openal-soft/Alc/panning.c

747 lines
28 KiB
C
Raw Normal View History

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2010 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include "alMain.h"
#include "alAuxEffectSlot.h"
#include "alu.h"
#include "bool.h"
#include "ambdec.h"
#include "bformatdec.h"
extern inline void CalcXYZCoeffs(ALfloat x, ALfloat y, ALfloat z, ALfloat coeffs[MAX_AMBI_COEFFS]);
#define ZERO_ORDER_SCALE 0.0f
#define FIRST_ORDER_SCALE 1.0f
#define SECOND_ORDER_SCALE (1.0f / 1.22474f)
#define THIRD_ORDER_SCALE (1.0f / 1.30657f)
2015-08-22 07:23:43 -07:00
static const ALuint FuMa2ACN[MAX_AMBI_COEFFS] = {
0, /* W */
3, /* X */
1, /* Y */
2, /* Z */
6, /* R */
7, /* S */
5, /* T */
8, /* U */
4, /* V */
12, /* K */
13, /* L */
11, /* M */
14, /* N */
10, /* O */
15, /* P */
9, /* Q */
};
/* NOTE: These are scale factors as applied to Ambisonics content. Decoder
* coefficients should be divided by these values to get proper N3D scalings.
2015-09-23 15:03:53 -07:00
*/
static const ALfloat UnitScale[MAX_AMBI_COEFFS] = {
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f
};
static const ALfloat SN3D2N3DScale[MAX_AMBI_COEFFS] = {
1.000000000f, /* ACN 0 (W), sqrt(1) */
1.732050808f, /* ACN 1 (Y), sqrt(3) */
1.732050808f, /* ACN 2 (Z), sqrt(3) */
1.732050808f, /* ACN 3 (X), sqrt(3) */
2.236067978f, /* ACN 4 (V), sqrt(5) */
2.236067978f, /* ACN 5 (T), sqrt(5) */
2.236067978f, /* ACN 6 (R), sqrt(5) */
2.236067978f, /* ACN 7 (S), sqrt(5) */
2.236067978f, /* ACN 8 (U), sqrt(5) */
2.645751311f, /* ACN 9 (Q), sqrt(7) */
2.645751311f, /* ACN 10 (O), sqrt(7) */
2.645751311f, /* ACN 11 (M), sqrt(7) */
2.645751311f, /* ACN 12 (K), sqrt(7) */
2.645751311f, /* ACN 13 (L), sqrt(7) */
2.645751311f, /* ACN 14 (N), sqrt(7) */
2.645751311f, /* ACN 15 (P), sqrt(7) */
};
2015-09-23 15:03:53 -07:00
static const ALfloat FuMa2N3DScale[MAX_AMBI_COEFFS] = {
1.414213562f, /* ACN 0 (W), sqrt(2) */
1.732050808f, /* ACN 1 (Y), sqrt(3) */
1.732050808f, /* ACN 2 (Z), sqrt(3) */
1.732050808f, /* ACN 3 (X), sqrt(3) */
1.936491673f, /* ACN 4 (V), sqrt(15)/2 */
1.936491673f, /* ACN 5 (T), sqrt(15)/2 */
2.236067978f, /* ACN 6 (R), sqrt(5) */
1.936491673f, /* ACN 7 (S), sqrt(15)/2 */
1.936491673f, /* ACN 8 (U), sqrt(15)/2 */
2.091650066f, /* ACN 9 (Q), sqrt(35/8) */
1.972026594f, /* ACN 10 (O), sqrt(35)/3 */
2.231093404f, /* ACN 11 (M), sqrt(224/45) */
2.645751311f, /* ACN 12 (K), sqrt(7) */
2.231093404f, /* ACN 13 (L), sqrt(224/45) */
1.972026594f, /* ACN 14 (N), sqrt(35)/3 */
2.091650066f, /* ACN 15 (P), sqrt(35/8) */
};
void CalcDirectionCoeffs(const ALfloat dir[3], ALfloat coeffs[MAX_AMBI_COEFFS])
Use an ambisonics-based panning method For mono sources, third-order ambisonics is utilized to generate panning gains. The general idea is that a panned mono sound can be encoded into b-format ambisonics as: w[i] = sample[i] * 0.7071; x[i] = sample[i] * dir[0]; y[i] = sample[i] * dir[1]; ... and subsequently rendered using: output[chan][i] = w[i] * w_coeffs[chan] + x[i] * x_coeffs[chan] + y[i] * y_coeffs[chan] + ...; By reordering the math, channel gains can be generated by doing: gain[chan] = 0.7071 * w_coeffs[chan] + dir[0] * x_coeffs[chan] + dir[1] * y_coeffs[chan] + ...; which then get applied as normal: output[chan][i] = sample[i] * gain[chan]; One of the reasons to use ambisonics for panning is that it provides arguably better reproduction for sounds emanating from between two speakers. As well, this makes it easier to pan in all 3 dimensions, with for instance a "3D7.1" or 8-channel cube speaker configuration by simply providing the necessary coefficients (this will need some work since some methods still use angle-based panpot, particularly multi-channel sources). Unfortunately, the math to reliably generate the coefficients for a given speaker configuration is too costly to do at run-time. They have to be pre- generated based on a pre-specified speaker arangement, which means the config options for tweaking speaker angles are no longer supportable. Eventually I hope to provide config options for custom coefficients, which can either be generated and written in manually, or via alsoft-config from user-specified speaker positions. The current default set of coefficients were generated using the MATLAB scripts (compatible with GNU Octave) from the excellent Ambisonic Decoder Toolbox, at https://bitbucket.org/ambidecodertoolbox/adt/
2014-09-30 07:33:13 -07:00
{
/* Convert from OpenAL coords to Ambisonics. */
ALfloat x = -dir[2];
ALfloat y = -dir[0];
ALfloat z = dir[1];
/* Zeroth-order */
2015-09-23 15:03:53 -07:00
coeffs[0] = 1.0f; /* ACN 0 = 1 */
/* First-order */
coeffs[1] = 1.732050808f * y; /* ACN 1 = sqrt(3) * Y */
coeffs[2] = 1.732050808f * z; /* ACN 2 = sqrt(3) * Z */
coeffs[3] = 1.732050808f * x; /* ACN 3 = sqrt(3) * X */
/* Second-order */
coeffs[4] = 3.872983346f * x * y; /* ACN 4 = sqrt(15) * X * Y */
coeffs[5] = 3.872983346f * y * z; /* ACN 5 = sqrt(15) * Y * Z */
coeffs[6] = 1.118033989f * (3.0f*z*z - 1.0f); /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */
coeffs[7] = 3.872983346f * x * z; /* ACN 7 = sqrt(15) * X * Z */
coeffs[8] = 1.936491673f * (x*x - y*y); /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */
/* Third-order */
coeffs[9] = 2.091650066f * y * (3.0f*x*x - y*y); /* ACN 9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */
coeffs[10] = 10.246950766f * z * x * y; /* ACN 10 = sqrt(105) * Z * X * Y */
coeffs[11] = 1.620185175f * y * (5.0f*z*z - 1.0f); /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */
coeffs[12] = 1.322875656f * z * (5.0f*z*z - 3.0f); /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */
coeffs[13] = 1.620185175f * x * (5.0f*z*z - 1.0f); /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */
coeffs[14] = 5.123475383f * z * (x*x - y*y); /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */
coeffs[15] = 2.091650066f * x * (x*x - 3.0f*y*y); /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */
}
void CalcAngleCoeffs(ALfloat angle, ALfloat elevation, ALfloat coeffs[MAX_AMBI_COEFFS])
{
ALfloat dir[3] = {
sinf(angle) * cosf(elevation),
sinf(elevation),
-cosf(angle) * cosf(elevation)
};
CalcDirectionCoeffs(dir, coeffs);
}
void ComputeAmbientGains(const ChannelConfig *chancoeffs, ALuint numchans, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
{
ALuint i;
for(i = 0;i < numchans;i++)
{
// The W coefficients are based on a mathematical average of the
// output. The square root of the base average provides for a more
// perceptual average volume, better suited to non-directional gains.
gains[i] = sqrtf(chancoeffs[i][0]) * ingain;
}
for(;i < MAX_OUTPUT_CHANNELS;i++)
gains[i] = 0.0f;
}
void ComputePanningGains(const ChannelConfig *chancoeffs, ALuint numchans, const ALfloat coeffs[MAX_AMBI_COEFFS], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
{
ALuint i, j;
Use an ambisonics-based panning method For mono sources, third-order ambisonics is utilized to generate panning gains. The general idea is that a panned mono sound can be encoded into b-format ambisonics as: w[i] = sample[i] * 0.7071; x[i] = sample[i] * dir[0]; y[i] = sample[i] * dir[1]; ... and subsequently rendered using: output[chan][i] = w[i] * w_coeffs[chan] + x[i] * x_coeffs[chan] + y[i] * y_coeffs[chan] + ...; By reordering the math, channel gains can be generated by doing: gain[chan] = 0.7071 * w_coeffs[chan] + dir[0] * x_coeffs[chan] + dir[1] * y_coeffs[chan] + ...; which then get applied as normal: output[chan][i] = sample[i] * gain[chan]; One of the reasons to use ambisonics for panning is that it provides arguably better reproduction for sounds emanating from between two speakers. As well, this makes it easier to pan in all 3 dimensions, with for instance a "3D7.1" or 8-channel cube speaker configuration by simply providing the necessary coefficients (this will need some work since some methods still use angle-based panpot, particularly multi-channel sources). Unfortunately, the math to reliably generate the coefficients for a given speaker configuration is too costly to do at run-time. They have to be pre- generated based on a pre-specified speaker arangement, which means the config options for tweaking speaker angles are no longer supportable. Eventually I hope to provide config options for custom coefficients, which can either be generated and written in manually, or via alsoft-config from user-specified speaker positions. The current default set of coefficients were generated using the MATLAB scripts (compatible with GNU Octave) from the excellent Ambisonic Decoder Toolbox, at https://bitbucket.org/ambidecodertoolbox/adt/
2014-09-30 07:33:13 -07:00
for(i = 0;i < numchans;i++)
Use an ambisonics-based panning method For mono sources, third-order ambisonics is utilized to generate panning gains. The general idea is that a panned mono sound can be encoded into b-format ambisonics as: w[i] = sample[i] * 0.7071; x[i] = sample[i] * dir[0]; y[i] = sample[i] * dir[1]; ... and subsequently rendered using: output[chan][i] = w[i] * w_coeffs[chan] + x[i] * x_coeffs[chan] + y[i] * y_coeffs[chan] + ...; By reordering the math, channel gains can be generated by doing: gain[chan] = 0.7071 * w_coeffs[chan] + dir[0] * x_coeffs[chan] + dir[1] * y_coeffs[chan] + ...; which then get applied as normal: output[chan][i] = sample[i] * gain[chan]; One of the reasons to use ambisonics for panning is that it provides arguably better reproduction for sounds emanating from between two speakers. As well, this makes it easier to pan in all 3 dimensions, with for instance a "3D7.1" or 8-channel cube speaker configuration by simply providing the necessary coefficients (this will need some work since some methods still use angle-based panpot, particularly multi-channel sources). Unfortunately, the math to reliably generate the coefficients for a given speaker configuration is too costly to do at run-time. They have to be pre- generated based on a pre-specified speaker arangement, which means the config options for tweaking speaker angles are no longer supportable. Eventually I hope to provide config options for custom coefficients, which can either be generated and written in manually, or via alsoft-config from user-specified speaker positions. The current default set of coefficients were generated using the MATLAB scripts (compatible with GNU Octave) from the excellent Ambisonic Decoder Toolbox, at https://bitbucket.org/ambidecodertoolbox/adt/
2014-09-30 07:33:13 -07:00
{
2015-08-22 07:23:43 -07:00
float gain = 0.0f;
Use an ambisonics-based panning method For mono sources, third-order ambisonics is utilized to generate panning gains. The general idea is that a panned mono sound can be encoded into b-format ambisonics as: w[i] = sample[i] * 0.7071; x[i] = sample[i] * dir[0]; y[i] = sample[i] * dir[1]; ... and subsequently rendered using: output[chan][i] = w[i] * w_coeffs[chan] + x[i] * x_coeffs[chan] + y[i] * y_coeffs[chan] + ...; By reordering the math, channel gains can be generated by doing: gain[chan] = 0.7071 * w_coeffs[chan] + dir[0] * x_coeffs[chan] + dir[1] * y_coeffs[chan] + ...; which then get applied as normal: output[chan][i] = sample[i] * gain[chan]; One of the reasons to use ambisonics for panning is that it provides arguably better reproduction for sounds emanating from between two speakers. As well, this makes it easier to pan in all 3 dimensions, with for instance a "3D7.1" or 8-channel cube speaker configuration by simply providing the necessary coefficients (this will need some work since some methods still use angle-based panpot, particularly multi-channel sources). Unfortunately, the math to reliably generate the coefficients for a given speaker configuration is too costly to do at run-time. They have to be pre- generated based on a pre-specified speaker arangement, which means the config options for tweaking speaker angles are no longer supportable. Eventually I hope to provide config options for custom coefficients, which can either be generated and written in manually, or via alsoft-config from user-specified speaker positions. The current default set of coefficients were generated using the MATLAB scripts (compatible with GNU Octave) from the excellent Ambisonic Decoder Toolbox, at https://bitbucket.org/ambidecodertoolbox/adt/
2014-09-30 07:33:13 -07:00
for(j = 0;j < MAX_AMBI_COEFFS;j++)
gain += chancoeffs[i][j]*coeffs[j];
2015-08-22 07:23:43 -07:00
gains[i] = gain * ingain;
}
2015-09-24 12:36:02 -07:00
for(;i < MAX_OUTPUT_CHANNELS;i++)
gains[i] = 0.0f;
}
void ComputeFirstOrderGains(const ChannelConfig *chancoeffs, ALuint numchans, const ALfloat mtx[4], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
{
ALuint i, j;
for(i = 0;i < numchans;i++)
{
2015-09-24 12:36:02 -07:00
float gain = 0.0f;
for(j = 0;j < 4;j++)
gain += chancoeffs[i][j] * mtx[j];
2015-09-24 12:36:02 -07:00
gains[i] = gain * ingain;
}
2015-09-24 12:36:02 -07:00
for(;i < MAX_OUTPUT_CHANNELS;i++)
gains[i] = 0.0f;
}
2014-11-15 23:20:38 -08:00
DECL_CONST static inline const char *GetLabelFromChannel(enum Channel channel)
{
switch(channel)
{
case FrontLeft: return "front-left";
case FrontRight: return "front-right";
case FrontCenter: return "front-center";
case LFE: return "lfe";
case BackLeft: return "back-left";
case BackRight: return "back-right";
case BackCenter: return "back-center";
case SideLeft: return "side-left";
case SideRight: return "side-right";
case UpperFrontLeft: return "upper-front-left";
case UpperFrontRight: return "upper-front-right";
case UpperBackLeft: return "upper-back-left";
case UpperBackRight: return "upper-back-right";
case LowerFrontLeft: return "lower-front-left";
case LowerFrontRight: return "lower-front-right";
case LowerBackLeft: return "lower-back-left";
case LowerBackRight: return "lower-back-right";
2016-03-16 06:49:35 -07:00
case Aux0: return "aux-0";
case Aux1: return "aux-1";
case Aux2: return "aux-2";
case Aux3: return "aux-3";
case InvalidChannel: break;
}
return "(unknown)";
}
DECL_CONST static const char *GetChannelLayoutName(enum DevFmtChannels chans)
{
switch(chans)
{
case DevFmtMono: return "mono";
case DevFmtStereo: return "stereo";
case DevFmtQuad: return "quad";
case DevFmtX51: return "surround51";
case DevFmtX51Rear: return "surround51rear";
case DevFmtX61: return "surround61";
case DevFmtX71: return "surround71";
case DevFmtBFormat3D:
break;
}
return NULL;
}
typedef struct ChannelMap {
enum Channel ChanName;
ChannelConfig Config;
} ChannelMap;
static void SetChannelMap(const enum Channel *devchans, ChannelConfig *ambicoeffs,
const ChannelMap *chanmap, size_t count, ALuint *outcount,
ALboolean isfuma)
{
size_t j, k;
ALuint i;
for(i = 0;i < MAX_OUTPUT_CHANNELS && devchans[i] != InvalidChannel;i++)
{
if(devchans[i] == LFE)
{
for(j = 0;j < MAX_AMBI_COEFFS;j++)
ambicoeffs[i][j] = 0.0f;
continue;
}
for(j = 0;j < count;j++)
{
if(devchans[i] != chanmap[j].ChanName)
continue;
if(isfuma)
{
/* Reformat FuMa -> ACN/N3D */
for(k = 0;k < MAX_AMBI_COEFFS;++k)
2015-09-23 15:03:53 -07:00
{
ALuint acn = FuMa2ACN[k];
ambicoeffs[i][acn] = chanmap[j].Config[k] / FuMa2N3DScale[acn];
2015-09-23 15:03:53 -07:00
}
}
else
{
for(k = 0;k < MAX_AMBI_COEFFS;++k)
ambicoeffs[i][k] = chanmap[j].Config[k];
}
break;
}
if(j == count)
ERR("Failed to match %s channel (%u) in channel map\n", GetLabelFromChannel(devchans[i]), i);
}
*outcount = i;
}
static bool MakeSpeakerMap(ALCdevice *device, const AmbDecConf *conf, ALuint speakermap[MAX_OUTPUT_CHANNELS])
{
ALuint i;
for(i = 0;i < conf->NumSpeakers;i++)
{
int c = -1;
/* NOTE: AmbDec does not define any standard speaker names, however
* for this to work we have to by able to find the output channel
* the speaker definition corresponds to. Therefore, OpenAL Soft
* requires these channel labels to be recognized:
*
* LF = Front left
* RF = Front right
* LS = Side left
* RS = Side right
* LB = Back left
* RB = Back right
* CE = Front center
* CB = Back center
*
* Additionally, surround51 will acknowledge back speakers for side
* channels, and surround51rear will acknowledge side speakers for
* back channels, to avoid issues with an ambdec expecting 5.1 to
* use the side channels when the device is configured for back,
* and vice-versa.
*/
if(al_string_cmp_cstr(conf->Speakers[i].Name, "LF") == 0)
c = GetChannelIdxByName(device->RealOut, FrontLeft);
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "RF") == 0)
c = GetChannelIdxByName(device->RealOut, FrontRight);
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "CE") == 0)
c = GetChannelIdxByName(device->RealOut, FrontCenter);
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "LS") == 0)
{
if(device->FmtChans == DevFmtX51Rear)
c = GetChannelIdxByName(device->RealOut, BackLeft);
else
c = GetChannelIdxByName(device->RealOut, SideLeft);
}
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "RS") == 0)
{
if(device->FmtChans == DevFmtX51Rear)
c = GetChannelIdxByName(device->RealOut, BackRight);
else
c = GetChannelIdxByName(device->RealOut, SideRight);
}
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "LB") == 0)
{
if(device->FmtChans == DevFmtX51)
c = GetChannelIdxByName(device->RealOut, SideLeft);
else
c = GetChannelIdxByName(device->RealOut, BackLeft);
}
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "RB") == 0)
{
if(device->FmtChans == DevFmtX51)
c = GetChannelIdxByName(device->RealOut, SideRight);
else
c = GetChannelIdxByName(device->RealOut, BackRight);
}
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "CB") == 0)
c = GetChannelIdxByName(device->RealOut, BackCenter);
else
{
ERR("AmbDec speaker label \"%s\" not recognized\n",
al_string_get_cstr(conf->Speakers[i].Name));
return false;
}
if(c == -1)
{
ERR("Failed to lookup AmbDec speaker label %s\n",
al_string_get_cstr(conf->Speakers[i].Name));
return false;
}
speakermap[i] = c;
}
return true;
}
static bool LoadChannelSetup(ALCdevice *device)
{
ChannelMap chanmap[MAX_OUTPUT_CHANNELS];
ALuint speakermap[MAX_OUTPUT_CHANNELS];
const ALfloat *coeff_scale = UnitScale;
const char *layout = NULL;
ALfloat ambiscale = 1.0f;
const char *fname;
AmbDecConf conf;
size_t i;
layout = GetChannelLayoutName(device->FmtChans);
if(!layout) return false;
if(!ConfigValueStr(al_string_get_cstr(device->DeviceName), "layouts", layout, &fname))
return false;
ambdec_init(&conf);
if(!ambdec_load(&conf, fname))
{
ERR("Failed to load layout file %s\n", fname);
goto fail;
}
if(conf.FreqBands != 1)
{
ERR("AmbDec layout file must be single-band (freq_bands = %u)\n", conf.FreqBands);
goto fail;
}
if(!MakeSpeakerMap(device, &conf, speakermap))
goto fail;
if(conf.ChanMask > 0x1ff)
ambiscale = THIRD_ORDER_SCALE;
else if(conf.ChanMask > 0xf)
ambiscale = SECOND_ORDER_SCALE;
else if(conf.ChanMask > 0x1)
ambiscale = FIRST_ORDER_SCALE;
else
ambiscale = 0.0f;
if(conf.CoeffScale == ADS_SN3D)
coeff_scale = SN3D2N3DScale;
else if(conf.CoeffScale == ADS_FuMa)
coeff_scale = FuMa2N3DScale;
for(i = 0;i < conf.NumSpeakers;i++)
{
ALuint chan = speakermap[i];
ALuint j, k = 0;
for(j = 0;j < MAX_AMBI_COEFFS;j++)
chanmap[i].Config[j] = 0.0f;
chanmap[i].ChanName = device->RealOut.ChannelName[chan];
for(j = 0;j < 1;j++)
{
if((conf.ChanMask&(1<<j)))
chanmap[i].Config[j] = conf.HFMatrix[i][k++] / coeff_scale[j] * conf.HFOrderGain[0];
}
for(;j < 4;j++)
{
if((conf.ChanMask&(1<<j)))
chanmap[i].Config[j] = conf.HFMatrix[i][k++] / coeff_scale[j] * conf.HFOrderGain[1];
}
for(;j < 9;j++)
{
if((conf.ChanMask&(1<<j)))
chanmap[i].Config[j] = conf.HFMatrix[i][k++] / coeff_scale[j] * conf.HFOrderGain[2];
}
for(;j < 16;j++)
{
if((conf.ChanMask&(1<<j)))
chanmap[i].Config[j] = conf.HFMatrix[i][k++] / coeff_scale[j] * conf.HFOrderGain[3];
}
}
SetChannelMap(device->Dry.ChannelName, device->Dry.AmbiCoeffs, chanmap, conf.NumSpeakers,
&device->Dry.NumChannels, AL_FALSE);
device->Dry.AmbiScale = ambiscale;
ambdec_deinit(&conf);
return true;
fail:
ambdec_deinit(&conf);
return false;
}
ALvoid aluInitPanning(ALCdevice *device)
{
2015-09-23 15:03:53 -07:00
/* NOTE: These decoder coefficients are using FuMa channel ordering and
* normalization, since that's what was produced by the Ambisonic Decoder
* Toolbox. SetChannelMap will convert them to N3D.
*/
static const ChannelMap MonoCfg[1] = {
{ FrontCenter, { 1.414213562f } },
}, StereoCfg[2] = {
{ FrontLeft, { 0.707106781f, 0.0f, 0.5f, 0.0f } },
{ FrontRight, { 0.707106781f, 0.0f, -0.5f, 0.0f } },
}, QuadCfg[4] = {
{ FrontLeft, { 0.353553f, 0.306184f, 0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.117186f } },
{ FrontRight, { 0.353553f, 0.306184f, -0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.117186f } },
{ BackLeft, { 0.353553f, -0.306184f, 0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.117186f } },
{ BackRight, { 0.353553f, -0.306184f, -0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.117186f } },
}, X51SideCfg[5] = {
{ FrontLeft, { 0.208954f, 0.199518f, 0.223424f, 0.0f, 0.0f, 0.0f, 0.0f, -0.012543f, 0.144260f } },
{ FrontRight, { 0.208950f, 0.199514f, -0.223425f, 0.0f, 0.0f, 0.0f, 0.0f, -0.012544f, -0.144258f } },
{ FrontCenter, { 0.109403f, 0.168250f, -0.000002f, 0.0f, 0.0f, 0.0f, 0.0f, 0.100431f, -0.000001f } },
{ SideLeft, { 0.470934f, -0.346484f, 0.327504f, 0.0f, 0.0f, 0.0f, 0.0f, -0.022188f, -0.041113f } },
{ SideRight, { 0.470936f, -0.346480f, -0.327507f, 0.0f, 0.0f, 0.0f, 0.0f, -0.022186f, 0.041114f } },
}, X51RearCfg[5] = {
{ FrontLeft, { 0.208954f, 0.199518f, 0.223424f, 0.0f, 0.0f, 0.0f, 0.0f, -0.012543f, 0.144260f } },
{ FrontRight, { 0.208950f, 0.199514f, -0.223425f, 0.0f, 0.0f, 0.0f, 0.0f, -0.012544f, -0.144258f } },
{ FrontCenter, { 0.109403f, 0.168250f, -0.000002f, 0.0f, 0.0f, 0.0f, 0.0f, 0.100431f, -0.000001f } },
{ BackLeft, { 0.470934f, -0.346484f, 0.327504f, 0.0f, 0.0f, 0.0f, 0.0f, -0.022188f, -0.041113f } },
{ BackRight, { 0.470936f, -0.346480f, -0.327507f, 0.0f, 0.0f, 0.0f, 0.0f, -0.022186f, 0.041114f } },
}, X61Cfg[6] = {
2015-09-23 15:03:53 -07:00
{ FrontLeft, { 0.167065f, 0.200583f, 0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, 0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, 0.068910f } },
{ FrontRight, { 0.167065f, 0.200583f, -0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, -0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, -0.068910f } },
{ FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } },
{ BackCenter, { 0.353556f, -0.461940f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.165723f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.000000f } },
{ SideLeft, { 0.289151f, -0.081301f, 0.401292f, 0.0f, 0.0f, 0.0f, 0.0f, -0.188208f, -0.071420f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.010099f, -0.032897f } },
{ SideRight, { 0.289151f, -0.081301f, -0.401292f, 0.0f, 0.0f, 0.0f, 0.0f, -0.188208f, 0.071420f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.010099f, 0.032897f } },
}, X71Cfg[7] = {
2015-09-23 15:03:53 -07:00
{ FrontLeft, { 0.167065f, 0.200583f, 0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, 0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, 0.068910f } },
{ FrontRight, { 0.167065f, 0.200583f, -0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, -0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, -0.068910f } },
{ FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } },
{ BackLeft, { 0.224752f, -0.295009f, 0.170325f, 0.0f, 0.0f, 0.0f, 0.0f, 0.105349f, -0.182473f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.065799f } },
{ BackRight, { 0.224752f, -0.295009f, -0.170325f, 0.0f, 0.0f, 0.0f, 0.0f, 0.105349f, 0.182473f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.065799f } },
{ SideLeft, { 0.224739f, 0.000000f, 0.340644f, 0.0f, 0.0f, 0.0f, 0.0f, -0.210697f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.065795f } },
{ SideRight, { 0.224739f, 0.000000f, -0.340644f, 0.0f, 0.0f, 0.0f, 0.0f, -0.210697f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.065795f } },
}, Cube8Cfg[8] = {
{ UpperFrontLeft, { 0.176776695f, 0.072168784f, 0.072168784f, 0.072168784f } },
{ UpperFrontRight, { 0.176776695f, 0.072168784f, -0.072168784f, 0.072168784f } },
{ UpperBackLeft, { 0.176776695f, -0.072168784f, 0.072168784f, 0.072168784f } },
{ UpperBackRight, { 0.176776695f, -0.072168784f, -0.072168784f, 0.072168784f } },
{ LowerFrontLeft, { 0.176776695f, 0.072168784f, 0.072168784f, -0.072168784f } },
{ LowerFrontRight, { 0.176776695f, 0.072168784f, -0.072168784f, -0.072168784f } },
{ LowerBackLeft, { 0.176776695f, -0.072168784f, 0.072168784f, -0.072168784f } },
{ LowerBackRight, { 0.176776695f, -0.072168784f, -0.072168784f, -0.072168784f } },
2016-02-26 16:09:06 -08:00
}, BFormat2D[3] = {
2016-03-16 06:49:35 -07:00
{ Aux0, { 1.0f, 0.0f, 0.0f, 0.0f } },
{ Aux1, { 0.0f, 1.0f, 0.0f, 0.0f } },
{ Aux2, { 0.0f, 0.0f, 1.0f, 0.0f } },
}, BFormat3D[4] = {
2016-03-16 06:49:35 -07:00
{ Aux0, { 1.0f, 0.0f, 0.0f, 0.0f } },
{ Aux1, { 0.0f, 1.0f, 0.0f, 0.0f } },
{ Aux2, { 0.0f, 0.0f, 1.0f, 0.0f } },
{ Aux3, { 0.0f, 0.0f, 0.0f, 1.0f } },
};
const ChannelMap *chanmap = NULL;
ALfloat ambiscale = 1.0f;
size_t count = 0;
2016-02-26 16:09:06 -08:00
ALuint i;
device->Dry.AmbiScale = 1.0f;
memset(device->Dry.AmbiCoeffs, 0, sizeof(device->Dry.AmbiCoeffs));
device->Dry.NumChannels = 0;
if(device->Hrtf)
{
static const struct {
enum Channel Channel;
ALfloat Angle;
ALfloat Elevation;
} CubeInfo[8] = {
{ UpperFrontLeft, DEG2RAD( -45.0f), DEG2RAD( 45.0f) },
{ UpperFrontRight, DEG2RAD( 45.0f), DEG2RAD( 45.0f) },
{ UpperBackLeft, DEG2RAD(-135.0f), DEG2RAD( 45.0f) },
{ UpperBackRight, DEG2RAD( 135.0f), DEG2RAD( 45.0f) },
{ LowerFrontLeft, DEG2RAD( -45.0f), DEG2RAD(-45.0f) },
{ LowerFrontRight, DEG2RAD( 45.0f), DEG2RAD(-45.0f) },
{ LowerBackLeft, DEG2RAD(-135.0f), DEG2RAD(-45.0f) },
{ LowerBackRight, DEG2RAD( 135.0f), DEG2RAD(-45.0f) },
};
count = COUNTOF(Cube8Cfg);
chanmap = Cube8Cfg;
ambiscale = FIRST_ORDER_SCALE;
for(i = 0;i < count;i++)
device->Dry.ChannelName[i] = chanmap[i].ChanName;
for(;i < MAX_OUTPUT_CHANNELS;i++)
device->Dry.ChannelName[i] = InvalidChannel;
SetChannelMap(device->Dry.ChannelName, device->Dry.AmbiCoeffs, chanmap, count,
&device->Dry.NumChannels, AL_TRUE);
device->Dry.AmbiScale = ambiscale;
for(i = 0;i < device->Dry.NumChannels;i++)
{
2016-03-10 14:29:44 -08:00
int chan = GetChannelIdxByName(device->Dry, CubeInfo[i].Channel);
GetLerpedHrtfCoeffs(device->Hrtf, CubeInfo[i].Elevation, CubeInfo[i].Angle, 1.0f, 1.0f,
device->Hrtf_Params[chan].Coeffs, device->Hrtf_Params[chan].Delay);
}
return;
}
2016-02-26 16:09:06 -08:00
if(device->Uhj_Encoder)
{
count = COUNTOF(BFormat2D);
chanmap = BFormat2D;
ambiscale = FIRST_ORDER_SCALE;
for(i = 0;i < count;i++)
device->Dry.ChannelName[i] = chanmap[i].ChanName;
2016-02-26 16:09:06 -08:00
for(;i < MAX_OUTPUT_CHANNELS;i++)
device->Dry.ChannelName[i] = InvalidChannel;
SetChannelMap(device->Dry.ChannelName, device->Dry.AmbiCoeffs, chanmap, count,
&device->Dry.NumChannels, AL_TRUE);
device->Dry.AmbiScale = ambiscale;
2016-02-26 16:09:06 -08:00
return;
}
if(device->AmbiDecoder)
{
/* NOTE: This is ACN/N3D ordering and scaling, rather than FuMa. */
static const ChannelMap Ambi3D[4] = {
2016-03-16 06:49:35 -07:00
{ Aux0, { 1.0f, 0.0f, 0.0f, 0.0f } },
{ Aux1, { 0.0f, 1.0f, 0.0f, 0.0f } },
{ Aux2, { 0.0f, 0.0f, 1.0f, 0.0f } },
{ Aux3, { 0.0f, 0.0f, 0.0f, 1.0f } },
};
ALuint speakermap[MAX_OUTPUT_CHANNELS];
const char *fname = "";
const char *layout;
AmbDecConf conf;
ambdec_init(&conf);
layout = GetChannelLayoutName(device->FmtChans);
if(!layout) goto ambi_fail;
if(!ConfigValueStr(al_string_get_cstr(device->DeviceName), "ambisonics", layout, &fname))
goto ambi_fail;
if(!ambdec_load(&conf, fname))
{
ERR("Failed to load %s\n", fname);
goto ambi_fail;
}
if(conf.ChanMask > 0xffff)
{
ERR("Unsupported channel mask 0x%04x (max 0xffff)\n", conf.ChanMask);
goto ambi_fail;
}
if(conf.ChanMask > 0xf)
{
ERR("Only first-order is supported for HQ decoding (mask 0x%04x, max 0xf)\n",
conf.ChanMask);
goto ambi_fail;
}
if(!MakeSpeakerMap(device, &conf, speakermap))
goto ambi_fail;
count = COUNTOF(Ambi3D);
chanmap = Ambi3D;
ambiscale = FIRST_ORDER_SCALE;
for(i = 0;i < count;i++)
device->Dry.ChannelName[i] = chanmap[i].ChanName;
for(;i < MAX_OUTPUT_CHANNELS;i++)
device->Dry.ChannelName[i] = InvalidChannel;
SetChannelMap(device->Dry.ChannelName, device->Dry.AmbiCoeffs, chanmap, count,
&device->Dry.NumChannels, AL_FALSE);
device->Dry.AmbiScale = ambiscale;
TRACE("Enabling %s-band ambisonic decoder\n", (conf.FreqBands==1)?"single":"dual");
bformatdec_reset(device->AmbiDecoder, &conf, count, device->Frequency, speakermap);
ambdec_deinit(&conf);
if(bformatdec_getOrder(device->AmbiDecoder) >= 2)
{
memset(device->FOAOut.AmbiCoeffs, 0, sizeof(device->FOAOut.AmbiCoeffs));
device->FOAOut.AmbiCoeffs[0][0] = 1.0f;
device->FOAOut.AmbiCoeffs[1][1] = 1.0f;
device->FOAOut.AmbiCoeffs[2][2] = 1.0f;
device->FOAOut.AmbiCoeffs[3][3] = 1.0f;
}
return;
ambi_fail:
ambdec_deinit(&conf);
bformatdec_free(device->AmbiDecoder);
device->AmbiDecoder = NULL;
}
for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
device->Dry.ChannelName[i] = device->RealOut.ChannelName[i];
if(LoadChannelSetup(device))
return;
2014-09-10 17:53:01 -07:00
switch(device->FmtChans)
{
case DevFmtMono:
count = COUNTOF(MonoCfg);
chanmap = MonoCfg;
ambiscale = ZERO_ORDER_SCALE;
break;
case DevFmtStereo:
count = COUNTOF(StereoCfg);
chanmap = StereoCfg;
ambiscale = FIRST_ORDER_SCALE;
break;
case DevFmtQuad:
count = COUNTOF(QuadCfg);
chanmap = QuadCfg;
ambiscale = SECOND_ORDER_SCALE;
break;
case DevFmtX51:
count = COUNTOF(X51SideCfg);
chanmap = X51SideCfg;
ambiscale = SECOND_ORDER_SCALE;
break;
case DevFmtX51Rear:
count = COUNTOF(X51RearCfg);
chanmap = X51RearCfg;
ambiscale = SECOND_ORDER_SCALE;
break;
case DevFmtX61:
count = COUNTOF(X61Cfg);
chanmap = X61Cfg;
ambiscale = THIRD_ORDER_SCALE;
break;
case DevFmtX71:
count = COUNTOF(X71Cfg);
chanmap = X71Cfg;
ambiscale = THIRD_ORDER_SCALE;
break;
case DevFmtBFormat3D:
count = COUNTOF(BFormat3D);
chanmap = BFormat3D;
ambiscale = 1.0f;
break;
}
SetChannelMap(device->Dry.ChannelName, device->Dry.AmbiCoeffs, chanmap, count,
&device->Dry.NumChannels, AL_TRUE);
device->Dry.AmbiScale = ambiscale;
}
void aluInitEffectPanning(ALeffectslot *slot)
{
static const ChannelMap FirstOrderN3D[4] = {
2016-03-16 06:49:35 -07:00
{ Aux0, { 1.0f, 0.0f, 0.0f, 0.0f } },
{ Aux1, { 0.0f, 1.0f, 0.0f, 0.0f } },
{ Aux2, { 0.0f, 0.0f, 1.0f, 0.0f } },
{ Aux3, { 0.0f, 0.0f, 0.0f, 1.0f } },
};
static const enum Channel AmbiChannels[MAX_OUTPUT_CHANNELS] = {
2016-03-16 06:49:35 -07:00
Aux0, Aux1, Aux2, Aux3, InvalidChannel
};
memset(slot->AmbiCoeffs, 0, sizeof(slot->AmbiCoeffs));
slot->NumChannels = 0;
SetChannelMap(AmbiChannels, slot->AmbiCoeffs, FirstOrderN3D, COUNTOF(FirstOrderN3D),
&slot->NumChannels, AL_FALSE);
}