156 lines
5.5 KiB
C
Raw Normal View History

2007-12-17 15:43:35 -08:00
#ifndef _AL_FILTER_H_
#define _AL_FILTER_H_
2012-09-14 02:42:36 -07:00
#include "alMain.h"
2007-12-17 15:43:35 -08:00
#include "math_defs.h"
2007-12-17 15:43:35 -08:00
#ifdef __cplusplus
extern "C" {
#endif
2014-05-11 10:09:52 -07:00
#define LOWPASSFREQREF (5000.0f)
#define HIGHPASSFREQREF (250.0f)
/* Filters implementation is based on the "Cookbook formulae for audio
* EQ biquad filter coefficients" by Robert Bristow-Johnson
* http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
*/
/* Implementation note: For the shelf filters, the specified gain is for the
* reference frequency, which is the centerpoint of the transition band. This
* better matches EFX filter design. To set the gain for the shelf itself, use
* the square root of the desired linear gain (or halve the dB gain).
*/
typedef enum ALfilterType {
/** EFX-style low-pass filter, specifying a gain and reference frequency. */
ALfilterType_HighShelf,
/** EFX-style high-pass filter, specifying a gain and reference frequency. */
ALfilterType_LowShelf,
/** Peaking filter, specifying a gain and reference frequency. */
ALfilterType_Peaking,
/** Low-pass cut-off filter, specifying a cut-off frequency. */
ALfilterType_LowPass,
/** High-pass cut-off filter, specifying a cut-off frequency. */
2013-10-03 03:32:54 -07:00
ALfilterType_HighPass,
/** Band-pass filter, specifying a center frequency. */
ALfilterType_BandPass,
} ALfilterType;
typedef struct ALfilterState {
ALfloat x[2]; /* History of two last input samples */
ALfloat y[2]; /* History of two last output samples */
2016-07-26 00:03:44 -07:00
ALfloat b0, b1, b2; /* Transfer function coefficients "b" */
2016-12-21 21:35:50 -08:00
ALfloat a1, a2; /* Transfer function coefficients "a" (a0 is pre-applied) */
} ALfilterState;
/* Currently only a C-based filter process method is implemented. */
#define ALfilterState_process ALfilterState_processC
/* Calculates the rcpQ (i.e. 1/Q) coefficient for shelving filters, using the
* reference gain and shelf slope parameter.
* 0 < gain
* 0 < slope <= 1
*/
inline ALfloat calc_rcpQ_from_slope(ALfloat gain, ALfloat slope)
{
return sqrtf((gain + 1.0f/gain)*(1.0f/slope - 1.0f) + 2.0f);
}
/* Calculates the rcpQ (i.e. 1/Q) coefficient for filters, using the frequency
* multiple (i.e. ref_freq / sampling_freq) and bandwidth.
* 0 < freq_mult < 0.5.
*/
inline ALfloat calc_rcpQ_from_bandwidth(ALfloat freq_mult, ALfloat bandwidth)
{
ALfloat w0 = F_TAU * freq_mult;
return 2.0f*sinhf(logf(2.0f)/2.0f*bandwidth*w0/sinf(w0));
}
2016-01-23 01:22:08 -08:00
inline void ALfilterState_clear(ALfilterState *filter)
{
filter->x[0] = 0.0f;
filter->x[1] = 0.0f;
filter->y[0] = 0.0f;
filter->y[1] = 0.0f;
}
void ALfilterState_setParams(ALfilterState *filter, ALfilterType type, ALfloat gain, ALfloat freq_mult, ALfloat rcpQ);
void ALfilterState_processC(ALfilterState *filter, ALfloat *restrict dst, const ALfloat *restrict src, ALsizei numsamples);
inline void ALfilterState_processPassthru(ALfilterState *filter, const ALfloat *restrict src, ALsizei numsamples)
2016-01-23 01:22:08 -08:00
{
if(numsamples >= 2)
{
filter->x[1] = src[numsamples-2];
filter->x[0] = src[numsamples-1];
filter->y[1] = src[numsamples-2];
filter->y[0] = src[numsamples-1];
}
else if(numsamples == 1)
{
filter->x[1] = filter->x[0];
filter->x[0] = src[0];
filter->y[1] = filter->y[0];
filter->y[0] = src[0];
}
}
typedef struct ALfilter {
2007-12-17 15:43:35 -08:00
// Filter type (AL_FILTER_NULL, ...)
ALenum type;
ALfloat Gain;
ALfloat GainHF;
2014-05-14 01:24:18 -07:00
ALfloat HFReference;
ALfloat GainLF;
ALfloat LFReference;
void (*SetParami)(struct ALfilter *filter, ALCcontext *context, ALenum param, ALint val);
void (*SetParamiv)(struct ALfilter *filter, ALCcontext *context, ALenum param, const ALint *vals);
void (*SetParamf)(struct ALfilter *filter, ALCcontext *context, ALenum param, ALfloat val);
void (*SetParamfv)(struct ALfilter *filter, ALCcontext *context, ALenum param, const ALfloat *vals);
void (*GetParami)(struct ALfilter *filter, ALCcontext *context, ALenum param, ALint *val);
void (*GetParamiv)(struct ALfilter *filter, ALCcontext *context, ALenum param, ALint *vals);
void (*GetParamf)(struct ALfilter *filter, ALCcontext *context, ALenum param, ALfloat *val);
void (*GetParamfv)(struct ALfilter *filter, ALCcontext *context, ALenum param, ALfloat *vals);
/* Self ID */
ALuint id;
2007-12-17 15:43:35 -08:00
} ALfilter;
#define ALfilter_SetParami(x, c, p, v) ((x)->SetParami((x),(c),(p),(v)))
#define ALfilter_SetParamiv(x, c, p, v) ((x)->SetParamiv((x),(c),(p),(v)))
#define ALfilter_SetParamf(x, c, p, v) ((x)->SetParamf((x),(c),(p),(v)))
#define ALfilter_SetParamfv(x, c, p, v) ((x)->SetParamfv((x),(c),(p),(v)))
#define ALfilter_GetParami(x, c, p, v) ((x)->GetParami((x),(c),(p),(v)))
#define ALfilter_GetParamiv(x, c, p, v) ((x)->GetParamiv((x),(c),(p),(v)))
#define ALfilter_GetParamf(x, c, p, v) ((x)->GetParamf((x),(c),(p),(v)))
#define ALfilter_GetParamfv(x, c, p, v) ((x)->GetParamfv((x),(c),(p),(v)))
2007-12-17 15:43:35 -08:00
inline void LockFiltersRead(ALCdevice *device)
{ LockUIntMapRead(&device->FilterMap); }
inline void UnlockFiltersRead(ALCdevice *device)
{ UnlockUIntMapRead(&device->FilterMap); }
inline void LockFiltersWrite(ALCdevice *device)
{ LockUIntMapWrite(&device->FilterMap); }
inline void UnlockFiltersWrite(ALCdevice *device)
{ UnlockUIntMapWrite(&device->FilterMap); }
inline struct ALfilter *LookupFilter(ALCdevice *device, ALuint id)
{ return (struct ALfilter*)LookupUIntMapKeyNoLock(&device->FilterMap, id); }
inline struct ALfilter *RemoveFilter(ALCdevice *device, ALuint id)
{ return (struct ALfilter*)RemoveUIntMapKeyNoLock(&device->FilterMap, id); }
ALvoid ReleaseALFilters(ALCdevice *device);
2007-12-17 17:08:44 -08:00
2007-12-17 15:43:35 -08:00
#ifdef __cplusplus
}
#endif
#endif