openal-soft/alc/mixer/mixer_c.cpp

199 lines
6.8 KiB
C++
Raw Normal View History

2012-08-15 01:01:55 -07:00
#include "config.h"
2019-01-09 19:42:40 +01:00
#include <cassert>
2018-12-22 16:01:14 -08:00
#include <limits>
#include "alcmain.h"
2012-08-15 01:01:55 -07:00
#include "alu.h"
#include "bsinc_defs.h"
#include "defs.h"
#include "hrtfbase.h"
2012-08-15 01:01:55 -07:00
struct CTag;
struct CopyTag;
struct PointTag;
struct LerpTag;
struct CubicTag;
struct BSincTag;
struct FastBSincTag;
2012-08-15 01:01:55 -07:00
2019-05-25 08:17:37 -07:00
namespace {
#define FRAC_PHASE_BITDIFF (FRACTIONBITS - BSINC_PHASE_BITS)
#define FRAC_PHASE_DIFFONE (1<<FRAC_PHASE_BITDIFF)
2019-10-02 17:07:23 -07:00
inline float do_point(const InterpState&, const float *RESTRICT vals, const ALuint)
{ return vals[0]; }
2019-10-02 17:07:23 -07:00
inline float do_lerp(const InterpState&, const float *RESTRICT vals, const ALuint frac)
{ return lerp(vals[0], vals[1], static_cast<float>(frac)*(1.0f/FRACTIONONE)); }
2019-10-02 17:07:23 -07:00
inline float do_cubic(const InterpState&, const float *RESTRICT vals, const ALuint frac)
{ return cubic(vals[0], vals[1], vals[2], vals[3], static_cast<float>(frac)*(1.0f/FRACTIONONE)); }
2019-10-02 17:07:23 -07:00
inline float do_bsinc(const InterpState &istate, const float *RESTRICT vals, const ALuint frac)
{
const size_t m{istate.bsinc.m};
// Calculate the phase index and factor.
const ALuint pi{frac >> FRAC_PHASE_BITDIFF};
const float pf{static_cast<float>(frac & (FRAC_PHASE_DIFFONE-1)) * (1.0f/FRAC_PHASE_DIFFONE)};
2019-10-02 17:07:23 -07:00
const float *fil{istate.bsinc.filter + m*pi*4};
const float *phd{fil + m};
const float *scd{phd + m};
const float *spd{scd + m};
// Apply the scale and phase interpolated filter.
2019-10-02 17:07:23 -07:00
float r{0.0f};
for(size_t j_f{0};j_f < m;j_f++)
r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f];
return r;
}
2019-10-02 17:07:23 -07:00
inline float do_fastbsinc(const InterpState &istate, const float *RESTRICT vals, const ALuint frac)
{
const size_t m{istate.bsinc.m};
// Calculate the phase index and factor.
const ALuint pi{frac >> FRAC_PHASE_BITDIFF};
const float pf{static_cast<float>(frac & (FRAC_PHASE_DIFFONE-1)) * (1.0f/FRAC_PHASE_DIFFONE)};
2019-10-02 17:07:23 -07:00
const float *fil{istate.bsinc.filter + m*pi*4};
const float *phd{fil + m};
// Apply the phase interpolated filter.
2019-10-02 17:07:23 -07:00
float r{0.0f};
for(size_t j_f{0};j_f < m;j_f++)
r += (fil[j_f] + pf*phd[j_f]) * vals[j_f];
return r;
}
using SamplerT = float(&)(const InterpState&, const float*RESTRICT, const ALuint);
template<SamplerT Sampler>
2019-10-02 17:07:23 -07:00
const float *DoResample(const InterpState *state, const float *RESTRICT src, ALuint frac,
ALuint increment, const al::span<float> dst)
{
const InterpState istate{*state};
for(float &out : dst)
{
out = Sampler(istate, src, frac);
frac += increment;
src += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
return dst.data();
}
inline void ApplyCoeffs(float2 *RESTRICT Values, const ALuint IrSize, const HrirArray &Coeffs,
const float left, const float right)
{
ASSUME(IrSize >= MIN_IR_LENGTH);
for(ALuint c{0};c < IrSize;++c)
{
Values[c][0] += Coeffs[c][0] * left;
Values[c][1] += Coeffs[c][1] * right;
}
}
2019-05-25 08:17:37 -07:00
} // namespace
template<>
const float *Resample_<CopyTag,CTag>(const InterpState*, const float *RESTRICT src, ALuint, ALuint,
const al::span<float> dst)
{
#if defined(HAVE_SSE) || defined(HAVE_NEON)
/* Avoid copying the source data if it's aligned like the destination. */
2019-08-20 08:46:12 -07:00
if((reinterpret_cast<intptr_t>(src)&15) == (reinterpret_cast<intptr_t>(dst.data())&15))
return src;
#endif
2019-08-20 08:46:12 -07:00
std::copy_n(src, dst.size(), dst.begin());
return dst.data();
}
template<>
const float *Resample_<PointTag,CTag>(const InterpState *state, const float *RESTRICT src,
2019-09-13 03:25:13 -07:00
ALuint frac, ALuint increment, const al::span<float> dst)
2019-08-20 08:46:12 -07:00
{ return DoResample<do_point>(state, src, frac, increment, dst); }
template<>
const float *Resample_<LerpTag,CTag>(const InterpState *state, const float *RESTRICT src,
2019-09-13 03:25:13 -07:00
ALuint frac, ALuint increment, const al::span<float> dst)
2019-08-20 08:46:12 -07:00
{ return DoResample<do_lerp>(state, src, frac, increment, dst); }
template<>
const float *Resample_<CubicTag,CTag>(const InterpState *state, const float *RESTRICT src,
2019-09-13 03:25:13 -07:00
ALuint frac, ALuint increment, const al::span<float> dst)
2019-08-20 08:46:12 -07:00
{ return DoResample<do_cubic>(state, src-1, frac, increment, dst); }
template<>
const float *Resample_<BSincTag,CTag>(const InterpState *state, const float *RESTRICT src,
2019-09-13 03:25:13 -07:00
ALuint frac, ALuint increment, const al::span<float> dst)
2019-08-20 08:46:12 -07:00
{ return DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst); }
template<>
const float *Resample_<FastBSincTag,CTag>(const InterpState *state, const float *RESTRICT src,
ALuint frac, ALuint increment, const al::span<float> dst)
{ return DoResample<do_fastbsinc>(state, src-state->bsinc.l, frac, increment, dst); }
template<>
void MixHrtf_<CTag>(const float *InSamples, float2 *AccumSamples, const ALuint IrSize,
2020-01-05 17:12:48 -08:00
const MixHrtfFilter *hrtfparams, const size_t BufferSize)
{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
template<>
void MixHrtfBlend_<CTag>(const float *InSamples, float2 *AccumSamples, const ALuint IrSize,
2020-01-05 17:12:48 -08:00
const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
{
MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
BufferSize);
}
template<>
void MixDirectHrtf_<CTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, DirectHrtfState *State,
const size_t BufferSize)
2019-10-02 17:07:23 -07:00
{ MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize); }
2012-09-16 08:14:26 -07:00
template<>
void Mix_<CTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
2012-09-16 08:14:26 -07:00
{
const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
const bool reached_target{InSamples.size() >= Counter};
const auto min_end = reached_target ? InSamples.begin() + Counter : InSamples.end();
for(FloatBufferLine &output : OutBuffer)
2012-09-16 08:14:26 -07:00
{
float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
float gain{*CurrentGains};
const float diff{*TargetGains - gain};
auto in_iter = InSamples.begin();
if(!(std::fabs(diff) > std::numeric_limits<float>::epsilon()))
gain = *TargetGains;
else
{
const float step{diff * delta};
float step_count{0.0f};
while(in_iter != min_end)
{
*(dst++) += *(in_iter++) * (gain + step*step_count);
step_count += 1.0f;
}
if(reached_target)
gain = *TargetGains;
else
gain += step*step_count;
}
*CurrentGains = gain;
++CurrentGains;
++TargetGains;
if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
continue;
while(in_iter != InSamples.end())
*(dst++) += *(in_iter++) * gain;
2014-03-23 16:11:21 -07:00
}
2012-09-16 08:14:26 -07:00
}