openal-soft/Alc/backends/coreaudio.cpp

746 lines
25 KiB
C++
Raw Normal View History

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
2018-11-15 21:24:09 -08:00
#include "backends/coreaudio.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "alMain.h"
2012-09-14 02:14:29 -07:00
#include "alu.h"
#include "ringbuffer.h"
#include "converter.h"
#include <unistd.h>
#include <AudioUnit/AudioUnit.h>
#include <AudioToolbox/AudioToolbox.h>
static const ALCchar ca_device[] = "CoreAudio Default";
2018-11-13 02:09:21 -08:00
struct ALCcoreAudioPlayback final : public ALCbackend {
AudioUnit mAudioUnit;
ALuint mFrameSize{0u};
AudioStreamBasicDescription mFormat{}; // This is the OpenAL format as a CoreAudio ASBD
2018-11-13 02:09:21 -08:00
};
static void ALCcoreAudioPlayback_Construct(ALCcoreAudioPlayback *self, ALCdevice *device);
static void ALCcoreAudioPlayback_Destruct(ALCcoreAudioPlayback *self);
static ALCenum ALCcoreAudioPlayback_open(ALCcoreAudioPlayback *self, const ALCchar *name);
static ALCboolean ALCcoreAudioPlayback_reset(ALCcoreAudioPlayback *self);
static ALCboolean ALCcoreAudioPlayback_start(ALCcoreAudioPlayback *self);
static void ALCcoreAudioPlayback_stop(ALCcoreAudioPlayback *self);
static DECLARE_FORWARD2(ALCcoreAudioPlayback, ALCbackend, ALCenum, captureSamples, void*, ALCuint)
static DECLARE_FORWARD(ALCcoreAudioPlayback, ALCbackend, ALCuint, availableSamples)
static DECLARE_FORWARD(ALCcoreAudioPlayback, ALCbackend, ClockLatency, getClockLatency)
static DECLARE_FORWARD(ALCcoreAudioPlayback, ALCbackend, void, lock)
static DECLARE_FORWARD(ALCcoreAudioPlayback, ALCbackend, void, unlock)
DECLARE_DEFAULT_ALLOCATORS(ALCcoreAudioPlayback)
DEFINE_ALCBACKEND_VTABLE(ALCcoreAudioPlayback);
static void ALCcoreAudioPlayback_Construct(ALCcoreAudioPlayback *self, ALCdevice *device)
{
2018-11-13 02:09:21 -08:00
new (self) ALCcoreAudioPlayback{};
ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device);
SET_VTABLE2(ALCcoreAudioPlayback, ALCbackend, self);
}
static void ALCcoreAudioPlayback_Destruct(ALCcoreAudioPlayback *self)
{
AudioUnitUninitialize(self->mAudioUnit);
AudioComponentInstanceDispose(self->mAudioUnit);
ALCbackend_Destruct(STATIC_CAST(ALCbackend, self));
2018-11-13 02:09:21 -08:00
self->~ALCcoreAudioPlayback();
}
static OSStatus ALCcoreAudioPlayback_MixerProc(void *inRefCon,
AudioUnitRenderActionFlags* UNUSED(ioActionFlags), const AudioTimeStamp* UNUSED(inTimeStamp),
UInt32 UNUSED(inBusNumber), UInt32 UNUSED(inNumberFrames), AudioBufferList *ioData)
{
2018-11-13 02:09:21 -08:00
ALCcoreAudioPlayback *self = static_cast<ALCcoreAudioPlayback*>(inRefCon);
ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice;
ALCcoreAudioPlayback_lock(self);
aluMixData(device, ioData->mBuffers[0].mData,
ioData->mBuffers[0].mDataByteSize / self->mFrameSize);
ALCcoreAudioPlayback_unlock(self);
return noErr;
}
static ALCenum ALCcoreAudioPlayback_open(ALCcoreAudioPlayback *self, const ALCchar *name)
{
ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice;
AudioComponentDescription desc;
AudioComponent comp;
OSStatus err;
if(!name)
name = ca_device;
else if(strcmp(name, ca_device) != 0)
return ALC_INVALID_VALUE;
/* open the default output unit */
desc.componentType = kAudioUnitType_Output;
2018-09-07 23:01:17 -07:00
#if TARGET_OS_IOS
desc.componentSubType = kAudioUnitSubType_RemoteIO;
#else
desc.componentSubType = kAudioUnitSubType_DefaultOutput;
2018-09-07 23:01:17 -07:00
#endif
desc.componentManufacturer = kAudioUnitManufacturer_Apple;
desc.componentFlags = 0;
desc.componentFlagsMask = 0;
comp = AudioComponentFindNext(NULL, &desc);
if(comp == NULL)
{
ERR("AudioComponentFindNext failed\n");
return ALC_INVALID_VALUE;
}
err = AudioComponentInstanceNew(comp, &self->mAudioUnit);
2011-03-15 11:52:18 -07:00
if(err != noErr)
{
ERR("AudioComponentInstanceNew failed\n");
return ALC_INVALID_VALUE;
}
/* init and start the default audio unit... */
err = AudioUnitInitialize(self->mAudioUnit);
if(err != noErr)
{
ERR("AudioUnitInitialize failed\n");
AudioComponentInstanceDispose(self->mAudioUnit);
return ALC_INVALID_VALUE;
}
2018-11-18 18:45:45 -08:00
device->DeviceName = name;
return ALC_NO_ERROR;
}
static ALCboolean ALCcoreAudioPlayback_reset(ALCcoreAudioPlayback *self)
{
ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice;
AudioStreamBasicDescription streamFormat;
AURenderCallbackStruct input;
OSStatus err;
UInt32 size;
err = AudioUnitUninitialize(self->mAudioUnit);
2011-03-15 11:52:18 -07:00
if(err != noErr)
ERR("-- AudioUnitUninitialize failed.\n");
/* retrieve default output unit's properties (output side) */
size = sizeof(AudioStreamBasicDescription);
err = AudioUnitGetProperty(self->mAudioUnit, kAudioUnitProperty_StreamFormat,
kAudioUnitScope_Output, 0, &streamFormat, &size);
2011-03-15 11:52:18 -07:00
if(err != noErr || size != sizeof(AudioStreamBasicDescription))
{
2011-07-13 01:43:00 -07:00
ERR("AudioUnitGetProperty failed\n");
return ALC_FALSE;
}
#if 0
TRACE("Output streamFormat of default output unit -\n");
TRACE(" streamFormat.mFramesPerPacket = %d\n", streamFormat.mFramesPerPacket);
TRACE(" streamFormat.mChannelsPerFrame = %d\n", streamFormat.mChannelsPerFrame);
TRACE(" streamFormat.mBitsPerChannel = %d\n", streamFormat.mBitsPerChannel);
TRACE(" streamFormat.mBytesPerPacket = %d\n", streamFormat.mBytesPerPacket);
TRACE(" streamFormat.mBytesPerFrame = %d\n", streamFormat.mBytesPerFrame);
TRACE(" streamFormat.mSampleRate = %5.0f\n", streamFormat.mSampleRate);
#endif
/* set default output unit's input side to match output side */
err = AudioUnitSetProperty(self->mAudioUnit, kAudioUnitProperty_StreamFormat,
kAudioUnitScope_Input, 0, &streamFormat, size);
2011-03-15 11:52:18 -07:00
if(err != noErr)
{
2011-07-13 01:43:00 -07:00
ERR("AudioUnitSetProperty failed\n");
return ALC_FALSE;
}
2011-05-03 02:29:26 -07:00
if(device->Frequency != streamFormat.mSampleRate)
{
device->NumUpdates = (ALuint)((ALuint64)device->NumUpdates *
2011-05-03 02:29:26 -07:00
streamFormat.mSampleRate /
device->Frequency);
device->Frequency = streamFormat.mSampleRate;
}
/* FIXME: How to tell what channels are what in the output device, and how
* to specify what we're giving? eg, 6.0 vs 5.1 */
switch(streamFormat.mChannelsPerFrame)
{
case 1:
device->FmtChans = DevFmtMono;
break;
case 2:
device->FmtChans = DevFmtStereo;
break;
case 4:
device->FmtChans = DevFmtQuad;
break;
case 6:
device->FmtChans = DevFmtX51;
break;
case 7:
device->FmtChans = DevFmtX61;
break;
case 8:
device->FmtChans = DevFmtX71;
break;
default:
2011-07-13 01:43:00 -07:00
ERR("Unhandled channel count (%d), using Stereo\n", streamFormat.mChannelsPerFrame);
device->FmtChans = DevFmtStereo;
streamFormat.mChannelsPerFrame = 2;
break;
}
SetDefaultWFXChannelOrder(device);
/* use channel count and sample rate from the default output unit's current
* parameters, but reset everything else */
streamFormat.mFramesPerPacket = 1;
streamFormat.mFormatFlags = 0;
switch(device->FmtType)
{
case DevFmtUByte:
device->FmtType = DevFmtByte;
/* fall-through */
case DevFmtByte:
streamFormat.mFormatFlags = kLinearPCMFormatFlagIsSignedInteger;
streamFormat.mBitsPerChannel = 8;
break;
case DevFmtUShort:
device->FmtType = DevFmtShort;
/* fall-through */
case DevFmtShort:
streamFormat.mFormatFlags = kLinearPCMFormatFlagIsSignedInteger;
streamFormat.mBitsPerChannel = 16;
break;
case DevFmtUInt:
device->FmtType = DevFmtInt;
/* fall-through */
case DevFmtInt:
streamFormat.mFormatFlags = kLinearPCMFormatFlagIsSignedInteger;
streamFormat.mBitsPerChannel = 32;
break;
case DevFmtFloat:
streamFormat.mFormatFlags = kLinearPCMFormatFlagIsFloat;
streamFormat.mBitsPerChannel = 32;
break;
}
streamFormat.mBytesPerFrame = streamFormat.mChannelsPerFrame *
streamFormat.mBitsPerChannel / 8;
streamFormat.mBytesPerPacket = streamFormat.mBytesPerFrame;
streamFormat.mFormatID = kAudioFormatLinearPCM;
streamFormat.mFormatFlags |= kAudioFormatFlagsNativeEndian |
kLinearPCMFormatFlagIsPacked;
err = AudioUnitSetProperty(self->mAudioUnit, kAudioUnitProperty_StreamFormat,
kAudioUnitScope_Input, 0, &streamFormat, sizeof(AudioStreamBasicDescription));
2011-03-15 11:52:18 -07:00
if(err != noErr)
{
2011-07-13 01:43:00 -07:00
ERR("AudioUnitSetProperty failed\n");
return ALC_FALSE;
}
/* setup callback */
self->mFrameSize = device->frameSizeFromFmt();
input.inputProc = ALCcoreAudioPlayback_MixerProc;
input.inputProcRefCon = self;
err = AudioUnitSetProperty(self->mAudioUnit, kAudioUnitProperty_SetRenderCallback,
kAudioUnitScope_Input, 0, &input, sizeof(AURenderCallbackStruct));
2011-03-15 11:52:18 -07:00
if(err != noErr)
{
2011-07-13 01:43:00 -07:00
ERR("AudioUnitSetProperty failed\n");
return ALC_FALSE;
}
/* init the default audio unit... */
err = AudioUnitInitialize(self->mAudioUnit);
if(err != noErr)
{
ERR("AudioUnitInitialize failed\n");
return ALC_FALSE;
}
return ALC_TRUE;
}
static ALCboolean ALCcoreAudioPlayback_start(ALCcoreAudioPlayback *self)
{
OSStatus err = AudioOutputUnitStart(self->mAudioUnit);
if(err != noErr)
{
ERR("AudioOutputUnitStart failed\n");
return ALC_FALSE;
}
return ALC_TRUE;
}
static void ALCcoreAudioPlayback_stop(ALCcoreAudioPlayback *self)
{
OSStatus err = AudioOutputUnitStop(self->mAudioUnit);
if(err != noErr)
ERR("AudioOutputUnitStop failed\n");
}
2018-11-13 02:09:21 -08:00
struct ALCcoreAudioCapture final : public ALCbackend {
AudioUnit mAudioUnit{0};
ALuint mFrameSize{0u};
AudioStreamBasicDescription mFormat{}; // This is the OpenAL format as a CoreAudio ASBD
std::unique_ptr<SampleConverter> mConverter;
RingBufferPtr mRing{nullptr};
2018-11-13 02:09:21 -08:00
};
static void ALCcoreAudioCapture_Construct(ALCcoreAudioCapture *self, ALCdevice *device);
static void ALCcoreAudioCapture_Destruct(ALCcoreAudioCapture *self);
static ALCenum ALCcoreAudioCapture_open(ALCcoreAudioCapture *self, const ALCchar *name);
static DECLARE_FORWARD(ALCcoreAudioCapture, ALCbackend, ALCboolean, reset)
static ALCboolean ALCcoreAudioCapture_start(ALCcoreAudioCapture *self);
static void ALCcoreAudioCapture_stop(ALCcoreAudioCapture *self);
static ALCenum ALCcoreAudioCapture_captureSamples(ALCcoreAudioCapture *self, ALCvoid *buffer, ALCuint samples);
static ALCuint ALCcoreAudioCapture_availableSamples(ALCcoreAudioCapture *self);
static DECLARE_FORWARD(ALCcoreAudioCapture, ALCbackend, ClockLatency, getClockLatency)
static DECLARE_FORWARD(ALCcoreAudioCapture, ALCbackend, void, lock)
static DECLARE_FORWARD(ALCcoreAudioCapture, ALCbackend, void, unlock)
DECLARE_DEFAULT_ALLOCATORS(ALCcoreAudioCapture)
DEFINE_ALCBACKEND_VTABLE(ALCcoreAudioCapture);
static void ALCcoreAudioCapture_Construct(ALCcoreAudioCapture *self, ALCdevice *device)
{
2018-11-13 02:09:21 -08:00
new (self) ALCcoreAudioCapture{};
ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device);
SET_VTABLE2(ALCcoreAudioCapture, ALCbackend, self);
}
static void ALCcoreAudioCapture_Destruct(ALCcoreAudioCapture *self)
{
if(self->mAudioUnit)
AudioComponentInstanceDispose(self->mAudioUnit);
self->mAudioUnit = 0;
ALCbackend_Destruct(STATIC_CAST(ALCbackend, self));
2018-11-13 02:09:21 -08:00
self->~ALCcoreAudioCapture();
}
static OSStatus ALCcoreAudioCapture_RecordProc(void *inRefCon,
AudioUnitRenderActionFlags* UNUSED(ioActionFlags),
const AudioTimeStamp *inTimeStamp, UInt32 UNUSED(inBusNumber),
UInt32 inNumberFrames, AudioBufferList* UNUSED(ioData))
{
auto self = static_cast<ALCcoreAudioCapture*>(inRefCon);
RingBuffer *ring{self->mRing.get()};
AudioUnitRenderActionFlags flags = 0;
union {
ALbyte _[sizeof(AudioBufferList) + sizeof(AudioBuffer)];
AudioBufferList list;
} audiobuf = { { 0 } };
OSStatus err;
auto rec_vec = ring->getWriteVector();
// Fill the ringbuffer's first segment with data from the input device
size_t total_read{minz(rec_vec.first.len, inNumberFrames)};
audiobuf.list.mNumberBuffers = 1;
audiobuf.list.mBuffers[0].mNumberChannels = self->mFormat.mChannelsPerFrame;
audiobuf.list.mBuffers[0].mData = rec_vec.first.buf;
audiobuf.list.mBuffers[0].mDataByteSize = total_read * self->mFormat.mBytesPerFrame;
err = AudioUnitRender(self->mAudioUnit, &flags, inTimeStamp, 1, inNumberFrames,
&audiobuf.list);
if(err == noErr && inNumberFrames > rec_vec.first.len && rec_vec.second.len > 0)
{
/* If there's still more to get and there's space in the ringbuffer's
* second segment, fill that with data too.
*/
const size_t remlen{inNumberFrames - rec_vec.first.len};
const size_t toread{minz(rec_vec.second.len, remlen)};
total_read += toread;
audiobuf.list.mNumberBuffers = 1;
audiobuf.list.mBuffers[0].mNumberChannels = self->mFormat.mChannelsPerFrame;
audiobuf.list.mBuffers[0].mData = rec_vec.second.buf;
audiobuf.list.mBuffers[0].mDataByteSize = toread * self->mFormat.mBytesPerFrame;
err = AudioUnitRender(self->mAudioUnit, &flags, inTimeStamp, 1, inNumberFrames,
&audiobuf.list);
}
2011-03-15 11:52:18 -07:00
if(err != noErr)
{
ERR("AudioUnitRender error: %d\n", err);
return err;
}
ring->writeAdvance(total_read);
return noErr;
}
static ALCenum ALCcoreAudioCapture_open(ALCcoreAudioCapture *self, const ALCchar *name)
{
ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice;
AudioStreamBasicDescription requestedFormat; // The application requested format
AudioStreamBasicDescription hardwareFormat; // The hardware format
AudioStreamBasicDescription outputFormat; // The AudioUnit output format
AURenderCallbackStruct input;
AudioComponentDescription desc;
UInt32 outputFrameCount;
UInt32 propertySize;
AudioObjectPropertyAddress propertyAddress;
UInt32 enableIO;
AudioComponent comp;
OSStatus err;
if(!name)
name = ca_device;
else if(strcmp(name, ca_device) != 0)
return ALC_INVALID_VALUE;
desc.componentType = kAudioUnitType_Output;
2018-09-07 23:01:17 -07:00
#if TARGET_OS_IOS
desc.componentSubType = kAudioUnitSubType_RemoteIO;
#else
desc.componentSubType = kAudioUnitSubType_HALOutput;
2018-09-07 23:01:17 -07:00
#endif
desc.componentManufacturer = kAudioUnitManufacturer_Apple;
desc.componentFlags = 0;
desc.componentFlagsMask = 0;
// Search for component with given description
comp = AudioComponentFindNext(NULL, &desc);
if(comp == NULL)
{
ERR("AudioComponentFindNext failed\n");
return ALC_INVALID_VALUE;
}
// Open the component
err = AudioComponentInstanceNew(comp, &self->mAudioUnit);
if(err != noErr)
{
ERR("AudioComponentInstanceNew failed\n");
return ALC_INVALID_VALUE;
}
// Turn off AudioUnit output
enableIO = 0;
err = AudioUnitSetProperty(self->mAudioUnit, kAudioOutputUnitProperty_EnableIO,
kAudioUnitScope_Output, 0, &enableIO, sizeof(ALuint));
if(err != noErr)
{
2011-07-13 01:43:00 -07:00
ERR("AudioUnitSetProperty failed\n");
return ALC_INVALID_VALUE;
}
// Turn on AudioUnit input
enableIO = 1;
err = AudioUnitSetProperty(self->mAudioUnit, kAudioOutputUnitProperty_EnableIO,
kAudioUnitScope_Input, 1, &enableIO, sizeof(ALuint));
if(err != noErr)
{
2011-07-13 01:43:00 -07:00
ERR("AudioUnitSetProperty failed\n");
return ALC_INVALID_VALUE;
}
2018-09-07 23:01:17 -07:00
#if !TARGET_OS_IOS
{
2018-11-13 02:09:21 -08:00
// Get the default input device
AudioDeviceID inputDevice = kAudioDeviceUnknown;
propertySize = sizeof(AudioDeviceID);
propertyAddress.mSelector = kAudioHardwarePropertyDefaultInputDevice;
propertyAddress.mScope = kAudioObjectPropertyScopeGlobal;
propertyAddress.mElement = kAudioObjectPropertyElementMaster;
err = AudioObjectGetPropertyData(kAudioObjectSystemObject, &propertyAddress, 0, NULL, &propertySize, &inputDevice);
if(err != noErr)
{
ERR("AudioObjectGetPropertyData failed\n");
return ALC_INVALID_VALUE;
2018-11-13 02:09:21 -08:00
}
if(inputDevice == kAudioDeviceUnknown)
{
ERR("No input device found\n");
return ALC_INVALID_VALUE;
2018-11-13 02:09:21 -08:00
}
2018-11-13 02:09:21 -08:00
// Track the input device
err = AudioUnitSetProperty(self->mAudioUnit, kAudioOutputUnitProperty_CurrentDevice,
kAudioUnitScope_Global, 0, &inputDevice, sizeof(AudioDeviceID));
2018-11-13 02:09:21 -08:00
if(err != noErr)
{
ERR("AudioUnitSetProperty failed\n");
return ALC_INVALID_VALUE;
2018-11-13 02:09:21 -08:00
}
}
2018-09-07 23:01:17 -07:00
#endif
// set capture callback
input.inputProc = ALCcoreAudioCapture_RecordProc;
input.inputProcRefCon = self;
err = AudioUnitSetProperty(self->mAudioUnit, kAudioOutputUnitProperty_SetInputCallback,
kAudioUnitScope_Global, 0, &input, sizeof(AURenderCallbackStruct));
if(err != noErr)
{
2011-07-13 01:43:00 -07:00
ERR("AudioUnitSetProperty failed\n");
return ALC_INVALID_VALUE;
}
// Initialize the device
err = AudioUnitInitialize(self->mAudioUnit);
if(err != noErr)
{
2011-07-13 01:43:00 -07:00
ERR("AudioUnitInitialize failed\n");
return ALC_INVALID_VALUE;
}
// Get the hardware format
propertySize = sizeof(AudioStreamBasicDescription);
err = AudioUnitGetProperty(self->mAudioUnit, kAudioUnitProperty_StreamFormat,
kAudioUnitScope_Input, 1, &hardwareFormat, &propertySize);
if(err != noErr || propertySize != sizeof(AudioStreamBasicDescription))
{
2011-07-13 01:43:00 -07:00
ERR("AudioUnitGetProperty failed\n");
return ALC_INVALID_VALUE;
}
// Set up the requested format description
switch(device->FmtType)
{
case DevFmtUByte:
requestedFormat.mBitsPerChannel = 8;
requestedFormat.mFormatFlags = kAudioFormatFlagIsPacked;
break;
case DevFmtShort:
requestedFormat.mBitsPerChannel = 16;
requestedFormat.mFormatFlags = kAudioFormatFlagIsSignedInteger | kAudioFormatFlagsNativeEndian | kAudioFormatFlagIsPacked;
break;
case DevFmtInt:
requestedFormat.mBitsPerChannel = 32;
requestedFormat.mFormatFlags = kAudioFormatFlagIsSignedInteger | kAudioFormatFlagsNativeEndian | kAudioFormatFlagIsPacked;
break;
case DevFmtFloat:
requestedFormat.mBitsPerChannel = 32;
requestedFormat.mFormatFlags = kAudioFormatFlagIsPacked;
break;
case DevFmtByte:
case DevFmtUShort:
case DevFmtUInt:
2011-07-13 01:43:00 -07:00
ERR("%s samples not supported\n", DevFmtTypeString(device->FmtType));
return ALC_INVALID_VALUE;
}
switch(device->FmtChans)
{
case DevFmtMono:
requestedFormat.mChannelsPerFrame = 1;
break;
case DevFmtStereo:
requestedFormat.mChannelsPerFrame = 2;
break;
case DevFmtQuad:
case DevFmtX51:
case DevFmtX51Rear:
case DevFmtX61:
case DevFmtX71:
case DevFmtAmbi3D:
2011-07-13 01:43:00 -07:00
ERR("%s not supported\n", DevFmtChannelsString(device->FmtChans));
return ALC_INVALID_VALUE;
}
requestedFormat.mBytesPerFrame = requestedFormat.mChannelsPerFrame * requestedFormat.mBitsPerChannel / 8;
requestedFormat.mBytesPerPacket = requestedFormat.mBytesPerFrame;
requestedFormat.mSampleRate = device->Frequency;
requestedFormat.mFormatID = kAudioFormatLinearPCM;
requestedFormat.mReserved = 0;
requestedFormat.mFramesPerPacket = 1;
// save requested format description for later use
self->mFormat = requestedFormat;
self->mFrameSize = device->frameSizeFromFmt();
// Use intermediate format for sample rate conversion (outputFormat)
// Set sample rate to the same as hardware for resampling later
outputFormat = requestedFormat;
outputFormat.mSampleRate = hardwareFormat.mSampleRate;
// The output format should be the requested format, but using the hardware sample rate
// This is because the AudioUnit will automatically scale other properties, except for sample rate
err = AudioUnitSetProperty(self->mAudioUnit, kAudioUnitProperty_StreamFormat,
kAudioUnitScope_Output, 1, (void *)&outputFormat, sizeof(outputFormat));
if(err != noErr)
{
2011-07-13 01:43:00 -07:00
ERR("AudioUnitSetProperty failed\n");
return ALC_INVALID_VALUE;
}
// Set the AudioUnit output format frame count
ALuint64 FrameCount64{device->UpdateSize};
FrameCount64 = (FrameCount64*outputFormat.mSampleRate + device->Frequency-1) /
device->Frequency;
FrameCount64 += MAX_RESAMPLE_PADDING*2;
if(FrameCount64 > std::numeric_limits<uint32_t>::max()/2)
{
ERR("FrameCount too large\n");
return ALC_INVALID_VALUE;
}
outputFrameCount = static_cast<uint32_t>(FrameCount64);
err = AudioUnitSetProperty(self->mAudioUnit, kAudioUnitProperty_MaximumFramesPerSlice,
kAudioUnitScope_Output, 0, &outputFrameCount, sizeof(outputFrameCount));
if(err != noErr)
{
ERR("AudioUnitSetProperty failed: %d\n", err);
return ALC_INVALID_VALUE;
}
// Set up sample converter if needed
if(outputFormat.mSampleRate != device->Frequency)
self->mConverter.reset(CreateSampleConverter(device->FmtType, device->FmtType,
self->mFormat.mChannelsPerFrame, hardwareFormat.mSampleRate, device->Frequency,
BSinc24Resampler));
self->mRing.reset(ll_ringbuffer_create(outputFrameCount, self->mFrameSize, false));
if(!self->mRing) return ALC_INVALID_VALUE;
2018-11-18 18:45:45 -08:00
device->DeviceName = name;
return ALC_NO_ERROR;
}
static ALCboolean ALCcoreAudioCapture_start(ALCcoreAudioCapture *self)
{
OSStatus err = AudioOutputUnitStart(self->mAudioUnit);
if(err != noErr)
{
2011-07-13 01:43:00 -07:00
ERR("AudioOutputUnitStart failed\n");
return ALC_FALSE;
}
return ALC_TRUE;
}
static void ALCcoreAudioCapture_stop(ALCcoreAudioCapture *self)
{
OSStatus err = AudioOutputUnitStop(self->mAudioUnit);
if(err != noErr)
2011-07-13 01:43:00 -07:00
ERR("AudioOutputUnitStop failed\n");
}
static ALCenum ALCcoreAudioCapture_captureSamples(ALCcoreAudioCapture *self, ALCvoid *buffer, ALCuint samples)
{
RingBuffer *ring{self->mRing.get()};
if(!self->mConverter)
{
ring->read(buffer, samples);
return ALC_NO_ERROR;
}
auto rec_vec = ring->getReadVector();
const void *src0{rec_vec.first.buf};
auto src0len = static_cast<ALsizei>(rec_vec.first.len);
auto got = static_cast<ALuint>(SampleConverterInput(self->mConverter.get(), &src0, &src0len,
buffer, samples));
size_t total_read{rec_vec.first.len - src0len};
if(got < samples && !src0len && rec_vec.second.len > 0)
{
const void *src1{rec_vec.second.buf};
auto src1len = static_cast<ALsizei>(rec_vec.second.len);
got += static_cast<ALuint>(SampleConverterInput(self->mConverter.get(), &src1, &src1len,
static_cast<char*>(buffer)+got, samples-got));
total_read += rec_vec.second.len - src1len;
}
ring->readAdvance(total_read);
return ALC_NO_ERROR;
}
static ALCuint ALCcoreAudioCapture_availableSamples(ALCcoreAudioCapture *self)
{
RingBuffer *ring{self->mRing.get()};
if(!self->mConverter) return ring->readSpace();
return SampleConverterAvailableOut(self->mConverter.get(), ring->readSpace());
}
2018-11-15 21:24:09 -08:00
BackendFactory &CoreAudioBackendFactory::getFactory()
{
2018-11-15 21:24:09 -08:00
static CoreAudioBackendFactory factory{};
return factory;
}
2018-11-15 21:24:09 -08:00
bool CoreAudioBackendFactory::init() { return true; }
2018-11-15 21:24:09 -08:00
bool CoreAudioBackendFactory::querySupport(ALCbackend_Type type)
{ return (type == ALCbackend_Playback || ALCbackend_Capture); }
void CoreAudioBackendFactory::probe(DevProbe type, std::string *outnames)
{
2011-06-14 04:02:58 -07:00
switch(type)
{
case ALL_DEVICE_PROBE:
case CAPTURE_DEVICE_PROBE:
/* Includes null char. */
outnames->append(ca_device, sizeof(ca_device));
2011-06-14 04:02:58 -07:00
break;
}
}
2018-11-15 21:24:09 -08:00
ALCbackend *CoreAudioBackendFactory::createBackend(ALCdevice *device, ALCbackend_Type type)
{
if(type == ALCbackend_Playback)
{
ALCcoreAudioPlayback *backend;
NEW_OBJ(backend, ALCcoreAudioPlayback)(device);
2018-11-15 21:24:09 -08:00
if(!backend) return nullptr;
return STATIC_CAST(ALCbackend, backend);
}
if(type == ALCbackend_Capture)
{
ALCcoreAudioCapture *backend;
NEW_OBJ(backend, ALCcoreAudioCapture)(device);
2018-11-15 21:24:09 -08:00
if(!backend) return nullptr;
return STATIC_CAST(ALCbackend, backend);
}
2018-11-15 21:24:09 -08:00
return nullptr;
}