpdateSamples*2> mOutput[MAX_FILTER_CHANNELS]{};
|
|
|
|
alignas(16) std::array<complex_d,ConvolveUpdateSize> mFftBuffer{};
|
|
|
|
|
|
|
|
ALuint mNumChannels;
|
|
|
|
alignas(16) FloatBufferLine mTempBuffer[MAX_FILTER_CHANNELS]{};
|
|
|
|
|
|
|
|
struct {
|
|
|
|
float Current[MAX_OUTPUT_CHANNELS]{};
|
|
|
|
float Target[MAX_OUTPUT_CHANNELS]{};
|
|
|
|
} mGains[MAX_FILTER_CHANNELS];
|
|
|
|
|
2020-08-24 20:04:16 -07:00
|
|
|
ConvolutionState() = default;
|
|
|
|
~ConvolutionState() override = default;
|
|
|
|
|
|
|
|
void deviceUpdate(const ALCdevice *device) override;
|
|
|
|
EffectBufferBase *createBuffer(const ALCdevice *device, const al::byte *sampleData,
|
|
|
|
ALuint sampleRate, FmtType sampleType, FmtChannels channelType, ALuint numSamples) override;
|
|
|
|
void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override;
|
|
|
|
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override;
|
|
|
|
|
|
|
|
DEF_NEWDEL(ConvolutionState)
|
|
|
|
};
|
|
|
|
|
|
|
|
void ConvolutionState::deviceUpdate(const ALCdevice* /*device*/)
|
|
|
|
{
|
2020-08-25 02:39:11 -07:00
|
|
|
mFifoPos = 0;
|
|
|
|
for(auto &buffer : mOutput)
|
|
|
|
buffer.fill(0.0f);
|
|
|
|
mFftBuffer.fill(complex_d{});
|
|
|
|
|
|
|
|
for(auto &buffer : mTempBuffer)
|
|
|
|
buffer.fill(0.0);
|
|
|
|
|
|
|
|
for(auto &e : mGains)
|
|
|
|
{
|
|
|
|
std::fill(std::begin(e.Current), std::end(e.Current), 0.0f);
|
|
|
|
std::fill(std::begin(e.Target), std::end(e.Target), 0.0f);
|
|
|
|
}
|
2020-08-24 20:04:16 -07:00
|
|
|
}
|
|
|
|
|
2020-08-25 02:39:11 -07:00
|
|
|
EffectBufferBase *ConvolutionState::createBuffer(const ALCdevice *device,
|
|
|
|
const al::byte *sampleData, ALuint sampleRate, FmtType sampleType,
|
|
|
|
FmtChannels channelType, ALuint numSamples)
|
2020-08-24 20:04:16 -07:00
|
|
|
{
|
2020-08-25 02:39:11 -07:00
|
|
|
/* FIXME: Support anything. */
|
|
|
|
if(channelType != FmtMono && channelType != FmtStereo)
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
/* The impulse response needs to have the same sample rate as the input and
|
|
|
|
* output. The bsinc24 resampler is decent, but there is high-frequency
|
|
|
|
* attenation that some people may be able to pick up on. Since this is
|
|
|
|
* very infrequent called, go ahead and use the polyphase resampler.
|
|
|
|
*/
|
|
|
|
PPhaseResampler resampler;
|
|
|
|
if(device->Frequency != sampleRate)
|
|
|
|
resampler.init(sampleRate, device->Frequency);
|
|
|
|
const auto resampledCount = static_cast<ALuint>(
|
|
|
|
(uint64_t{numSamples}*device->Frequency + (sampleRate-1)) / sampleRate);
|
|
|
|
|
|
|
|
al::intrusive_ptr<ConvolutionFilter> filter{new ConvolutionFilter{}};
|
|
|
|
|
|
|
|
auto bytesPerSample = BytesFromFmt(sampleType);
|
|
|
|
auto numChannels = ChannelsFromFmt(channelType, 1);
|
|
|
|
constexpr size_t m{ConvolveUpdateSize/2 + 1};
|
|
|
|
|
|
|
|
/* Calculate the number of segments needed to hold the impulse response and
|
|
|
|
* the input history (rounded up), and allocate them.
|
|
|
|
*/
|
|
|
|
filter->mNumConvolveSegs = (numSamples+(ConvolveUpdateSamples-1)) / ConvolveUpdateSamples;
|
|
|
|
|
|
|
|
const size_t complex_length{filter->mNumConvolveSegs * m * (numChannels+1)};
|
|
|
|
filter->mComplexData = std::make_unique<complex_d[]>(complex_length);
|
|
|
|
std::fill_n(filter->mComplexData.get(), complex_length, complex_d{});
|
|
|
|
|
|
|
|
filter->mInputHistory = filter->mComplexData.get();
|
|
|
|
filter->mConvolveFilter[0] = filter->mInputHistory + filter->mNumConvolveSegs*m;
|
|
|
|
for(size_t c{1};c < numChannels;++c)
|
|
|
|
filter->mConvolveFilter[c] = filter->mConvolveFilter[c-1] + filter->mNumConvolveSegs*m;
|
|
|
|
|
|
|
|
filter->mChannels = channelType;
|
|
|
|
|
|
|
|
auto fftbuffer = std::make_unique<std::array<complex_d,ConvolveUpdateSize>>();
|
|
|
|
auto srcsamples = std::make_unique<double[]>(maxz(numSamples, resampledCount));
|
|
|
|
for(size_t c{0};c < numChannels;++c)
|
|
|
|
{
|
|
|
|
/* Load the samples from the buffer, and resample to match the device. */
|
|
|
|
LoadSamples(srcsamples.get(), sampleData + bytesPerSample*c, numChannels, sampleType,
|
|
|
|
numSamples);
|
|
|
|
if(device->Frequency != sampleRate)
|
|
|
|
resampler.process(numSamples, srcsamples.get(), resampledCount, srcsamples.get());
|
|
|
|
|
|
|
|
size_t done{0};
|
|
|
|
complex_d *filteriter = filter->mConvolveFilter[c];
|
|
|
|
for(size_t s{0};s < filter->mNumConvolveSegs;++s)
|
|
|
|
{
|
|
|
|
const size_t todo{minz(resampledCount-done, ConvolveUpdateSamples)};
|
|
|
|
|
|
|
|
auto iter = std::copy_n(&srcsamples[done], todo, fftbuffer->begin());
|
|
|
|
done += todo;
|
|
|
|
std::fill(iter, fftbuffer->end(), complex_d{});
|
|
|
|
|
|
|
|
complex_fft(*fftbuffer, -1.0);
|
|
|
|
filteriter = std::copy_n(fftbuffer->cbegin(), m, filteriter);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return filter.release();
|
2020-08-24 20:04:16 -07:00
|
|
|
}
|
|
|
|
|
2020-08-25 02:39:11 -07:00
|
|
|
void ConvolutionState::update(const ALCcontext* /*context*/, const ALeffectslot *slot,
|
|
|
|
const EffectProps* /*props*/, const EffectTarget target)
|
2020-08-24 20:04:16 -07:00
|
|
|
{
|
2020-08-25 02:39:11 -07:00
|
|
|
mFilter = static_cast<ConvolutionFilter*>(slot->Params.mEffectBuffer);
|
|
|
|
mNumChannels = ChannelsFromFmt(mFilter->mChannels, 1);
|
|
|
|
|
|
|
|
/* The iFFT'd response is scaled up by the number of bins, so apply the
|
|
|
|
* inverse to the output mixing gain.
|
|
|
|
*/
|
|
|
|
constexpr size_t m{ConvolveUpdateSize/2 + 1};
|
|
|
|
const float gain{slot->Params.Gain * (1.0f/m)};
|
|
|
|
if(mFilter->mChannels == FmtStereo)
|
|
|
|
{
|
|
|
|
/* TODO: Add a "direct channels" setting for this effect? */
|
|
|
|
const ALuint lidx{!target.RealOut ? INVALID_CHANNEL_INDEX :
|
|
|
|
GetChannelIdxByName(*target.RealOut, FrontLeft)};
|
|
|
|
const ALuint ridx{!target.RealOut ? INVALID_CHANNEL_INDEX :
|
|
|
|
GetChannelIdxByName(*target.RealOut, FrontRight)};
|
|
|
|
if(lidx != INVALID_CHANNEL_INDEX && ridx != INVALID_CHANNEL_INDEX)
|
|
|
|
{
|
|
|
|
mOutTarget = target.RealOut->Buffer;
|
|
|
|
mGains[0].Target[lidx] = gain;
|
|
|
|
mGains[1].Target[ridx] = gain;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
const auto lcoeffs = CalcDirectionCoeffs({-1.0f, 0.0f, 0.0f}, 0.0f);
|
|
|
|
const auto rcoeffs = CalcDirectionCoeffs({ 1.0f, 0.0f, 0.0f}, 0.0f);
|
|
|
|
|
|
|
|
mOutTarget = target.Main->Buffer;
|
|
|
|
ComputePanGains(target.Main, lcoeffs.data(), gain, mGains[0].Target);
|
|
|
|
ComputePanGains(target.Main, rcoeffs.data(), gain, mGains[1].Target);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if(mFilter->mChannels == FmtMono)
|
|
|
|
{
|
|
|
|
const auto coeffs = CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f);
|
|
|
|
|
|
|
|
mOutTarget = target.Main->Buffer;
|
|
|
|
ComputePanGains(target.Main, coeffs.data(), gain, mGains[0].Target);
|
|
|
|
}
|
2020-08-24 20:04:16 -07:00
|
|
|
}
|
|
|
|
|
2020-08-25 02:39:11 -07:00
|
|
|
void ConvolutionState::process(const size_t samplesToDo,
|
|
|
|
const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
|
2020-08-24 20:04:16 -07:00
|
|
|
{
|
2020-08-25 02:39:11 -07:00
|
|
|
/* No filter, no response. */
|
|
|
|
if(!mFilter) return;
|
|
|
|
|
2020-08-25 15:43:48 -07:00
|
|
|
constexpr size_t m{ConvolveUpdateSize/2 + 1};
|
|
|
|
size_t curseg{mFilter->mCurrentSegment};
|
|
|
|
|
2020-08-25 02:39:11 -07:00
|
|
|
for(size_t base{0u};base < samplesToDo;)
|
|
|
|
{
|
|
|
|
const size_t todo{minz(ConvolveUpdateSamples-mFifoPos, samplesToDo-base)};
|
|
|
|
|
|
|
|
/* Retrieve the output samples from the FIFO and fill in the new input
|
|
|
|
* samples.
|
|
|
|
*/
|
|
|
|
for(size_t c{0};c < mNumChannels;++c)
|
|
|
|
{
|
|
|
|
auto fifo_iter = mOutput[c].begin() + mFifoPos;
|
|
|
|
std::transform(fifo_iter, fifo_iter+todo, mTempBuffer[c].begin()+base,
|
|
|
|
[](double d) noexcept -> float { return static_cast<float>(d); });
|
|
|
|
}
|
|
|
|
|
|
|
|
std::copy_n(samplesIn[0].begin()+base, todo, mFftBuffer.begin()+mFifoPos);
|
|
|
|
mFifoPos += todo;
|
|
|
|
base += todo;
|
|
|
|
|
|
|
|
/* Check whether FIFO buffer is filled with new samples. */
|
|
|
|
if(mFifoPos < ConvolveUpdateSamples) break;
|
|
|
|
mFifoPos = 0;
|
|
|
|
|
|
|
|
/* Calculate the frequency domain response and add the relevant
|
|
|
|
* frequency bins to the input history.
|
|
|
|
*/
|
|
|
|
complex_fft(mFftBuffer, -1.0);
|
|
|
|
|
2020-08-25 15:43:48 -07:00
|
|
|
std::copy_n(mFftBuffer.begin(), m, &mFilter->mInputHistory[curseg*m]);
|
2020-08-25 02:39:11 -07:00
|
|
|
mFftBuffer.fill(complex_d{});
|
|
|
|
|
|
|
|
for(size_t c{0};c < mNumChannels;++c)
|
|
|
|
{
|
|
|
|
/* Convolve each input segment with its IR filter counterpart
|
|
|
|
* (aligned in time).
|
|
|
|
*/
|
2020-08-25 15:43:48 -07:00
|
|
|
const complex_d *RESTRICT filter{mFilter->mConvolveFilter[c]};
|
|
|
|
const complex_d *RESTRICT input{&mFilter->mInputHistory[curseg*m]};
|
|
|
|
for(size_t s{curseg};s < mFilter->mNumConvolveSegs;++s)
|
|
|
|
{
|
|
|
|
for(size_t i{0};i < m;++i,++input,++filter)
|
|
|
|
mFftBuffer[i] += *input * *filter;
|
|
|
|
}
|
|
|
|
input = mFilter->mInputHistory;
|
|
|
|
for(size_t s{0};s < curseg;++s)
|
2020-08-25 02:39:11 -07:00
|
|
|
{
|
2020-08-25 15:43:48 -07:00
|
|
|
for(size_t i{0};i < m;++i,++input,++filter)
|
|
|
|
mFftBuffer[i] += *input * *filter;
|
2020-08-25 02:39:11 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Apply iFFT to get the 1024 (really 1023) samples for output. The
|
|
|
|
* 512 output samples are combined with the last output's 511
|
|
|
|
* second-half samples (and this output's second half is
|
|
|
|
* subsequently saved for next time).
|
|
|
|
*/
|
|
|
|
complex_fft(mFftBuffer, 1.0);
|
|
|
|
|
|
|
|
for(size_t i{0};i < ConvolveUpdateSamples;++i)
|
|
|
|
mOutput[c][i] = mFftBuffer[i].real() + mOutput[c][ConvolveUpdateSamples+i];
|
|
|
|
for(size_t i{0};i < ConvolveUpdateSamples;++i)
|
|
|
|
mOutput[c][ConvolveUpdateSamples+i] = mFftBuffer[ConvolveUpdateSamples+i].real();
|
|
|
|
mFftBuffer.fill(complex_d{});
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Shift the input history. */
|
2020-08-25 15:43:48 -07:00
|
|
|
curseg = curseg ? (curseg-1) : (mFilter->mNumConvolveSegs-1);
|
2020-08-25 02:39:11 -07:00
|
|
|
}
|
2020-08-25 15:43:48 -07:00
|
|
|
mFilter->mCurrentSegment = curseg;
|
2020-08-25 02:39:11 -07:00
|
|
|
|
|
|
|
/* Finally, mix to the output. */
|
|
|
|
for(size_t c{0};c < mNumChannels;++c)
|
|
|
|
MixSamples({mTempBuffer[c].data(), samplesToDo}, samplesOut, mGains[c].Current,
|
|
|
|
mGains[c].Target, samplesToDo, 0);
|
2020-08-24 20:04:16 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ConvolutionEffect_setParami(EffectProps* /*props*/, ALenum param, int /*val*/)
|
|
|
|
{
|
|
|
|
switch(param)
|
|
|
|
{
|
|
|
|
default:
|
|
|
|
throw effect_exception{AL_INVALID_ENUM, "Invalid null effect integer property 0x%04x",
|
|
|
|
param};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void ConvolutionEffect_setParamiv(EffectProps *props, ALenum param, const int *vals)
|
|
|
|
{
|
|
|
|
switch(param)
|
|
|
|
{
|
|
|
|
default:
|
|
|
|
ConvolutionEffect_setParami(props, param, vals[0]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void ConvolutionEffect_setParamf(EffectProps* /*props*/, ALenum param, float /*val*/)
|
|
|
|
{
|
|
|
|
switch(param)
|
|
|
|
{
|
|
|
|
default:
|
|
|
|
throw effect_exception{AL_INVALID_ENUM, "Invalid null effect float property 0x%04x",
|
|
|
|
param};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void ConvolutionEffect_setParamfv(EffectProps *props, ALenum param, const float *vals)
|
|
|
|
{
|
|
|
|
switch(param)
|
|
|
|
{
|
|
|
|
default:
|
|
|
|
ConvolutionEffect_setParamf(props, param, vals[0]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ConvolutionEffect_getParami(const EffectProps* /*props*/, ALenum param, int* /*val*/)
|
|
|
|
{
|
|
|
|
switch(param)
|
|
|
|
{
|
|
|
|
default:
|
|
|
|
throw effect_exception{AL_INVALID_ENUM, "Invalid null effect integer property 0x%04x",
|
|
|
|
param};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void ConvolutionEffect_getParamiv(const EffectProps *props, ALenum param, int *vals)
|
|
|
|
{
|
|
|
|
switch(param)
|
|
|
|
{
|
|
|
|
default:
|
|
|
|
ConvolutionEffect_getParami(props, param, vals);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void ConvolutionEffect_getParamf(const EffectProps* /*props*/, ALenum param, float* /*val*/)
|
|
|
|
{
|
|
|
|
switch(param)
|
|
|
|
{
|
|
|
|
default:
|
|
|
|
throw effect_exception{AL_INVALID_ENUM, "Invalid null effect float property 0x%04x",
|
|
|
|
param};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void ConvolutionEffect_getParamfv(const EffectProps *props, ALenum param, float *vals)
|
|
|
|
{
|
|
|
|
switch(param)
|
|
|
|
{
|
|
|
|
default:
|
|
|
|
ConvolutionEffect_getParamf(props, param, vals);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
DEFINE_ALEFFECT_VTABLE(ConvolutionEffect);
|
|
|
|
|
|
|
|
|
|
|
|
struct ConvolutionStateFactory final : public EffectStateFactory {
|
|
|
|
EffectState *create() override;
|
|
|
|
EffectProps getDefaultProps() const noexcept override;
|
|
|
|
const EffectVtable *getEffectVtable() const noexcept override;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Creates EffectState objects of the appropriate type. */
|
|
|
|
EffectState *ConvolutionStateFactory::create()
|
|
|
|
{ return new ConvolutionState{}; }
|
|
|
|
|
|
|
|
/* Returns an ALeffectProps initialized with this effect type's default
|
|
|
|
* property values.
|
|
|
|
*/
|
|
|
|
EffectProps ConvolutionStateFactory::getDefaultProps() const noexcept
|
|
|
|
{
|
|
|
|
EffectProps props{};
|
|
|
|
return props;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Returns a pointer to this effect type's global set/get vtable. */
|
|
|
|
const EffectVtable *ConvolutionStateFactory::getEffectVtable() const noexcept
|
|
|
|
{ return &ConvolutionEffect_vtable; }
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
EffectStateFactory *ConvolutionStateFactory_getFactory()
|
|
|
|
{
|
|
|
|
static ConvolutionStateFactory ConvolutionFactory{};
|
|
|
|
return &ConvolutionFactory;
|
|
|
|
}
|