jp9000 1c2a0524b7 Change graphics subsystem to 4x4 matrices
4x4 matrices aren't as optimal, but are much more sensible to handle
when you want to do more advanced stuff like scaling, skewing, or
inversion.
2014-06-14 23:17:04 -07:00

223 lines
5.4 KiB
C

/******************************************************************************
Copyright (C) 2013 by Hugh Bailey <obs.jim@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
******************************************************************************/
#include "quat.h"
#include "vec3.h"
#include "matrix3.h"
#include "matrix4.h"
#include "axisang.h"
static inline void quat_vec3(struct vec3 *v, const struct quat *q)
{
v->m = q->m;
v->w = 0.0f;
}
void quat_mul(struct quat *dst, const struct quat *q1, const struct quat *q2)
{
struct vec3 q1axis, q2axis;
struct vec3 temp1, temp2;
quat_vec3(&q1axis, q1);
quat_vec3(&q2axis, q2);
vec3_mulf(&temp1, &q2axis, q1->w);
vec3_mulf(&temp2, &q1axis, q2->w);
vec3_add(&temp1, &temp1, &temp2);
vec3_cross(&temp2, &q1axis, &q2axis);
vec3_add((struct vec3 *)dst, &temp1, &temp2);
dst->w = (q1->w * q2->w) - vec3_dot(&q1axis, &q2axis);
}
void quat_from_axisang(struct quat *dst, const struct axisang *aa)
{
float halfa = aa->w * 0.5f;
float sine = sinf(halfa);
dst->x = aa->x * sine;
dst->y = aa->y * sine;
dst->z = aa->z * sine;
dst->w = cosf(halfa);
}
struct f4x4 {
float ptr[4][4];
};
void quat_from_matrix3(struct quat *dst, const struct matrix3 *m)
{
quat_from_matrix4(dst, (const struct matrix4*)m);
}
void quat_from_matrix4(struct quat *dst, const struct matrix4 *m)
{
float tr = (m->x.x + m->y.y + m->z.z);
float inv_half;
float four_d;
int i,j,k;
if (tr > 0.0f) {
four_d = sqrtf(tr + 1.0f);
dst->w = four_d * 0.5f;
inv_half = 0.5f / four_d;
dst->x = (m->y.z - m->z.y) * inv_half;
dst->y = (m->z.x - m->x.z) * inv_half;
dst->z = (m->x.y - m->y.x) * inv_half;
} else {
struct f4x4 *val = (struct f4x4*)m;
i = (m->x.x > m->y.y) ? 0 : 1;
if (m->z.z > val->ptr[i][i])
i = 2;
j = (i+1) % 3;
k = (i+2) % 3;
/* ---------------------------------- */
four_d = sqrtf((val->ptr[i][i] - val->ptr[j][j] -
val->ptr[k][k]) + 1.0f);
dst->ptr[i] = four_d * 0.5f;
inv_half = 0.5f / four_d;
dst->ptr[j] = (val->ptr[i][j] + val->ptr[j][i]) * inv_half;
dst->ptr[k] = (val->ptr[i][k] + val->ptr[k][i]) * inv_half;
dst->w = (val->ptr[j][k] - val->ptr[k][j]) * inv_half;
}
}
void quat_get_dir(struct vec3 *dst, const struct quat *q)
{
struct matrix3 m;
matrix3_from_quat(&m, q);
vec3_copy(dst, &m.z);
}
void quat_set_look_dir(struct quat *dst, const struct vec3 *dir)
{
struct vec3 new_dir;
struct quat xz_rot, yz_rot;
bool xz_valid;
bool yz_valid;
struct axisang aa;
vec3_norm(&new_dir, dir);
vec3_neg(&new_dir, &new_dir);
quat_identity(&xz_rot);
quat_identity(&yz_rot);
xz_valid = close_float(new_dir.x, 0.0f, EPSILON) ||
close_float(new_dir.z, 0.0f, EPSILON);
yz_valid = close_float(new_dir.y, 0.0f, EPSILON);
if (xz_valid) {
axisang_set(&aa, 0.0f, 1.0f, 0.0f,
atan2f(new_dir.x, new_dir.z));
quat_from_axisang(&xz_rot, &aa);
}
if (yz_valid) {
axisang_set(&aa, -1.0f, 0.0f, 0.0f, asinf(new_dir.y));
quat_from_axisang(&yz_rot, &aa);
}
if (!xz_valid)
quat_copy(dst, &yz_rot);
else if (!yz_valid)
quat_copy(dst, &xz_rot);
else
quat_mul(dst, &xz_rot, &yz_rot);
}
void quat_log(struct quat *dst, const struct quat *q)
{
float angle = acosf(q->w);
float sine = sinf(angle);
float w = q->w;
quat_copy(dst, q);
dst->w = 0.0f;
if ((fabsf(w) < 1.0f) && (fabsf(sine) >= EPSILON)) {
sine = angle/sine;
quat_mulf(dst, dst, sine);
}
}
void quat_exp(struct quat *dst, const struct quat *q)
{
float length = sqrtf(q->x*q->x + q->y*q->y + q->z*q->z);
float sine = sinf(length);
quat_copy(dst, q);
sine = (length > EPSILON) ? (sine/length) : 1.0f;
quat_mulf(dst, dst, sine);
dst->w = cosf(length);
}
void quat_interpolate(struct quat *dst, const struct quat *q1,
const struct quat *q2, float t)
{
float dot = quat_dot(q1, q2);
float anglef = acosf(dot);
float sine, sinei, sinet, sineti;
struct quat temp;
if (anglef >= EPSILON) {
sine = sinf(anglef);
sinei = 1/sine;
sinet = sinf(anglef*t)*sinei;
sineti = sinf(anglef*(1.0f-t))*sinei;
quat_mulf(&temp, q1, sineti);
quat_mulf(dst, q2, sinet);
quat_add(dst, &temp, dst);
} else {
quat_sub(&temp, q2, q1);
quat_mulf(&temp, &temp, t);
quat_add(dst, &temp, q1);
}
}
void quat_get_tangent(struct quat *dst, const struct quat *prev,
const struct quat *q, const struct quat *next)
{
struct quat temp;
quat_sub(&temp, q, prev);
quat_add(&temp, &temp, next);
quat_sub(&temp, &temp, q);
quat_mulf(dst, &temp, 0.5f);
}
void quat_interpolate_cubic(struct quat *dst,
const struct quat *q1, const struct quat *q2,
const struct quat *m1, const struct quat *m2,
float t)
{
struct quat temp1, temp2;
quat_interpolate(&temp1, q1, q2, t);
quat_interpolate(&temp2, m1, m2, t);
quat_interpolate(dst, &temp1, &temp2, 2.0f*(1.0f-t)*t);
}