openal-soft/utils/sofa-info.cpp

384 lines
10 KiB
C++
Raw Normal View History

/*
* SOFA info utility for inspecting SOFA file metrics and determining HRTF
* utility compatible layouts.
*
* Copyright (C) 2018-2019 Christopher Fitzgerald
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
*/
#include <stdio.h>
#include <stdlib.h>
#include <cmath>
#include <vector>
#include <mysofa.h>
#include "win_main_utf8.h"
using uint = unsigned int;
// Per-field measurement info.
struct HrirFdT {
float mDistance{0.0f};
uint mEvCount{0u};
uint mEvStart{0u};
std::vector<uint> mAzCounts;
};
static const char *SofaErrorStr(int err)
{
switch(err)
{
case MYSOFA_OK:
return "OK";
case MYSOFA_INVALID_FORMAT:
return "Invalid format";
case MYSOFA_UNSUPPORTED_FORMAT:
return "Unsupported format";
case MYSOFA_INTERNAL_ERROR:
return "Internal error";
case MYSOFA_NO_MEMORY:
return "Out of memory";
case MYSOFA_READ_ERROR:
return "Read error";
}
return "Unknown";
}
static void PrintSofaAttributes(const char *prefix, struct MYSOFA_ATTRIBUTE *attribute)
{
while(attribute)
{
fprintf(stdout, "%s.%s: %s\n", prefix, attribute->name, attribute->value);
attribute = attribute->next;
}
}
static void PrintSofaArray(const char *prefix, struct MYSOFA_ARRAY *array)
{
PrintSofaAttributes(prefix, array->attributes);
for(uint i{0u};i < array->elements;i++)
fprintf(stdout, "%s[%u]: %.6f\n", prefix, i, array->values[i]);
}
/* Produces a sorted array of unique elements from a particular axis of the
* triplets array. The filters are used to focus on particular coordinates
* of other axes as necessary. The epsilons are used to constrain the
* equality of unique elements.
*/
static uint GetUniquelySortedElems(const uint m, const float *triplets, const int axis,
const float *const (&filters)[3], const float (&epsilons)[3],
float *elems)
{
uint count{0u};
for(uint i{0u};i < 3*m;i += 3)
{
float elem = triplets[i + axis];
uint j;
for(j = 0;j < 3;j++)
{
if(filters[j] && std::fabs(triplets[i + j] - *filters[j]) > epsilons[j])
break;
}
if(j < 3)
continue;
for(j = 0;j < count;j++)
{
const float delta{elem - elems[j]};
if(delta > epsilons[axis])
continue;
if(delta >= -epsilons[axis])
break;
for(uint k{count};k > j;k--)
elems[k] = elems[k - 1];
elems[j] = elem;
count++;
break;
}
if(j >= count)
elems[count++] = elem;
}
return count;
}
/* Given a list of elements, this will produce the smallest step size that
* can uniformly cover a fair portion of the list. Ideally this will be over
* half, but in degenerate cases this can fall to a minimum of 5 (the lower
* limit on elevations necessary to build a layout).
*/
static float GetUniformStepSize(const float epsilon, const uint m, const float *elems)
{
std::vector<float> steps(m, 0.0f);
std::vector<uint> counts(m, 0u);
float step{0.0f};
uint count{0u};
for(uint stride{1u};stride < m/2;stride++)
{
for(uint i{0u};i < m-stride;i++)
{
const float step{elems[i + stride] - elems[i]};
uint j;
for(j = 0;j < count;j++)
{
if(std::fabs(step - steps[j]) < epsilon)
{
counts[j]++;
break;
}
}
if(j >= count)
{
steps[j] = step;
counts[j] = 1;
count++;
}
}
for(uint i{1u};i < count;i++)
{
if(counts[i] > counts[0])
{
steps[0] = steps[i];
counts[0] = counts[i];
}
}
count = 1;
if(counts[0] > m/2)
{
step = steps[0];
return step;
}
}
if(counts[0] > 5)
step = steps[0];
return step;
}
/* Attempts to produce a compatible layout. Most data sets tend to be
* uniform and have the same major axis as used by OpenAL Soft's HRTF model.
* This will remove outliers and produce a maximally dense layout when
* possible. Those sets that contain purely random measurements or use
* different major axes will fail.
*/
static void PrintCompatibleLayout(const uint m, const float *xyzs)
{
std::vector<float> aers(3*m, 0.0f);
std::vector<float> elems(m, 0.0f);
fprintf(stdout, "\n");
for(uint i{0u};i < 3*m;i += 3)
{
aers[i] = xyzs[i];
aers[i + 1] = xyzs[i + 1];
aers[i + 2] = xyzs[i + 2];
mysofa_c2s(&aers[i]);
}
uint fdCount{GetUniquelySortedElems(m, aers.data(), 2,
(const float*[3]){ nullptr, nullptr, nullptr }, (const float[3]){ 0.1f, 0.1f, 0.001f },
elems.data())};
if(fdCount > (m / 3))
{
fprintf(stdout, "Incompatible layout (inumerable radii).\n");
return;
}
std::vector<HrirFdT> fds(fdCount);
for(uint fi{0u};fi < fdCount;fi++)
fds[fi].mDistance = elems[fi];
for(uint fi{0u};fi < fdCount;fi++)
{
float dist{fds[fi].mDistance};
uint evCount{GetUniquelySortedElems(m, aers.data(), 1,
(const float*[3]){ nullptr, nullptr, &dist }, (const float[3]){ 0.1f, 0.1f, 0.001f },
elems.data())};
if(evCount > (m / 3))
{
fprintf(stdout, "Incompatible layout (innumerable elevations).\n");
return;
}
float step{GetUniformStepSize(0.1f, evCount, elems.data())};
if(step <= 0.0f)
{
fprintf(stdout, "Incompatible layout (non-uniform elevations).\n");
return;
}
uint evStart{0u};
for(uint ei{0u};ei < evCount;ei++)
{
float ev{90.0f + elems[ei]};
float eif{std::round(ev / step)};
if(std::fabs(eif - (uint)eif) < (0.1f / step))
{
evStart = static_cast<uint>(eif);
break;
}
}
evCount = static_cast<uint>(std::round(180.0f / step)) + 1;
if(evCount < 5)
{
fprintf(stdout, "Incompatible layout (too few uniform elevations).\n");
return;
}
fds[fi].mEvCount = evCount;
fds[fi].mEvStart = evStart;
fds[fi].mAzCounts.resize(evCount);
auto &azCounts = fds[fi].mAzCounts;
for(uint ei{evStart};ei < evCount;ei++)
{
float ev{-90.0f + ei * 180.0f / (evCount - 1)};
uint azCount{GetUniquelySortedElems(m, aers.data(), 0,
(const float*[3]){ nullptr, &ev, &dist }, (const float[3]){ 0.1f, 0.1f, 0.001f },
elems.data())};
if(azCount > (m / 3))
{
fprintf(stdout, "Incompatible layout (innumerable azimuths).\n");
return;
}
if(ei > 0 && ei < (evCount - 1))
{
step = GetUniformStepSize(0.1f, azCount, elems.data());
if(step <= 0.0f)
{
fprintf(stdout, "Incompatible layout (non-uniform azimuths).\n");
return;
}
azCounts[ei] = static_cast<uint>(std::round(360.0f / step));
}
else if(azCount != 1)
{
fprintf(stdout, "Incompatible layout (non-singular poles).\n");
return;
}
else
{
azCounts[ei] = 1;
}
}
for(uint ei{0u};ei < evStart;ei++)
azCounts[ei] = azCounts[evCount - ei - 1];
}
fprintf(stdout, "Compatible Layout:\n\ndistance = %.3f", fds[0].mDistance);
for(uint fi{1u};fi < fdCount;fi++)
fprintf(stdout, ", %.3f", fds[fi].mDistance);
fprintf(stdout, "\nazimuths = ");
for(uint fi{0u};fi < fdCount;fi++)
{
for(uint ei{0u};ei < fds[fi].mEvCount;ei++)
fprintf(stdout, "%d%s", fds[fi].mAzCounts[ei],
(ei < (fds[fi].mEvCount - 1)) ? ", " :
(fi < (fdCount - 1)) ? ";\n " : "\n");
}
}
// Load and inspect the given SOFA file.
static void SofaInfo(const char *filename)
{
struct MYSOFA_EASY sofa;
sofa.lookup = nullptr;
sofa.neighborhood = nullptr;
int err;
sofa.hrtf = mysofa_load(filename, &err);
if(!sofa.hrtf)
{
mysofa_close(&sofa);
fprintf(stdout, "Error: Could not load source file '%s'.\n", filename);
return;
}
err = mysofa_check(sofa.hrtf);
if(err != MYSOFA_OK)
/* NOTE: Some valid SOFA files are failing this check.
{
mysofa_close(&sofa);
fprintf(stdout, "Error: Malformed source file '%s' (%s).\n", filename, SofaErrorStr(err));
return;
}
*/
fprintf(stdout, "Warning: Supposedly malformed source file '%s' (%s).\n", filename, SofaErrorStr(err));
mysofa_tocartesian(sofa.hrtf);
PrintSofaAttributes("Info", sofa.hrtf->attributes);
fprintf(stdout, "Measurements: %u\n", sofa.hrtf->M);
fprintf(stdout, "Receivers: %u\n", sofa.hrtf->R);
fprintf(stdout, "Emitters: %u\n", sofa.hrtf->E);
fprintf(stdout, "Samples: %u\n", sofa.hrtf->N);
PrintSofaArray("SampleRate", &sofa.hrtf->DataSamplingRate);
PrintSofaArray("DataDelay", &sofa.hrtf->DataDelay);
PrintCompatibleLayout(sofa.hrtf->M, sofa.hrtf->SourcePosition.values);
mysofa_free(sofa.hrtf);
}
int main(int argc, char *argv[])
{
GET_UNICODE_ARGS(&argc, &argv);
if(argc != 2)
{
fprintf(stdout, "Usage: %s <sofa-file>\n", argv[0]);
return 0;
}
SofaInfo(argv[1]);
return 0;
}