obs-studio/libobs/graphics/math-extra.c
tt2468 ba0f8de3a0 libobs: Return target instead of current in calc_torquef
If the previously calculated torque value is too close to 1.0
(but not considered 1.0), it would be impossible for the TBar to
finish its transition since it returned the old value, causing desync.
2020-05-13 22:43:11 -07:00

133 lines
3.3 KiB
C

/******************************************************************************
Copyright (C) 2013 by Hugh Bailey <obs.jim@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
******************************************************************************/
#include <stdlib.h>
#include "vec2.h"
#include "vec3.h"
#include "math-defs.h"
#include "math-extra.h"
void polar_to_cart(struct vec3 *dst, const struct vec3 *v)
{
struct vec3 cart;
float sinx = cosf(v->x);
float sinx_z = v->z * sinx;
cart.x = sinx_z * sinf(v->y);
cart.z = sinx_z * cosf(v->y);
cart.y = v->z * sinf(v->x);
vec3_copy(dst, &cart);
}
void cart_to_polar(struct vec3 *dst, const struct vec3 *v)
{
struct vec3 polar;
polar.z = vec3_len(v);
if (close_float(polar.z, 0.0f, EPSILON)) {
vec3_zero(&polar);
} else {
polar.x = asinf(v->y / polar.z);
polar.y = atan2f(v->x, v->z);
}
vec3_copy(dst, &polar);
}
void norm_to_polar(struct vec2 *dst, const struct vec3 *norm)
{
dst->x = atan2f(norm->x, norm->z);
dst->y = asinf(norm->y);
}
void polar_to_norm(struct vec3 *dst, const struct vec2 *polar)
{
float sinx = sinf(polar->x);
dst->x = sinx * cosf(polar->y);
dst->y = sinx * sinf(polar->y);
dst->z = cosf(polar->x);
}
float calc_torquef(float val1, float val2, float torque, float min_adjust,
float t)
{
float out = val1;
float dist;
bool over;
if (close_float(val1, val2, EPSILON))
return val2;
dist = (val2 - val1) * torque;
over = dist > 0.0f;
if (over) {
if (dist < min_adjust) /* prevents from going too slow */
dist = min_adjust;
out += dist * t; /* add torque */
if (out > val2) /* clamp if overshoot */
out = val2;
} else {
if (dist > -min_adjust)
dist = -min_adjust;
out += dist * t;
if (out < val2)
out = val2;
}
return out;
}
void calc_torque(struct vec3 *dst, const struct vec3 *v1, const struct vec3 *v2,
float torque, float min_adjust, float t)
{
struct vec3 line, dir;
float orig_dist, torque_dist, adjust_dist;
if (vec3_close(v1, v2, EPSILON)) {
vec3_copy(dst, v1);
return;
}
vec3_sub(&line, v2, v1);
orig_dist = vec3_len(&line);
vec3_mulf(&dir, &line, 1.0f / orig_dist);
torque_dist = orig_dist * torque; /* use distance to determine speed */
if (torque_dist < min_adjust) /* prevent from going too slow */
torque_dist = min_adjust;
adjust_dist = torque_dist * t;
if (adjust_dist <= (orig_dist - LARGE_EPSILON)) {
vec3_mulf(dst, &dir, adjust_dist);
vec3_add(dst, dst, v1); /* add torque */
} else {
vec3_copy(dst, v2); /* clamp if overshoot */
}
}
float rand_float(int positive_only)
{
if (positive_only)
return (float)((double)rand() / (double)RAND_MAX);
else
return (float)(((double)rand() / (double)RAND_MAX * 2.0) - 1.0);
}