openal-soft/alc/effects/modulator.cpp

271 lines
9.3 KiB
C++
Raw Normal View History

/**
* OpenAL cross platform audio library
* Copyright (C) 2009 by Chris Robinson.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
2019-01-09 19:42:40 +01:00
#include <cmath>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include "al/auxeffectslot.h"
#include "alcmain.h"
#include "alcontext.h"
#include "alu.h"
#include "filters/biquad.h"
#include "vecmat.h"
namespace {
#define MAX_UPDATE_SAMPLES 128
#define WAVEFORM_FRACBITS 24
#define WAVEFORM_FRACONE (1<<WAVEFORM_FRACBITS)
#define WAVEFORM_FRACMASK (WAVEFORM_FRACONE-1)
inline float Sin(ALuint index)
{
constexpr float scale{al::MathDefs<float>::Tau() / WAVEFORM_FRACONE};
return std::sin(static_cast<float>(index) * scale);
}
inline float Saw(ALuint index)
{ return static_cast<float>(index)*(2.0f/WAVEFORM_FRACONE) - 1.0f; }
inline float Square(ALuint index)
{ return static_cast<float>(static_cast<int>((index>>(WAVEFORM_FRACBITS-2))&2) - 1); }
inline float One(ALuint) { return 1.0f; }
template<float (&func)(ALuint)>
void Modulate(float *RESTRICT dst, ALuint index, const ALuint step, size_t todo)
{
2019-08-20 14:30:04 -07:00
for(size_t i{0u};i < todo;i++)
{
index += step;
index &= WAVEFORM_FRACMASK;
dst[i] = func(index);
}
}
struct ModulatorState final : public EffectState {
void (*mGetSamples)(float*RESTRICT, ALuint, const ALuint, size_t){};
ALuint mIndex{0};
ALuint mStep{1};
struct {
BiquadFilter Filter;
ALfloat CurrentGains[MAX_OUTPUT_CHANNELS]{};
ALfloat TargetGains[MAX_OUTPUT_CHANNELS]{};
} mChans[MAX_AMBI_CHANNELS];
2018-12-22 18:43:34 -08:00
ALboolean deviceUpdate(const ALCdevice *device) override;
2019-03-22 22:48:12 -07:00
void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override;
2019-08-26 09:16:20 -07:00
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override;
DEF_NEWDEL(ModulatorState)
};
2019-07-28 17:15:34 -07:00
ALboolean ModulatorState::deviceUpdate(const ALCdevice*)
{
for(auto &e : mChans)
{
e.Filter.clear();
std::fill(std::begin(e.CurrentGains), std::end(e.CurrentGains), 0.0f);
}
return AL_TRUE;
}
2019-03-22 22:48:12 -07:00
void ModulatorState::update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target)
{
const ALCdevice *device{context->mDevice.get()};
const float step{props->Modulator.Frequency / static_cast<ALfloat>(device->Frequency)};
mStep = fastf2u(clampf(step*WAVEFORM_FRACONE, 0.0f, ALfloat{WAVEFORM_FRACONE-1}));
if(mStep == 0)
mGetSamples = Modulate<One>;
else if(props->Modulator.Waveform == AL_RING_MODULATOR_SINUSOID)
mGetSamples = Modulate<Sin>;
else if(props->Modulator.Waveform == AL_RING_MODULATOR_SAWTOOTH)
mGetSamples = Modulate<Saw>;
2019-07-01 14:58:32 +02:00
else /*if(props->Modulator.Waveform == AL_RING_MODULATOR_SQUARE)*/
mGetSamples = Modulate<Square>;
ALfloat f0norm{props->Modulator.HighPassCutoff / static_cast<ALfloat>(device->Frequency)};
f0norm = clampf(f0norm, 1.0f/512.0f, 0.49f);
/* Bandwidth value is constant in octaves. */
mChans[0].Filter.setParams(BiquadType::HighPass, 1.0f, f0norm,
BiquadFilter::rcpQFromBandwidth(f0norm, 0.75f));
2019-07-04 15:02:12 -07:00
for(size_t i{1u};i < slot->Wet.Buffer.size();++i)
mChans[i].Filter.copyParamsFrom(mChans[0].Filter);
2019-07-04 15:02:12 -07:00
mOutTarget = target.Main->Buffer;
for(size_t i{0u};i < slot->Wet.Buffer.size();++i)
{
auto coeffs = GetAmbiIdentityRow(i);
ComputePanGains(target.Main, coeffs.data(), slot->Params.Gain, mChans[i].TargetGains);
}
}
2019-08-26 09:16:20 -07:00
void ModulatorState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
2019-08-20 14:30:04 -07:00
for(size_t base{0u};base < samplesToDo;)
{
alignas(16) ALfloat modsamples[MAX_UPDATE_SAMPLES];
2019-08-20 14:30:04 -07:00
size_t td{minz(MAX_UPDATE_SAMPLES, samplesToDo-base)};
2019-06-30 23:17:13 +02:00
mGetSamples(modsamples, mIndex, mStep, td);
mIndex += static_cast<ALuint>(mStep * td);
mIndex &= WAVEFORM_FRACMASK;
2019-08-26 09:16:20 -07:00
auto chandata = std::addressof(mChans[0]);
for(const auto &input : samplesIn)
{
alignas(16) ALfloat temps[MAX_UPDATE_SAMPLES];
2019-08-26 09:16:20 -07:00
chandata->Filter.process(temps, &input[base], td);
2019-08-20 14:30:04 -07:00
for(size_t i{0u};i < td;i++)
temps[i] *= modsamples[i];
2016-01-29 23:44:43 -08:00
2019-08-26 09:16:20 -07:00
MixSamples({temps, td}, samplesOut, chandata->CurrentGains, chandata->TargetGains,
2019-08-20 14:30:04 -07:00
samplesToDo-base, base);
2019-08-26 09:16:20 -07:00
++chandata;
}
base += td;
}
}
2019-03-22 22:48:12 -07:00
void Modulator_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val)
{
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
2013-05-26 08:54:34 -07:00
if(!(val >= AL_RING_MODULATOR_MIN_FREQUENCY && val <= AL_RING_MODULATOR_MAX_FREQUENCY))
SETERR_RETURN(context, AL_INVALID_VALUE,, "Modulator frequency out of range");
2013-05-26 08:54:34 -07:00
props->Modulator.Frequency = val;
break;
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
2013-05-26 08:54:34 -07:00
if(!(val >= AL_RING_MODULATOR_MIN_HIGHPASS_CUTOFF && val <= AL_RING_MODULATOR_MAX_HIGHPASS_CUTOFF))
SETERR_RETURN(context, AL_INVALID_VALUE,, "Modulator high-pass cutoff out of range");
2013-05-26 08:54:34 -07:00
props->Modulator.HighPassCutoff = val;
break;
default:
context->setError(AL_INVALID_ENUM, "Invalid modulator float property 0x%04x", param);
}
}
2019-03-22 22:48:12 -07:00
void Modulator_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals)
{ Modulator_setParamf(props, context, param, vals[0]); }
2019-03-22 22:48:12 -07:00
void Modulator_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val)
{
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
Modulator_setParamf(props, context, param, static_cast<ALfloat>(val));
break;
case AL_RING_MODULATOR_WAVEFORM:
2013-05-26 08:54:34 -07:00
if(!(val >= AL_RING_MODULATOR_MIN_WAVEFORM && val <= AL_RING_MODULATOR_MAX_WAVEFORM))
SETERR_RETURN(context, AL_INVALID_VALUE,, "Invalid modulator waveform");
2013-05-26 08:54:34 -07:00
props->Modulator.Waveform = val;
break;
default:
context->setError(AL_INVALID_ENUM, "Invalid modulator integer property 0x%04x", param);
}
}
2019-03-22 22:48:12 -07:00
void Modulator_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals)
{ Modulator_setParami(props, context, param, vals[0]); }
2019-03-22 22:48:12 -07:00
void Modulator_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val)
{
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
*val = static_cast<ALint>(props->Modulator.Frequency);
break;
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
*val = static_cast<ALint>(props->Modulator.HighPassCutoff);
break;
case AL_RING_MODULATOR_WAVEFORM:
*val = props->Modulator.Waveform;
break;
default:
context->setError(AL_INVALID_ENUM, "Invalid modulator integer property 0x%04x", param);
}
}
2019-03-22 22:48:12 -07:00
void Modulator_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals)
{ Modulator_getParami(props, context, param, vals); }
2019-03-22 22:48:12 -07:00
void Modulator_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val)
{
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
*val = props->Modulator.Frequency;
break;
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
*val = props->Modulator.HighPassCutoff;
break;
default:
context->setError(AL_INVALID_ENUM, "Invalid modulator float property 0x%04x", param);
}
}
2019-03-22 22:48:12 -07:00
void Modulator_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals)
{ Modulator_getParamf(props, context, param, vals); }
DEFINE_ALEFFECT_VTABLE(Modulator);
struct ModulatorStateFactory final : public EffectStateFactory {
EffectState *create() override { return new ModulatorState{}; }
2019-03-22 22:48:12 -07:00
EffectProps getDefaultProps() const noexcept override;
const EffectVtable *getEffectVtable() const noexcept override { return &Modulator_vtable; }
};
2019-03-22 22:48:12 -07:00
EffectProps ModulatorStateFactory::getDefaultProps() const noexcept
{
2019-03-22 22:48:12 -07:00
EffectProps props{};
props.Modulator.Frequency = AL_RING_MODULATOR_DEFAULT_FREQUENCY;
props.Modulator.HighPassCutoff = AL_RING_MODULATOR_DEFAULT_HIGHPASS_CUTOFF;
props.Modulator.Waveform = AL_RING_MODULATOR_DEFAULT_WAVEFORM;
return props;
}
} // namespace
EffectStateFactory *ModulatorStateFactory_getFactory()
{
static ModulatorStateFactory ModulatorFactory{};
return &ModulatorFactory;
}