obs-studio/libobs-d3d11/d3d11-subsystem.cpp

2795 lines
68 KiB
C++

/******************************************************************************
Copyright (C) 2013 by Hugh Bailey <obs.jim@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
******************************************************************************/
#include <cinttypes>
#include <util/base.h>
#include <util/platform.h>
#include <util/dstr.h>
#include <util/util.hpp>
#include <graphics/matrix3.h>
#include <winternl.h>
#include <d3d9.h>
#include "d3d11-subsystem.hpp"
#include "d3d11-config.h"
#include "intel-nv12-support.hpp"
struct UnsupportedHWError : HRError {
inline UnsupportedHWError(const char *str, HRESULT hr)
: HRError(str, hr)
{
}
};
#ifdef _MSC_VER
/* alignment warning - despite the fact that alignment is already fixed */
#pragma warning(disable : 4316)
#endif
static inline void LogD3D11ErrorDetails(HRError error, gs_device_t *device)
{
if (error.hr == DXGI_ERROR_DEVICE_REMOVED) {
HRESULT DeviceRemovedReason =
device->device->GetDeviceRemovedReason();
blog(LOG_ERROR, " Device Removed Reason: %08lX",
DeviceRemovedReason);
}
}
static const IID dxgiFactory2 = {0x50c83a1c,
0xe072,
0x4c48,
{0x87, 0xb0, 0x36, 0x30, 0xfa, 0x36, 0xa6,
0xd0}};
gs_obj::gs_obj(gs_device_t *device_, gs_type type)
: device(device_), obj_type(type)
{
prev_next = &device->first_obj;
next = device->first_obj;
device->first_obj = this;
if (next)
next->prev_next = &next;
}
gs_obj::~gs_obj()
{
if (prev_next)
*prev_next = next;
if (next)
next->prev_next = prev_next;
}
static inline void make_swap_desc(DXGI_SWAP_CHAIN_DESC &desc,
const gs_init_data *data)
{
memset(&desc, 0, sizeof(desc));
desc.BufferCount = data->num_backbuffers;
desc.BufferDesc.Format = ConvertGSTextureFormat(data->format);
desc.BufferDesc.Width = data->cx;
desc.BufferDesc.Height = data->cy;
desc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
desc.OutputWindow = (HWND)data->window.hwnd;
desc.SampleDesc.Count = 1;
desc.Windowed = true;
}
void gs_swap_chain::InitTarget(uint32_t cx, uint32_t cy)
{
HRESULT hr;
target.width = cx;
target.height = cy;
hr = swap->GetBuffer(0, __uuidof(ID3D11Texture2D),
(void **)target.texture.Assign());
if (FAILED(hr))
throw HRError("Failed to get swap buffer texture", hr);
hr = device->device->CreateRenderTargetView(
target.texture, NULL, target.renderTarget[0].Assign());
if (FAILED(hr))
throw HRError("Failed to create swap render target view", hr);
}
void gs_swap_chain::InitZStencilBuffer(uint32_t cx, uint32_t cy)
{
zs.width = cx;
zs.height = cy;
if (zs.format != GS_ZS_NONE && cx != 0 && cy != 0) {
zs.InitBuffer();
} else {
zs.texture.Clear();
zs.view.Clear();
}
}
void gs_swap_chain::Resize(uint32_t cx, uint32_t cy)
{
RECT clientRect;
HRESULT hr;
target.texture.Clear();
target.renderTarget[0].Clear();
zs.texture.Clear();
zs.view.Clear();
initData.cx = cx;
initData.cy = cy;
if (cx == 0 || cy == 0) {
GetClientRect(hwnd, &clientRect);
if (cx == 0)
cx = clientRect.right;
if (cy == 0)
cy = clientRect.bottom;
}
hr = swap->ResizeBuffers(numBuffers, cx, cy, target.dxgiFormat, 0);
if (FAILED(hr))
throw HRError("Failed to resize swap buffers", hr);
InitTarget(cx, cy);
InitZStencilBuffer(cx, cy);
}
void gs_swap_chain::Init()
{
target.device = device;
target.isRenderTarget = true;
target.format = initData.format;
target.dxgiFormat = ConvertGSTextureFormat(initData.format);
InitTarget(initData.cx, initData.cy);
zs.device = device;
zs.format = initData.zsformat;
zs.dxgiFormat = ConvertGSZStencilFormat(initData.zsformat);
InitZStencilBuffer(initData.cx, initData.cy);
}
gs_swap_chain::gs_swap_chain(gs_device *device, const gs_init_data *data)
: gs_obj(device, gs_type::gs_swap_chain),
numBuffers(data->num_backbuffers),
hwnd((HWND)data->window.hwnd),
initData(*data)
{
HRESULT hr;
make_swap_desc(swapDesc, data);
hr = device->factory->CreateSwapChain(device->device, &swapDesc,
swap.Assign());
if (FAILED(hr))
throw HRError("Failed to create swap chain", hr);
/* Ignore Alt+Enter */
device->factory->MakeWindowAssociation(hwnd, DXGI_MWA_NO_ALT_ENTER);
Init();
}
void gs_device::InitCompiler()
{
char d3dcompiler[40] = {};
int ver = 49;
while (ver > 30) {
sprintf(d3dcompiler, "D3DCompiler_%02d.dll", ver);
HMODULE module = LoadLibraryA(d3dcompiler);
if (module) {
d3dCompile = (pD3DCompile)GetProcAddress(module,
"D3DCompile");
#ifdef DISASSEMBLE_SHADERS
d3dDisassemble = (pD3DDisassemble)GetProcAddress(
module, "D3DDisassemble");
#endif
if (d3dCompile) {
return;
}
FreeLibrary(module);
}
ver--;
}
throw "Could not find any D3DCompiler libraries. Make sure you've "
"installed the <a href=\"https://obsproject.com/go/dxwebsetup\">"
"DirectX components</a> that OBS Studio requires.";
}
void gs_device::InitFactory(uint32_t adapterIdx)
{
HRESULT hr;
IID factoryIID = (GetWinVer() >= 0x602) ? dxgiFactory2
: __uuidof(IDXGIFactory1);
hr = CreateDXGIFactory1(factoryIID, (void **)factory.Assign());
if (FAILED(hr))
throw UnsupportedHWError("Failed to create DXGIFactory", hr);
hr = factory->EnumAdapters1(adapterIdx, &adapter);
if (FAILED(hr))
throw UnsupportedHWError("Failed to enumerate DXGIAdapter", hr);
}
const static D3D_FEATURE_LEVEL featureLevels[] = {
D3D_FEATURE_LEVEL_11_0,
D3D_FEATURE_LEVEL_10_1,
D3D_FEATURE_LEVEL_10_0,
};
/* ------------------------------------------------------------------------- */
#define VERT_IN_OUT \
"\
struct VertInOut { \
float4 pos : POSITION; \
}; "
#define NV12_Y_PS \
VERT_IN_OUT "\
float main(VertInOut vert_in) : TARGET \
{ \
return 1.0; \
}"
#define NV12_UV_PS \
VERT_IN_OUT "\
float2 main(VertInOut vert_in) : TARGET \
{ \
return float2(1.0, 1.0); \
}"
#define NV12_VS \
VERT_IN_OUT "\
VertInOut main(VertInOut vert_in) \
{ \
VertInOut vert_out; \
vert_out.pos = float4(vert_in.pos.xyz, 1.0); \
return vert_out; \
} "
/* ------------------------------------------------------------------------- */
#define NV12_CX 128
#define NV12_CY 128
bool gs_device::HasBadNV12Output()
try {
vec3 points[4];
vec3_set(&points[0], -1.0f, -1.0f, 0.0f);
vec3_set(&points[1], -1.0f, 1.0f, 0.0f);
vec3_set(&points[2], 1.0f, -1.0f, 0.0f);
vec3_set(&points[3], 1.0f, 1.0f, 0.0f);
gs_texture_2d nv12_y(this, NV12_CX, NV12_CY, GS_R8, 1, nullptr,
GS_RENDER_TARGET | GS_SHARED_KM_TEX, GS_TEXTURE_2D,
false, true);
gs_texture_2d nv12_uv(this, nv12_y.texture,
GS_RENDER_TARGET | GS_SHARED_KM_TEX);
gs_vertex_shader nv12_vs(this, "", NV12_VS);
gs_pixel_shader nv12_y_ps(this, "", NV12_Y_PS);
gs_pixel_shader nv12_uv_ps(this, "", NV12_UV_PS);
gs_stage_surface nv12_stage(this, NV12_CX, NV12_CY);
gs_vb_data *vbd = gs_vbdata_create();
vbd->num = 4;
vbd->points = (vec3 *)bmemdup(&points, sizeof(points));
gs_vertex_buffer buf(this, vbd, 0);
device_load_vertexbuffer(this, &buf);
device_load_vertexshader(this, &nv12_vs);
context->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP);
device_set_viewport(this, 0, 0, NV12_CX, NV12_CY);
device_set_cull_mode(this, GS_NEITHER);
device_enable_depth_test(this, false);
device_enable_blending(this, false);
LoadVertexBufferData();
device_set_render_target(this, &nv12_y, nullptr);
device_load_pixelshader(this, &nv12_y_ps);
UpdateBlendState();
UpdateRasterState();
UpdateZStencilState();
context->Draw(4, 0);
device_set_viewport(this, 0, 0, NV12_CX / 2, NV12_CY / 2);
device_set_render_target(this, &nv12_uv, nullptr);
device_load_pixelshader(this, &nv12_uv_ps);
UpdateBlendState();
UpdateRasterState();
UpdateZStencilState();
context->Draw(4, 0);
device_load_pixelshader(this, nullptr);
device_load_vertexbuffer(this, nullptr);
device_load_vertexshader(this, nullptr);
device_set_render_target(this, nullptr, nullptr);
device_stage_texture(this, &nv12_stage, &nv12_y);
uint8_t *data;
uint32_t linesize;
bool bad_driver = false;
if (gs_stagesurface_map(&nv12_stage, &data, &linesize)) {
bad_driver = data[linesize * NV12_CY] == 0;
gs_stagesurface_unmap(&nv12_stage);
} else {
throw "Could not map surface";
}
if (bad_driver) {
blog(LOG_WARNING, "Bad NV12 texture handling detected! "
"Disabling NV12 texture support.");
}
return bad_driver;
} catch (const HRError &error) {
blog(LOG_WARNING, "HasBadNV12Output failed: %s (%08lX)", error.str,
error.hr);
return false;
} catch (const char *error) {
blog(LOG_WARNING, "HasBadNV12Output failed: %s", error);
return false;
}
static bool increase_maximum_frame_latency(ID3D11Device *device)
{
ComQIPtr<IDXGIDevice1> dxgiDevice(device);
if (!dxgiDevice) {
blog(LOG_DEBUG, "%s: Failed to get IDXGIDevice1", __FUNCTION__);
return false;
}
const HRESULT hr = dxgiDevice->SetMaximumFrameLatency(16);
if (FAILED(hr)) {
blog(LOG_DEBUG, "%s: SetMaximumFrameLatency failed",
__FUNCTION__);
return false;
}
blog(LOG_INFO, "DXGI increase maximum frame latency success");
return true;
}
#if USE_GPU_PRIORITY
static bool set_priority(ID3D11Device *device)
{
typedef enum _D3DKMT_SCHEDULINGPRIORITYCLASS {
D3DKMT_SCHEDULINGPRIORITYCLASS_IDLE,
D3DKMT_SCHEDULINGPRIORITYCLASS_BELOW_NORMAL,
D3DKMT_SCHEDULINGPRIORITYCLASS_NORMAL,
D3DKMT_SCHEDULINGPRIORITYCLASS_ABOVE_NORMAL,
D3DKMT_SCHEDULINGPRIORITYCLASS_HIGH,
D3DKMT_SCHEDULINGPRIORITYCLASS_REALTIME
} D3DKMT_SCHEDULINGPRIORITYCLASS;
ComQIPtr<IDXGIDevice> dxgiDevice(device);
if (!dxgiDevice) {
blog(LOG_DEBUG, "%s: Failed to get IDXGIDevice", __FUNCTION__);
return false;
}
HMODULE gdi32 = GetModuleHandleW(L"GDI32");
if (!gdi32) {
blog(LOG_DEBUG, "%s: Failed to get GDI32", __FUNCTION__);
return false;
}
NTSTATUS(WINAPI * d3dkmt_spspc)(HANDLE, D3DKMT_SCHEDULINGPRIORITYCLASS);
d3dkmt_spspc = (decltype(d3dkmt_spspc))GetProcAddress(
gdi32, "D3DKMTSetProcessSchedulingPriorityClass");
if (!d3dkmt_spspc) {
blog(LOG_DEBUG, "%s: Failed to get d3dkmt_spspc", __FUNCTION__);
return false;
}
NTSTATUS status = d3dkmt_spspc(GetCurrentProcess(),
D3DKMT_SCHEDULINGPRIORITYCLASS_REALTIME);
if (status != 0) {
blog(LOG_DEBUG, "%s: Failed to set process priority class: %d",
__FUNCTION__, (int)status);
return false;
}
HRESULT hr = dxgiDevice->SetGPUThreadPriority(GPU_PRIORITY_VAL);
if (FAILED(hr)) {
blog(LOG_DEBUG, "%s: SetGPUThreadPriority failed",
__FUNCTION__);
return false;
}
blog(LOG_INFO, "D3D11 GPU priority setup success");
return true;
}
#endif
void gs_device::InitDevice(uint32_t adapterIdx)
{
wstring adapterName;
DXGI_ADAPTER_DESC desc;
D3D_FEATURE_LEVEL levelUsed = D3D_FEATURE_LEVEL_10_0;
HRESULT hr = 0;
adpIdx = adapterIdx;
uint32_t createFlags = D3D11_CREATE_DEVICE_BGRA_SUPPORT;
#ifdef _DEBUG
//createFlags |= D3D11_CREATE_DEVICE_DEBUG;
#endif
adapterName = (adapter->GetDesc(&desc) == S_OK) ? desc.Description
: L"<unknown>";
BPtr<char> adapterNameUTF8;
os_wcs_to_utf8_ptr(adapterName.c_str(), 0, &adapterNameUTF8);
blog(LOG_INFO, "Loading up D3D11 on adapter %s (%" PRIu32 ")",
adapterNameUTF8.Get(), adapterIdx);
hr = D3D11CreateDevice(adapter, D3D_DRIVER_TYPE_UNKNOWN, NULL,
createFlags, featureLevels,
sizeof(featureLevels) /
sizeof(D3D_FEATURE_LEVEL),
D3D11_SDK_VERSION, device.Assign(), &levelUsed,
context.Assign());
if (FAILED(hr))
throw UnsupportedHWError("Failed to create device", hr);
blog(LOG_INFO, "D3D11 loaded successfully, feature level used: %x",
(unsigned int)levelUsed);
/* prevent stalls sometimes seen in Present calls */
if (!increase_maximum_frame_latency(device)) {
blog(LOG_INFO, "DXGI increase maximum frame latency failed");
}
/* adjust gpu thread priority on non-intel GPUs */
#if USE_GPU_PRIORITY
if (desc.VendorId != 0x8086 && !set_priority(device)) {
blog(LOG_INFO, "D3D11 GPU priority setup "
"failed (not admin?)");
}
#endif
/* ---------------------------------------- */
/* check for nv12 texture output support */
nv12Supported = false;
/* WARP NV12 support is suspected to be buggy on older Windows */
if (desc.VendorId == 0x1414 && desc.DeviceId == 0x8c) {
return;
}
/* Intel CopyResource is very slow with NV12 */
if (desc.VendorId == 0x8086 && IsOldIntelPlatform(desc.DeviceId)) {
return;
}
ComQIPtr<ID3D11Device1> d3d11_1(device);
if (!d3d11_1) {
return;
}
/* needs to support extended resource sharing */
D3D11_FEATURE_DATA_D3D11_OPTIONS opts = {};
hr = d3d11_1->CheckFeatureSupport(D3D11_FEATURE_D3D11_OPTIONS, &opts,
sizeof(opts));
if (FAILED(hr) || !opts.ExtendedResourceSharing) {
return;
}
/* needs to support the actual format */
UINT support = 0;
hr = device->CheckFormatSupport(DXGI_FORMAT_NV12, &support);
if (FAILED(hr)) {
return;
}
if ((support & D3D11_FORMAT_SUPPORT_TEXTURE2D) == 0) {
return;
}
/* must be usable as a render target */
if ((support & D3D11_FORMAT_SUPPORT_RENDER_TARGET) == 0) {
return;
}
if (HasBadNV12Output()) {
return;
}
nv12Supported = true;
}
static inline void ConvertStencilSide(D3D11_DEPTH_STENCILOP_DESC &desc,
const StencilSide &side)
{
desc.StencilFunc = ConvertGSDepthTest(side.test);
desc.StencilFailOp = ConvertGSStencilOp(side.fail);
desc.StencilDepthFailOp = ConvertGSStencilOp(side.zfail);
desc.StencilPassOp = ConvertGSStencilOp(side.zpass);
}
ID3D11DepthStencilState *gs_device::AddZStencilState()
{
HRESULT hr;
D3D11_DEPTH_STENCIL_DESC dsd;
ID3D11DepthStencilState *state;
dsd.DepthEnable = zstencilState.depthEnabled;
dsd.DepthFunc = ConvertGSDepthTest(zstencilState.depthFunc);
dsd.DepthWriteMask = zstencilState.depthWriteEnabled
? D3D11_DEPTH_WRITE_MASK_ALL
: D3D11_DEPTH_WRITE_MASK_ZERO;
dsd.StencilEnable = zstencilState.stencilEnabled;
dsd.StencilReadMask = D3D11_DEFAULT_STENCIL_READ_MASK;
dsd.StencilWriteMask = zstencilState.stencilWriteEnabled
? D3D11_DEFAULT_STENCIL_WRITE_MASK
: 0;
ConvertStencilSide(dsd.FrontFace, zstencilState.stencilFront);
ConvertStencilSide(dsd.BackFace, zstencilState.stencilBack);
SavedZStencilState savedState(zstencilState, dsd);
hr = device->CreateDepthStencilState(&dsd, savedState.state.Assign());
if (FAILED(hr))
throw HRError("Failed to create depth stencil state", hr);
state = savedState.state;
zstencilStates.push_back(savedState);
return state;
}
ID3D11RasterizerState *gs_device::AddRasterState()
{
HRESULT hr;
D3D11_RASTERIZER_DESC rd;
ID3D11RasterizerState *state;
memset(&rd, 0, sizeof(rd));
/* use CCW to convert to a right-handed coordinate system */
rd.FrontCounterClockwise = true;
rd.FillMode = D3D11_FILL_SOLID;
rd.CullMode = ConvertGSCullMode(rasterState.cullMode);
rd.DepthClipEnable = true;
rd.ScissorEnable = rasterState.scissorEnabled;
SavedRasterState savedState(rasterState, rd);
hr = device->CreateRasterizerState(&rd, savedState.state.Assign());
if (FAILED(hr))
throw HRError("Failed to create rasterizer state", hr);
state = savedState.state;
rasterStates.push_back(savedState);
return state;
}
ID3D11BlendState *gs_device::AddBlendState()
{
HRESULT hr;
D3D11_BLEND_DESC bd;
ID3D11BlendState *state;
memset(&bd, 0, sizeof(bd));
for (int i = 0; i < 8; i++) {
bd.RenderTarget[i].BlendEnable = blendState.blendEnabled;
bd.RenderTarget[i].BlendOp = D3D11_BLEND_OP_ADD;
bd.RenderTarget[i].BlendOpAlpha = D3D11_BLEND_OP_ADD;
bd.RenderTarget[i].SrcBlend =
ConvertGSBlendType(blendState.srcFactorC);
bd.RenderTarget[i].DestBlend =
ConvertGSBlendType(blendState.destFactorC);
bd.RenderTarget[i].SrcBlendAlpha =
ConvertGSBlendType(blendState.srcFactorA);
bd.RenderTarget[i].DestBlendAlpha =
ConvertGSBlendType(blendState.destFactorA);
bd.RenderTarget[i].RenderTargetWriteMask =
(blendState.redEnabled ? D3D11_COLOR_WRITE_ENABLE_RED
: 0) |
(blendState.greenEnabled
? D3D11_COLOR_WRITE_ENABLE_GREEN
: 0) |
(blendState.blueEnabled ? D3D11_COLOR_WRITE_ENABLE_BLUE
: 0) |
(blendState.alphaEnabled
? D3D11_COLOR_WRITE_ENABLE_ALPHA
: 0);
}
SavedBlendState savedState(blendState, bd);
hr = device->CreateBlendState(&bd, savedState.state.Assign());
if (FAILED(hr))
throw HRError("Failed to create blend state", hr);
state = savedState.state;
blendStates.push_back(savedState);
return state;
}
void gs_device::UpdateZStencilState()
{
ID3D11DepthStencilState *state = NULL;
if (!zstencilStateChanged)
return;
for (size_t i = 0; i < zstencilStates.size(); i++) {
SavedZStencilState &s = zstencilStates[i];
if (memcmp(&s, &zstencilState, sizeof(zstencilState)) == 0) {
state = s.state;
break;
}
}
if (!state)
state = AddZStencilState();
if (state != curDepthStencilState) {
context->OMSetDepthStencilState(state, 0);
curDepthStencilState = state;
}
zstencilStateChanged = false;
}
void gs_device::UpdateRasterState()
{
ID3D11RasterizerState *state = NULL;
if (!rasterStateChanged)
return;
for (size_t i = 0; i < rasterStates.size(); i++) {
SavedRasterState &s = rasterStates[i];
if (memcmp(&s, &rasterState, sizeof(rasterState)) == 0) {
state = s.state;
break;
}
}
if (!state)
state = AddRasterState();
if (state != curRasterState) {
context->RSSetState(state);
curRasterState = state;
}
rasterStateChanged = false;
}
void gs_device::UpdateBlendState()
{
ID3D11BlendState *state = NULL;
if (!blendStateChanged)
return;
for (size_t i = 0; i < blendStates.size(); i++) {
SavedBlendState &s = blendStates[i];
if (memcmp(&s, &blendState, sizeof(blendState)) == 0) {
state = s.state;
break;
}
}
if (!state)
state = AddBlendState();
if (state != curBlendState) {
float f[4] = {1.0f, 1.0f, 1.0f, 1.0f};
context->OMSetBlendState(state, f, 0xFFFFFFFF);
curBlendState = state;
}
blendStateChanged = false;
}
void gs_device::UpdateViewProjMatrix()
{
gs_matrix_get(&curViewMatrix);
/* negate Z col of the view matrix for right-handed coordinate system */
curViewMatrix.x.z = -curViewMatrix.x.z;
curViewMatrix.y.z = -curViewMatrix.y.z;
curViewMatrix.z.z = -curViewMatrix.z.z;
curViewMatrix.t.z = -curViewMatrix.t.z;
matrix4_mul(&curViewProjMatrix, &curViewMatrix, &curProjMatrix);
matrix4_transpose(&curViewProjMatrix, &curViewProjMatrix);
if (curVertexShader->viewProj)
gs_shader_set_matrix4(curVertexShader->viewProj,
&curViewProjMatrix);
}
gs_device::gs_device(uint32_t adapterIdx)
: curToplogy(D3D11_PRIMITIVE_TOPOLOGY_UNDEFINED)
{
matrix4_identity(&curProjMatrix);
matrix4_identity(&curViewMatrix);
matrix4_identity(&curViewProjMatrix);
memset(&viewport, 0, sizeof(viewport));
for (size_t i = 0; i < GS_MAX_TEXTURES; i++) {
curTextures[i] = NULL;
curSamplers[i] = NULL;
}
InitCompiler();
InitFactory(adapterIdx);
InitDevice(adapterIdx);
device_set_render_target(this, NULL, NULL);
}
gs_device::~gs_device()
{
context->ClearState();
}
const char *device_get_name(void)
{
return "Direct3D 11";
}
int device_get_type(void)
{
return GS_DEVICE_DIRECT3D_11;
}
const char *device_preprocessor_name(void)
{
return "_D3D11";
}
static inline void
EnumD3DAdapters(bool (*callback)(void *, const char *, uint32_t), void *param)
{
ComPtr<IDXGIFactory1> factory;
ComPtr<IDXGIAdapter1> adapter;
HRESULT hr;
UINT i;
IID factoryIID = (GetWinVer() >= 0x602) ? dxgiFactory2
: __uuidof(IDXGIFactory1);
hr = CreateDXGIFactory1(factoryIID, (void **)factory.Assign());
if (FAILED(hr))
throw HRError("Failed to create DXGIFactory", hr);
for (i = 0; factory->EnumAdapters1(i, adapter.Assign()) == S_OK; ++i) {
DXGI_ADAPTER_DESC desc;
char name[512] = "";
hr = adapter->GetDesc(&desc);
if (FAILED(hr))
continue;
/* ignore Microsoft's 'basic' renderer' */
if (desc.VendorId == 0x1414 && desc.DeviceId == 0x8c)
continue;
os_wcs_to_utf8(desc.Description, 0, name, sizeof(name));
if (!callback(param, name, i))
break;
}
}
bool device_enum_adapters(bool (*callback)(void *param, const char *name,
uint32_t id),
void *param)
{
try {
EnumD3DAdapters(callback, param);
return true;
} catch (const HRError &error) {
blog(LOG_WARNING, "Failed enumerating devices: %s (%08lX)",
error.str, error.hr);
return false;
}
}
static bool GetMonitorTarget(const MONITORINFOEX &info,
DISPLAYCONFIG_TARGET_DEVICE_NAME &target)
{
bool found = false;
UINT32 numPath, numMode;
if (GetDisplayConfigBufferSizes(QDC_ONLY_ACTIVE_PATHS, &numPath,
&numMode) == ERROR_SUCCESS) {
std::vector<DISPLAYCONFIG_PATH_INFO> paths(numPath);
std::vector<DISPLAYCONFIG_MODE_INFO> modes(numMode);
if (QueryDisplayConfig(QDC_ONLY_ACTIVE_PATHS, &numPath,
paths.data(), &numMode, modes.data(),
nullptr) == ERROR_SUCCESS) {
paths.resize(numPath);
for (size_t i = 0; i < numPath; ++i) {
const DISPLAYCONFIG_PATH_INFO &path = paths[i];
DISPLAYCONFIG_SOURCE_DEVICE_NAME
source;
source.header.type =
DISPLAYCONFIG_DEVICE_INFO_GET_SOURCE_NAME;
source.header.size = sizeof(source);
source.header.adapterId =
path.sourceInfo.adapterId;
source.header.id = path.sourceInfo.id;
if (DisplayConfigGetDeviceInfo(
&source.header) == ERROR_SUCCESS &&
wcscmp(info.szDevice,
source.viewGdiDeviceName) == 0) {
target.header.type =
DISPLAYCONFIG_DEVICE_INFO_GET_TARGET_NAME;
target.header.size = sizeof(target);
target.header.adapterId =
path.sourceInfo.adapterId;
target.header.id = path.targetInfo.id;
found = DisplayConfigGetDeviceInfo(
&target.header) ==
ERROR_SUCCESS;
break;
}
}
}
}
return found;
}
static inline void LogAdapterMonitors(IDXGIAdapter1 *adapter)
{
UINT i;
ComPtr<IDXGIOutput> output;
for (i = 0; adapter->EnumOutputs(i, &output) == S_OK; ++i) {
DXGI_OUTPUT_DESC desc;
if (FAILED(output->GetDesc(&desc)))
continue;
unsigned refresh = 0;
bool target_found = false;
DISPLAYCONFIG_TARGET_DEVICE_NAME target;
MONITORINFOEX info;
info.cbSize = sizeof(info);
if (GetMonitorInfo(desc.Monitor, &info)) {
target_found = GetMonitorTarget(info, target);
DEVMODE mode;
mode.dmSize = sizeof(mode);
mode.dmDriverExtra = 0;
if (EnumDisplaySettings(info.szDevice,
ENUM_CURRENT_SETTINGS, &mode)) {
refresh = mode.dmDisplayFrequency;
}
}
if (!target_found) {
target.monitorFriendlyDeviceName[0] = 0;
}
const RECT &rect = desc.DesktopCoordinates;
blog(LOG_INFO,
"\t output %u: "
"pos={%d, %d}, "
"size={%d, %d}, "
"attached=%s, "
"refresh=%u, "
"name=%ls",
i, rect.left, rect.top, rect.right - rect.left,
rect.bottom - rect.top,
desc.AttachedToDesktop ? "true" : "false", refresh,
target.monitorFriendlyDeviceName);
}
}
static inline void LogD3DAdapters()
{
ComPtr<IDXGIFactory1> factory;
ComPtr<IDXGIAdapter1> adapter;
HRESULT hr;
UINT i;
blog(LOG_INFO, "Available Video Adapters: ");
IID factoryIID = (GetWinVer() >= 0x602) ? dxgiFactory2
: __uuidof(IDXGIFactory1);
hr = CreateDXGIFactory1(factoryIID, (void **)factory.Assign());
if (FAILED(hr))
throw HRError("Failed to create DXGIFactory", hr);
for (i = 0; factory->EnumAdapters1(i, adapter.Assign()) == S_OK; ++i) {
DXGI_ADAPTER_DESC desc;
char name[512] = "";
hr = adapter->GetDesc(&desc);
if (FAILED(hr))
continue;
/* ignore Microsoft's 'basic' renderer' */
if (desc.VendorId == 0x1414 && desc.DeviceId == 0x8c)
continue;
os_wcs_to_utf8(desc.Description, 0, name, sizeof(name));
blog(LOG_INFO, "\tAdapter %u: %s", i, name);
blog(LOG_INFO, "\t Dedicated VRAM: %u",
desc.DedicatedVideoMemory);
blog(LOG_INFO, "\t Shared VRAM: %u",
desc.SharedSystemMemory);
blog(LOG_INFO, "\t PCI ID: %x:%x", desc.VendorId,
desc.DeviceId);
/* driver version */
LARGE_INTEGER umd;
hr = adapter->CheckInterfaceSupport(__uuidof(IDXGIDevice),
&umd);
if (SUCCEEDED(hr)) {
const uint64_t version = umd.QuadPart;
const uint16_t aa = (version >> 48) & 0xffff;
const uint16_t bb = (version >> 32) & 0xffff;
const uint16_t ccccc = (version >> 16) & 0xffff;
const uint16_t ddddd = version & 0xffff;
blog(LOG_INFO,
"\t Driver Version: %" PRIu16 ".%" PRIu16
".%" PRIu16 ".%" PRIu16,
aa, bb, ccccc, ddddd);
} else {
blog(LOG_INFO, "\t Driver Version: Unknown (0x%X)",
(unsigned)hr);
}
LogAdapterMonitors(adapter);
}
}
int device_create(gs_device_t **p_device, uint32_t adapter)
{
gs_device *device = NULL;
int errorcode = GS_SUCCESS;
try {
blog(LOG_INFO, "---------------------------------");
blog(LOG_INFO, "Initializing D3D11...");
LogD3DAdapters();
device = new gs_device(adapter);
} catch (const UnsupportedHWError &error) {
blog(LOG_ERROR, "device_create (D3D11): %s (%08lX)", error.str,
error.hr);
errorcode = GS_ERROR_NOT_SUPPORTED;
} catch (const HRError &error) {
blog(LOG_ERROR, "device_create (D3D11): %s (%08lX)", error.str,
error.hr);
errorcode = GS_ERROR_FAIL;
}
*p_device = device;
return errorcode;
}
void device_destroy(gs_device_t *device)
{
delete device;
}
void device_enter_context(gs_device_t *device)
{
/* does nothing */
UNUSED_PARAMETER(device);
}
void device_leave_context(gs_device_t *device)
{
/* does nothing */
UNUSED_PARAMETER(device);
}
void *device_get_device_obj(gs_device_t *device)
{
return (void *)device->device.Get();
}
gs_swapchain_t *device_swapchain_create(gs_device_t *device,
const struct gs_init_data *data)
{
gs_swap_chain *swap = NULL;
try {
swap = new gs_swap_chain(device, data);
} catch (const HRError &error) {
blog(LOG_ERROR, "device_swapchain_create (D3D11): %s (%08lX)",
error.str, error.hr);
LogD3D11ErrorDetails(error, device);
}
return swap;
}
void device_resize(gs_device_t *device, uint32_t cx, uint32_t cy)
{
if (!device->curSwapChain) {
blog(LOG_WARNING, "device_resize (D3D11): No active swap");
return;
}
try {
ID3D11RenderTargetView *renderView = NULL;
ID3D11DepthStencilView *depthView = NULL;
int i = device->curRenderSide;
device->context->OMSetRenderTargets(1, &renderView, depthView);
device->curSwapChain->Resize(cx, cy);
if (device->curRenderTarget)
renderView = device->curRenderTarget->renderTarget[i];
if (device->curZStencilBuffer)
depthView = device->curZStencilBuffer->view;
device->context->OMSetRenderTargets(1, &renderView, depthView);
} catch (const HRError &error) {
blog(LOG_ERROR, "device_resize (D3D11): %s (%08lX)", error.str,
error.hr);
LogD3D11ErrorDetails(error, device);
}
}
void device_get_size(const gs_device_t *device, uint32_t *cx, uint32_t *cy)
{
if (device->curSwapChain) {
*cx = device->curSwapChain->target.width;
*cy = device->curSwapChain->target.height;
} else {
blog(LOG_ERROR, "device_get_size (D3D11): no active swap");
*cx = 0;
*cy = 0;
}
}
uint32_t device_get_width(const gs_device_t *device)
{
if (device->curSwapChain) {
return device->curSwapChain->target.width;
} else {
blog(LOG_ERROR, "device_get_size (D3D11): no active swap");
return 0;
}
}
uint32_t device_get_height(const gs_device_t *device)
{
if (device->curSwapChain) {
return device->curSwapChain->target.height;
} else {
blog(LOG_ERROR, "device_get_size (D3D11): no active swap");
return 0;
}
}
gs_texture_t *device_texture_create(gs_device_t *device, uint32_t width,
uint32_t height,
enum gs_color_format color_format,
uint32_t levels, const uint8_t **data,
uint32_t flags)
{
gs_texture *texture = NULL;
try {
texture = new gs_texture_2d(device, width, height, color_format,
levels, data, flags, GS_TEXTURE_2D,
false);
} catch (const HRError &error) {
blog(LOG_ERROR, "device_texture_create (D3D11): %s (%08lX)",
error.str, error.hr);
LogD3D11ErrorDetails(error, device);
} catch (const char *error) {
blog(LOG_ERROR, "device_texture_create (D3D11): %s", error);
}
return texture;
}
gs_texture_t *device_cubetexture_create(gs_device_t *device, uint32_t size,
enum gs_color_format color_format,
uint32_t levels, const uint8_t **data,
uint32_t flags)
{
gs_texture *texture = NULL;
try {
texture = new gs_texture_2d(device, size, size, color_format,
levels, data, flags,
GS_TEXTURE_CUBE, false);
} catch (const HRError &error) {
blog(LOG_ERROR,
"device_cubetexture_create (D3D11): %s "
"(%08lX)",
error.str, error.hr);
LogD3D11ErrorDetails(error, device);
} catch (const char *error) {
blog(LOG_ERROR, "device_cubetexture_create (D3D11): %s", error);
}
return texture;
}
gs_texture_t *device_voltexture_create(gs_device_t *device, uint32_t width,
uint32_t height, uint32_t depth,
enum gs_color_format color_format,
uint32_t levels,
const uint8_t *const *data,
uint32_t flags)
{
gs_texture *texture = NULL;
try {
texture = new gs_texture_3d(device, width, height, depth,
color_format, levels, data, flags);
} catch (const HRError &error) {
blog(LOG_ERROR, "device_voltexture_create (D3D11): %s (%08lX)",
error.str, error.hr);
LogD3D11ErrorDetails(error, device);
} catch (const char *error) {
blog(LOG_ERROR, "device_voltexture_create (D3D11): %s", error);
}
return texture;
}
gs_zstencil_t *device_zstencil_create(gs_device_t *device, uint32_t width,
uint32_t height,
enum gs_zstencil_format format)
{
gs_zstencil_buffer *zstencil = NULL;
try {
zstencil =
new gs_zstencil_buffer(device, width, height, format);
} catch (const HRError &error) {
blog(LOG_ERROR, "device_zstencil_create (D3D11): %s (%08lX)",
error.str, error.hr);
LogD3D11ErrorDetails(error, device);
}
return zstencil;
}
gs_stagesurf_t *device_stagesurface_create(gs_device_t *device, uint32_t width,
uint32_t height,
enum gs_color_format color_format)
{
gs_stage_surface *surf = NULL;
try {
surf = new gs_stage_surface(device, width, height,
color_format);
} catch (const HRError &error) {
blog(LOG_ERROR,
"device_stagesurface_create (D3D11): %s "
"(%08lX)",
error.str, error.hr);
LogD3D11ErrorDetails(error, device);
}
return surf;
}
gs_samplerstate_t *
device_samplerstate_create(gs_device_t *device,
const struct gs_sampler_info *info)
{
gs_sampler_state *ss = NULL;
try {
ss = new gs_sampler_state(device, info);
} catch (const HRError &error) {
blog(LOG_ERROR,
"device_samplerstate_create (D3D11): %s "
"(%08lX)",
error.str, error.hr);
LogD3D11ErrorDetails(error, device);
}
return ss;
}
gs_shader_t *device_vertexshader_create(gs_device_t *device,
const char *shader_string,
const char *file, char **error_string)
{
gs_vertex_shader *shader = NULL;
try {
shader = new gs_vertex_shader(device, file, shader_string);
} catch (const HRError &error) {
blog(LOG_ERROR,
"device_vertexshader_create (D3D11): %s "
"(%08lX)",
error.str, error.hr);
LogD3D11ErrorDetails(error, device);
} catch (const ShaderError &error) {
const char *buf =
(const char *)error.errors->GetBufferPointer();
if (error_string)
*error_string = bstrdup(buf);
blog(LOG_ERROR,
"device_vertexshader_create (D3D11): "
"Compile warnings/errors for %s:\n%s",
file, buf);
} catch (const char *error) {
blog(LOG_ERROR, "device_vertexshader_create (D3D11): %s",
error);
}
return shader;
}
gs_shader_t *device_pixelshader_create(gs_device_t *device,
const char *shader_string,
const char *file, char **error_string)
{
gs_pixel_shader *shader = NULL;
try {
shader = new gs_pixel_shader(device, file, shader_string);
} catch (const HRError &error) {
blog(LOG_ERROR,
"device_pixelshader_create (D3D11): %s "
"(%08lX)",
error.str, error.hr);
LogD3D11ErrorDetails(error, device);
} catch (const ShaderError &error) {
const char *buf =
(const char *)error.errors->GetBufferPointer();
if (error_string)
*error_string = bstrdup(buf);
blog(LOG_ERROR,
"device_pixelshader_create (D3D11): "
"Compiler warnings/errors for %s:\n%s",
file, buf);
} catch (const char *error) {
blog(LOG_ERROR, "device_pixelshader_create (D3D11): %s", error);
}
return shader;
}
gs_vertbuffer_t *device_vertexbuffer_create(gs_device_t *device,
struct gs_vb_data *data,
uint32_t flags)
{
gs_vertex_buffer *buffer = NULL;
try {
buffer = new gs_vertex_buffer(device, data, flags);
} catch (const HRError &error) {
blog(LOG_ERROR,
"device_vertexbuffer_create (D3D11): %s "
"(%08lX)",
error.str, error.hr);
LogD3D11ErrorDetails(error, device);
} catch (const char *error) {
blog(LOG_ERROR, "device_vertexbuffer_create (D3D11): %s",
error);
}
return buffer;
}
gs_indexbuffer_t *device_indexbuffer_create(gs_device_t *device,
enum gs_index_type type,
void *indices, size_t num,
uint32_t flags)
{
gs_index_buffer *buffer = NULL;
try {
buffer = new gs_index_buffer(device, type, indices, num, flags);
} catch (const HRError &error) {
blog(LOG_ERROR, "device_indexbuffer_create (D3D11): %s (%08lX)",
error.str, error.hr);
LogD3D11ErrorDetails(error, device);
}
return buffer;
}
gs_timer_t *device_timer_create(gs_device_t *device)
{
gs_timer *timer = NULL;
try {
timer = new gs_timer(device);
} catch (const HRError &error) {
blog(LOG_ERROR, "device_timer_create (D3D11): %s (%08lX)",
error.str, error.hr);
LogD3D11ErrorDetails(error, device);
}
return timer;
}
gs_timer_range_t *device_timer_range_create(gs_device_t *device)
{
gs_timer_range *range = NULL;
try {
range = new gs_timer_range(device);
} catch (const HRError &error) {
blog(LOG_ERROR, "device_timer_range_create (D3D11): %s (%08lX)",
error.str, error.hr);
LogD3D11ErrorDetails(error, device);
}
return range;
}
enum gs_texture_type device_get_texture_type(const gs_texture_t *texture)
{
return texture->type;
}
void gs_device::LoadVertexBufferData()
{
if (curVertexBuffer == lastVertexBuffer &&
curVertexShader == lastVertexShader)
return;
vector<ID3D11Buffer *> buffers;
vector<uint32_t> strides;
vector<uint32_t> offsets;
if (curVertexBuffer && curVertexShader) {
curVertexBuffer->MakeBufferList(curVertexShader, buffers,
strides);
} else {
size_t buffersToClear =
curVertexShader ? curVertexShader->NumBuffersExpected()
: 0;
buffers.resize(buffersToClear);
strides.resize(buffersToClear);
}
offsets.resize(buffers.size());
context->IASetVertexBuffers(0, (UINT)buffers.size(), buffers.data(),
strides.data(), offsets.data());
lastVertexBuffer = curVertexBuffer;
lastVertexShader = curVertexShader;
}
void device_load_vertexbuffer(gs_device_t *device, gs_vertbuffer_t *vertbuffer)
{
if (device->curVertexBuffer == vertbuffer)
return;
device->curVertexBuffer = vertbuffer;
}
void device_load_indexbuffer(gs_device_t *device, gs_indexbuffer_t *indexbuffer)
{
DXGI_FORMAT format;
ID3D11Buffer *buffer;
if (device->curIndexBuffer == indexbuffer)
return;
if (indexbuffer) {
switch (indexbuffer->indexSize) {
case 2:
format = DXGI_FORMAT_R16_UINT;
break;
default:
case 4:
format = DXGI_FORMAT_R32_UINT;
break;
}
buffer = indexbuffer->indexBuffer;
} else {
buffer = NULL;
format = DXGI_FORMAT_R32_UINT;
}
device->curIndexBuffer = indexbuffer;
device->context->IASetIndexBuffer(buffer, format, 0);
}
void device_load_texture(gs_device_t *device, gs_texture_t *tex, int unit)
{
ID3D11ShaderResourceView *view = NULL;
if (device->curTextures[unit] == tex)
return;
if (tex)
view = tex->shaderRes;
device->curTextures[unit] = tex;
device->context->PSSetShaderResources(unit, 1, &view);
}
void device_load_samplerstate(gs_device_t *device,
gs_samplerstate_t *samplerstate, int unit)
{
ID3D11SamplerState *state = NULL;
if (device->curSamplers[unit] == samplerstate)
return;
if (samplerstate)
state = samplerstate->state;
device->curSamplers[unit] = samplerstate;
device->context->PSSetSamplers(unit, 1, &state);
}
void device_load_vertexshader(gs_device_t *device, gs_shader_t *vertshader)
{
ID3D11VertexShader *shader = NULL;
ID3D11InputLayout *layout = NULL;
ID3D11Buffer *constants = NULL;
if (device->curVertexShader == vertshader)
return;
gs_vertex_shader *vs = static_cast<gs_vertex_shader *>(vertshader);
if (vertshader) {
if (vertshader->type != GS_SHADER_VERTEX) {
blog(LOG_ERROR, "device_load_vertexshader (D3D11): "
"Specified shader is not a vertex "
"shader");
return;
}
shader = vs->shader;
layout = vs->layout;
constants = vs->constants;
}
device->curVertexShader = vs;
device->context->VSSetShader(shader, NULL, 0);
device->context->IASetInputLayout(layout);
device->context->VSSetConstantBuffers(0, 1, &constants);
}
static inline void clear_textures(gs_device_t *device)
{
ID3D11ShaderResourceView *views[GS_MAX_TEXTURES];
memset(views, 0, sizeof(views));
memset(device->curTextures, 0, sizeof(device->curTextures));
device->context->PSSetShaderResources(0, GS_MAX_TEXTURES, views);
}
void device_load_pixelshader(gs_device_t *device, gs_shader_t *pixelshader)
{
ID3D11PixelShader *shader = NULL;
ID3D11Buffer *constants = NULL;
ID3D11SamplerState *states[GS_MAX_TEXTURES];
if (device->curPixelShader == pixelshader)
return;
gs_pixel_shader *ps = static_cast<gs_pixel_shader *>(pixelshader);
if (pixelshader) {
if (pixelshader->type != GS_SHADER_PIXEL) {
blog(LOG_ERROR, "device_load_pixelshader (D3D11): "
"Specified shader is not a pixel "
"shader");
return;
}
shader = ps->shader;
constants = ps->constants;
ps->GetSamplerStates(states);
} else {
memset(states, 0, sizeof(states));
}
clear_textures(device);
device->curPixelShader = ps;
device->context->PSSetShader(shader, NULL, 0);
device->context->PSSetConstantBuffers(0, 1, &constants);
device->context->PSSetSamplers(0, GS_MAX_TEXTURES, states);
for (int i = 0; i < GS_MAX_TEXTURES; i++)
if (device->curSamplers[i] &&
device->curSamplers[i]->state != states[i])
device->curSamplers[i] = nullptr;
}
void device_load_default_samplerstate(gs_device_t *device, bool b_3d, int unit)
{
/* TODO */
UNUSED_PARAMETER(device);
UNUSED_PARAMETER(b_3d);
UNUSED_PARAMETER(unit);
}
gs_shader_t *device_get_vertex_shader(const gs_device_t *device)
{
return device->curVertexShader;
}
gs_shader_t *device_get_pixel_shader(const gs_device_t *device)
{
return device->curPixelShader;
}
gs_texture_t *device_get_render_target(const gs_device_t *device)
{
if (device->curRenderTarget == &device->curSwapChain->target)
return NULL;
return device->curRenderTarget;
}
gs_zstencil_t *device_get_zstencil_target(const gs_device_t *device)
{
if (device->curZStencilBuffer == &device->curSwapChain->zs)
return NULL;
return device->curZStencilBuffer;
}
void device_set_render_target(gs_device_t *device, gs_texture_t *tex,
gs_zstencil_t *zstencil)
{
if (device->curSwapChain) {
if (!tex)
tex = &device->curSwapChain->target;
if (!zstencil)
zstencil = &device->curSwapChain->zs;
}
if (device->curRenderTarget == tex &&
device->curZStencilBuffer == zstencil)
return;
if (tex && tex->type != GS_TEXTURE_2D) {
blog(LOG_ERROR, "device_set_render_target (D3D11): "
"texture is not a 2D texture");
return;
}
gs_texture_2d *tex2d = static_cast<gs_texture_2d *>(tex);
if (tex2d && !tex2d->renderTarget[0]) {
blog(LOG_ERROR, "device_set_render_target (D3D11): "
"texture is not a render target");
return;
}
ID3D11RenderTargetView *rt = tex2d ? tex2d->renderTarget[0].Get()
: nullptr;
device->curRenderTarget = tex2d;
device->curRenderSide = 0;
device->curZStencilBuffer = zstencil;
device->context->OMSetRenderTargets(
1, &rt, zstencil ? zstencil->view : nullptr);
}
void device_set_cube_render_target(gs_device_t *device, gs_texture_t *tex,
int side, gs_zstencil_t *zstencil)
{
if (device->curSwapChain) {
if (!tex) {
tex = &device->curSwapChain->target;
side = 0;
}
if (!zstencil)
zstencil = &device->curSwapChain->zs;
}
if (device->curRenderTarget == tex && device->curRenderSide == side &&
device->curZStencilBuffer == zstencil)
return;
if (tex->type != GS_TEXTURE_CUBE) {
blog(LOG_ERROR, "device_set_cube_render_target (D3D11): "
"texture is not a cube texture");
return;
}
gs_texture_2d *tex2d = static_cast<gs_texture_2d *>(tex);
if (!tex2d->renderTarget[side]) {
blog(LOG_ERROR, "device_set_cube_render_target (D3D11): "
"texture is not a render target");
return;
}
ID3D11RenderTargetView *rt = tex2d->renderTarget[0];
device->curRenderTarget = tex2d;
device->curRenderSide = side;
device->curZStencilBuffer = zstencil;
device->context->OMSetRenderTargets(1, &rt, zstencil->view);
}
inline void gs_device::CopyTex(ID3D11Texture2D *dst, uint32_t dst_x,
uint32_t dst_y, gs_texture_t *src,
uint32_t src_x, uint32_t src_y, uint32_t src_w,
uint32_t src_h)
{
if (src->type != GS_TEXTURE_2D)
throw "Source texture must be a 2D texture";
gs_texture_2d *tex2d = static_cast<gs_texture_2d *>(src);
if (dst_x == 0 && dst_y == 0 && src_x == 0 && src_y == 0 &&
src_w == 0 && src_h == 0) {
context->CopyResource(dst, tex2d->texture);
} else {
D3D11_BOX sbox;
sbox.left = src_x;
if (src_w > 0)
sbox.right = src_x + src_w;
else
sbox.right = tex2d->width - 1;
sbox.top = src_y;
if (src_h > 0)
sbox.bottom = src_y + src_h;
else
sbox.bottom = tex2d->height - 1;
sbox.front = 0;
sbox.back = 1;
context->CopySubresourceRegion(dst, 0, dst_x, dst_y, 0,
tex2d->texture, 0, &sbox);
}
}
void device_copy_texture_region(gs_device_t *device, gs_texture_t *dst,
uint32_t dst_x, uint32_t dst_y,
gs_texture_t *src, uint32_t src_x,
uint32_t src_y, uint32_t src_w, uint32_t src_h)
{
try {
gs_texture_2d *src2d = static_cast<gs_texture_2d *>(src);
gs_texture_2d *dst2d = static_cast<gs_texture_2d *>(dst);
if (!src)
throw "Source texture is NULL";
if (!dst)
throw "Destination texture is NULL";
if (src->type != GS_TEXTURE_2D || dst->type != GS_TEXTURE_2D)
throw "Source and destination textures must be a 2D "
"textures";
if (dst->format != src->format)
throw "Source and destination formats do not match";
/* apparently casting to the same type that the variable
* already exists as is supposed to prevent some warning
* when used with the conditional operator? */
uint32_t copyWidth = (uint32_t)src_w ? (uint32_t)src_w
: (src2d->width - src_x);
uint32_t copyHeight = (uint32_t)src_h ? (uint32_t)src_h
: (src2d->height - src_y);
uint32_t dstWidth = dst2d->width - dst_x;
uint32_t dstHeight = dst2d->height - dst_y;
if (dstWidth < copyWidth || dstHeight < copyHeight)
throw "Destination texture region is not big "
"enough to hold the source region";
if (dst_x == 0 && dst_y == 0 && src_x == 0 && src_y == 0 &&
src_w == 0 && src_h == 0) {
copyWidth = 0;
copyHeight = 0;
}
device->CopyTex(dst2d->texture, dst_x, dst_y, src, src_x, src_y,
copyWidth, copyHeight);
} catch (const char *error) {
blog(LOG_ERROR, "device_copy_texture (D3D11): %s", error);
}
}
void device_copy_texture(gs_device_t *device, gs_texture_t *dst,
gs_texture_t *src)
{
device_copy_texture_region(device, dst, 0, 0, src, 0, 0, 0, 0);
}
void device_stage_texture(gs_device_t *device, gs_stagesurf_t *dst,
gs_texture_t *src)
{
try {
gs_texture_2d *src2d = static_cast<gs_texture_2d *>(src);
if (!src)
throw "Source texture is NULL";
if (src->type != GS_TEXTURE_2D)
throw "Source texture must be a 2D texture";
if (!dst)
throw "Destination surface is NULL";
if (dst->format != GS_UNKNOWN && dst->format != src->format)
throw "Source and destination formats do not match";
if (dst->width != src2d->width || dst->height != src2d->height)
throw "Source and destination must have the same "
"dimensions";
device->CopyTex(dst->texture, 0, 0, src, 0, 0, 0, 0);
} catch (const char *error) {
blog(LOG_ERROR, "device_copy_texture (D3D11): %s", error);
}
}
extern "C" void reset_duplicators(void);
void device_begin_frame(gs_device_t *device)
{
/* does nothing in D3D11 */
UNUSED_PARAMETER(device);
reset_duplicators();
}
void device_begin_scene(gs_device_t *device)
{
clear_textures(device);
}
void device_draw(gs_device_t *device, enum gs_draw_mode draw_mode,
uint32_t start_vert, uint32_t num_verts)
{
try {
if (!device->curVertexShader)
throw "No vertex shader specified";
if (!device->curPixelShader)
throw "No pixel shader specified";
if (!device->curVertexBuffer && (num_verts == 0))
throw "No vertex buffer specified";
if (!device->curSwapChain && !device->curRenderTarget)
throw "No render target or swap chain to render to";
gs_effect_t *effect = gs_get_effect();
if (effect)
gs_effect_update_params(effect);
device->LoadVertexBufferData();
device->UpdateBlendState();
device->UpdateRasterState();
device->UpdateZStencilState();
device->UpdateViewProjMatrix();
device->curVertexShader->UploadParams();
device->curPixelShader->UploadParams();
} catch (const char *error) {
blog(LOG_ERROR, "device_draw (D3D11): %s", error);
return;
} catch (const HRError &error) {
blog(LOG_ERROR, "device_draw (D3D11): %s (%08lX)", error.str,
error.hr);
LogD3D11ErrorDetails(error, device);
return;
}
D3D11_PRIMITIVE_TOPOLOGY newTopology = ConvertGSTopology(draw_mode);
if (device->curToplogy != newTopology) {
device->context->IASetPrimitiveTopology(newTopology);
device->curToplogy = newTopology;
}
if (device->curIndexBuffer) {
if (num_verts == 0)
num_verts = (uint32_t)device->curIndexBuffer->num;
device->context->DrawIndexed(num_verts, start_vert, 0);
} else {
if (num_verts == 0)
num_verts = (uint32_t)device->curVertexBuffer->numVerts;
device->context->Draw(num_verts, start_vert);
}
}
void device_end_scene(gs_device_t *device)
{
/* does nothing in D3D11 */
UNUSED_PARAMETER(device);
}
void device_load_swapchain(gs_device_t *device, gs_swapchain_t *swapchain)
{
gs_texture_t *target = device->curRenderTarget;
gs_zstencil_t *zs = device->curZStencilBuffer;
bool is_cube =
device->curRenderTarget
? (device->curRenderTarget->type == GS_TEXTURE_CUBE)
: false;
if (device->curSwapChain) {
if (target == &device->curSwapChain->target)
target = NULL;
if (zs == &device->curSwapChain->zs)
zs = NULL;
}
device->curSwapChain = swapchain;
if (is_cube)
device_set_cube_render_target(device, target,
device->curRenderSide, zs);
else
device_set_render_target(device, target, zs);
}
void device_clear(gs_device_t *device, uint32_t clear_flags,
const struct vec4 *color, float depth, uint8_t stencil)
{
int side = device->curRenderSide;
if ((clear_flags & GS_CLEAR_COLOR) != 0 && device->curRenderTarget)
device->context->ClearRenderTargetView(
device->curRenderTarget->renderTarget[side],
color->ptr);
if (device->curZStencilBuffer) {
uint32_t flags = 0;
if ((clear_flags & GS_CLEAR_DEPTH) != 0)
flags |= D3D11_CLEAR_DEPTH;
if ((clear_flags & GS_CLEAR_STENCIL) != 0)
flags |= D3D11_CLEAR_STENCIL;
if (flags && device->curZStencilBuffer->view)
device->context->ClearDepthStencilView(
device->curZStencilBuffer->view, flags, depth,
stencil);
}
}
void device_present(gs_device_t *device)
{
HRESULT hr;
if (device->curSwapChain) {
hr = device->curSwapChain->swap->Present(0, 0);
if (hr == DXGI_ERROR_DEVICE_REMOVED ||
hr == DXGI_ERROR_DEVICE_RESET) {
device->RebuildDevice();
}
} else {
blog(LOG_WARNING, "device_present (D3D11): No active swap");
}
}
void device_flush(gs_device_t *device)
{
device->context->Flush();
}
void device_set_cull_mode(gs_device_t *device, enum gs_cull_mode mode)
{
if (mode == device->rasterState.cullMode)
return;
device->rasterState.cullMode = mode;
device->rasterStateChanged = true;
}
enum gs_cull_mode device_get_cull_mode(const gs_device_t *device)
{
return device->rasterState.cullMode;
}
void device_enable_blending(gs_device_t *device, bool enable)
{
if (enable == device->blendState.blendEnabled)
return;
device->blendState.blendEnabled = enable;
device->blendStateChanged = true;
}
void device_enable_depth_test(gs_device_t *device, bool enable)
{
if (enable == device->zstencilState.depthEnabled)
return;
device->zstencilState.depthEnabled = enable;
device->zstencilStateChanged = true;
}
void device_enable_stencil_test(gs_device_t *device, bool enable)
{
if (enable == device->zstencilState.stencilEnabled)
return;
device->zstencilState.stencilEnabled = enable;
device->zstencilStateChanged = true;
}
void device_enable_stencil_write(gs_device_t *device, bool enable)
{
if (enable == device->zstencilState.stencilWriteEnabled)
return;
device->zstencilState.stencilWriteEnabled = enable;
device->zstencilStateChanged = true;
}
void device_enable_color(gs_device_t *device, bool red, bool green, bool blue,
bool alpha)
{
if (device->blendState.redEnabled == red &&
device->blendState.greenEnabled == green &&
device->blendState.blueEnabled == blue &&
device->blendState.alphaEnabled == alpha)
return;
device->blendState.redEnabled = red;
device->blendState.greenEnabled = green;
device->blendState.blueEnabled = blue;
device->blendState.alphaEnabled = alpha;
device->blendStateChanged = true;
}
void device_blend_function(gs_device_t *device, enum gs_blend_type src,
enum gs_blend_type dest)
{
if (device->blendState.srcFactorC == src &&
device->blendState.destFactorC == dest &&
device->blendState.srcFactorA == src &&
device->blendState.destFactorA == dest)
return;
device->blendState.srcFactorC = src;
device->blendState.destFactorC = dest;
device->blendState.srcFactorA = src;
device->blendState.destFactorA = dest;
device->blendStateChanged = true;
}
void device_blend_function_separate(gs_device_t *device,
enum gs_blend_type src_c,
enum gs_blend_type dest_c,
enum gs_blend_type src_a,
enum gs_blend_type dest_a)
{
if (device->blendState.srcFactorC == src_c &&
device->blendState.destFactorC == dest_c &&
device->blendState.srcFactorA == src_a &&
device->blendState.destFactorA == dest_a)
return;
device->blendState.srcFactorC = src_c;
device->blendState.destFactorC = dest_c;
device->blendState.srcFactorA = src_a;
device->blendState.destFactorA = dest_a;
device->blendStateChanged = true;
}
void device_depth_function(gs_device_t *device, enum gs_depth_test test)
{
if (device->zstencilState.depthFunc == test)
return;
device->zstencilState.depthFunc = test;
device->zstencilStateChanged = true;
}
static inline void update_stencilside_test(gs_device_t *device,
StencilSide &side,
gs_depth_test test)
{
if (side.test == test)
return;
side.test = test;
device->zstencilStateChanged = true;
}
void device_stencil_function(gs_device_t *device, enum gs_stencil_side side,
enum gs_depth_test test)
{
int sideVal = (int)side;
if (sideVal & GS_STENCIL_FRONT)
update_stencilside_test(
device, device->zstencilState.stencilFront, test);
if (sideVal & GS_STENCIL_BACK)
update_stencilside_test(
device, device->zstencilState.stencilBack, test);
}
static inline void update_stencilside_op(gs_device_t *device, StencilSide &side,
enum gs_stencil_op_type fail,
enum gs_stencil_op_type zfail,
enum gs_stencil_op_type zpass)
{
if (side.fail == fail && side.zfail == zfail && side.zpass == zpass)
return;
side.fail = fail;
side.zfail = zfail;
side.zpass = zpass;
device->zstencilStateChanged = true;
}
void device_stencil_op(gs_device_t *device, enum gs_stencil_side side,
enum gs_stencil_op_type fail,
enum gs_stencil_op_type zfail,
enum gs_stencil_op_type zpass)
{
int sideVal = (int)side;
if (sideVal & GS_STENCIL_FRONT)
update_stencilside_op(device,
device->zstencilState.stencilFront, fail,
zfail, zpass);
if (sideVal & GS_STENCIL_BACK)
update_stencilside_op(device, device->zstencilState.stencilBack,
fail, zfail, zpass);
}
void device_set_viewport(gs_device_t *device, int x, int y, int width,
int height)
{
D3D11_VIEWPORT vp;
memset(&vp, 0, sizeof(vp));
vp.MaxDepth = 1.0f;
vp.TopLeftX = (float)x;
vp.TopLeftY = (float)y;
vp.Width = (float)width;
vp.Height = (float)height;
device->context->RSSetViewports(1, &vp);
device->viewport.x = x;
device->viewport.y = y;
device->viewport.cx = width;
device->viewport.cy = height;
}
void device_get_viewport(const gs_device_t *device, struct gs_rect *rect)
{
memcpy(rect, &device->viewport, sizeof(gs_rect));
}
void device_set_scissor_rect(gs_device_t *device, const struct gs_rect *rect)
{
D3D11_RECT d3drect;
device->rasterState.scissorEnabled = (rect != NULL);
if (rect != NULL) {
d3drect.left = rect->x;
d3drect.top = rect->y;
d3drect.right = rect->x + rect->cx;
d3drect.bottom = rect->y + rect->cy;
device->context->RSSetScissorRects(1, &d3drect);
}
device->rasterStateChanged = true;
}
void device_ortho(gs_device_t *device, float left, float right, float top,
float bottom, float zNear, float zFar)
{
matrix4 *dst = &device->curProjMatrix;
float rml = right - left;
float bmt = bottom - top;
float fmn = zFar - zNear;
vec4_zero(&dst->x);
vec4_zero(&dst->y);
vec4_zero(&dst->z);
vec4_zero(&dst->t);
dst->x.x = 2.0f / rml;
dst->t.x = (left + right) / -rml;
dst->y.y = 2.0f / -bmt;
dst->t.y = (bottom + top) / bmt;
dst->z.z = 1.0f / fmn;
dst->t.z = zNear / -fmn;
dst->t.w = 1.0f;
}
void device_frustum(gs_device_t *device, float left, float right, float top,
float bottom, float zNear, float zFar)
{
matrix4 *dst = &device->curProjMatrix;
float rml = right - left;
float bmt = bottom - top;
float fmn = zFar - zNear;
float nearx2 = 2.0f * zNear;
vec4_zero(&dst->x);
vec4_zero(&dst->y);
vec4_zero(&dst->z);
vec4_zero(&dst->t);
dst->x.x = nearx2 / rml;
dst->z.x = (left + right) / -rml;
dst->y.y = nearx2 / -bmt;
dst->z.y = (bottom + top) / bmt;
dst->z.z = zFar / fmn;
dst->t.z = (zNear * zFar) / -fmn;
dst->z.w = 1.0f;
}
void device_projection_push(gs_device_t *device)
{
mat4float mat;
memcpy(&mat, &device->curProjMatrix, sizeof(matrix4));
device->projStack.push_back(mat);
}
void device_projection_pop(gs_device_t *device)
{
if (device->projStack.empty())
return;
const mat4float &mat = device->projStack.back();
memcpy(&device->curProjMatrix, &mat, sizeof(matrix4));
device->projStack.pop_back();
}
void gs_swapchain_destroy(gs_swapchain_t *swapchain)
{
if (swapchain->device->curSwapChain == swapchain)
device_load_swapchain(swapchain->device, nullptr);
delete swapchain;
}
void gs_texture_destroy(gs_texture_t *tex)
{
delete tex;
}
uint32_t gs_texture_get_width(const gs_texture_t *tex)
{
if (tex->type != GS_TEXTURE_2D)
return 0;
return static_cast<const gs_texture_2d *>(tex)->width;
}
uint32_t gs_texture_get_height(const gs_texture_t *tex)
{
if (tex->type != GS_TEXTURE_2D)
return 0;
return static_cast<const gs_texture_2d *>(tex)->height;
}
enum gs_color_format gs_texture_get_color_format(const gs_texture_t *tex)
{
if (tex->type != GS_TEXTURE_2D)
return GS_UNKNOWN;
return static_cast<const gs_texture_2d *>(tex)->format;
}
bool gs_texture_map(gs_texture_t *tex, uint8_t **ptr, uint32_t *linesize)
{
HRESULT hr;
if (tex->type != GS_TEXTURE_2D)
return false;
gs_texture_2d *tex2d = static_cast<gs_texture_2d *>(tex);
D3D11_MAPPED_SUBRESOURCE map;
hr = tex2d->device->context->Map(tex2d->texture, 0,
D3D11_MAP_WRITE_DISCARD, 0, &map);
if (FAILED(hr))
return false;
*ptr = (uint8_t *)map.pData;
*linesize = map.RowPitch;
return true;
}
void gs_texture_unmap(gs_texture_t *tex)
{
if (tex->type != GS_TEXTURE_2D)
return;
gs_texture_2d *tex2d = static_cast<gs_texture_2d *>(tex);
tex2d->device->context->Unmap(tex2d->texture, 0);
}
void *gs_texture_get_obj(gs_texture_t *tex)
{
if (tex->type != GS_TEXTURE_2D)
return nullptr;
gs_texture_2d *tex2d = static_cast<gs_texture_2d *>(tex);
return tex2d->texture.Get();
}
void gs_cubetexture_destroy(gs_texture_t *cubetex)
{
delete cubetex;
}
uint32_t gs_cubetexture_get_size(const gs_texture_t *cubetex)
{
if (cubetex->type != GS_TEXTURE_CUBE)
return 0;
const gs_texture_2d *tex = static_cast<const gs_texture_2d *>(cubetex);
return tex->width;
}
enum gs_color_format
gs_cubetexture_get_color_format(const gs_texture_t *cubetex)
{
if (cubetex->type != GS_TEXTURE_CUBE)
return GS_UNKNOWN;
const gs_texture_2d *tex = static_cast<const gs_texture_2d *>(cubetex);
return tex->format;
}
void gs_voltexture_destroy(gs_texture_t *voltex)
{
delete voltex;
}
uint32_t gs_voltexture_get_width(const gs_texture_t *voltex)
{
/* TODO */
UNUSED_PARAMETER(voltex);
return 0;
}
uint32_t gs_voltexture_get_height(const gs_texture_t *voltex)
{
/* TODO */
UNUSED_PARAMETER(voltex);
return 0;
}
uint32_t gs_voltexture_get_depth(const gs_texture_t *voltex)
{
/* TODO */
UNUSED_PARAMETER(voltex);
return 0;
}
enum gs_color_format gs_voltexture_get_color_format(const gs_texture_t *voltex)
{
/* TODO */
UNUSED_PARAMETER(voltex);
return GS_UNKNOWN;
}
void gs_stagesurface_destroy(gs_stagesurf_t *stagesurf)
{
delete stagesurf;
}
uint32_t gs_stagesurface_get_width(const gs_stagesurf_t *stagesurf)
{
return stagesurf->width;
}
uint32_t gs_stagesurface_get_height(const gs_stagesurf_t *stagesurf)
{
return stagesurf->height;
}
enum gs_color_format
gs_stagesurface_get_color_format(const gs_stagesurf_t *stagesurf)
{
return stagesurf->format;
}
bool gs_stagesurface_map(gs_stagesurf_t *stagesurf, uint8_t **data,
uint32_t *linesize)
{
D3D11_MAPPED_SUBRESOURCE map;
if (FAILED(stagesurf->device->context->Map(stagesurf->texture, 0,
D3D11_MAP_READ, 0, &map)))
return false;
*data = (uint8_t *)map.pData;
*linesize = map.RowPitch;
return true;
}
void gs_stagesurface_unmap(gs_stagesurf_t *stagesurf)
{
stagesurf->device->context->Unmap(stagesurf->texture, 0);
}
void gs_zstencil_destroy(gs_zstencil_t *zstencil)
{
delete zstencil;
}
void gs_samplerstate_destroy(gs_samplerstate_t *samplerstate)
{
if (!samplerstate)
return;
if (samplerstate->device)
for (int i = 0; i < GS_MAX_TEXTURES; i++)
if (samplerstate->device->curSamplers[i] ==
samplerstate)
samplerstate->device->curSamplers[i] = nullptr;
delete samplerstate;
}
void gs_vertexbuffer_destroy(gs_vertbuffer_t *vertbuffer)
{
if (vertbuffer && vertbuffer->device->lastVertexBuffer == vertbuffer)
vertbuffer->device->lastVertexBuffer = nullptr;
delete vertbuffer;
}
static inline void gs_vertexbuffer_flush_internal(gs_vertbuffer_t *vertbuffer,
const gs_vb_data *data)
{
size_t num_tex = data->num_tex < vertbuffer->uvBuffers.size()
? data->num_tex
: vertbuffer->uvBuffers.size();
if (!vertbuffer->dynamic) {
blog(LOG_ERROR, "gs_vertexbuffer_flush: vertex buffer is "
"not dynamic");
return;
}
if (data->points)
vertbuffer->FlushBuffer(vertbuffer->vertexBuffer, data->points,
sizeof(vec3));
if (vertbuffer->normalBuffer && data->normals)
vertbuffer->FlushBuffer(vertbuffer->normalBuffer, data->normals,
sizeof(vec3));
if (vertbuffer->tangentBuffer && data->tangents)
vertbuffer->FlushBuffer(vertbuffer->tangentBuffer,
data->tangents, sizeof(vec3));
if (vertbuffer->colorBuffer && data->colors)
vertbuffer->FlushBuffer(vertbuffer->colorBuffer, data->colors,
sizeof(uint32_t));
for (size_t i = 0; i < num_tex; i++) {
gs_tvertarray &tv = data->tvarray[i];
vertbuffer->FlushBuffer(vertbuffer->uvBuffers[i], tv.array,
tv.width * sizeof(float));
}
}
void gs_vertexbuffer_flush(gs_vertbuffer_t *vertbuffer)
{
gs_vertexbuffer_flush_internal(vertbuffer, vertbuffer->vbd.data);
}
void gs_vertexbuffer_flush_direct(gs_vertbuffer_t *vertbuffer,
const gs_vb_data *data)
{
gs_vertexbuffer_flush_internal(vertbuffer, data);
}
struct gs_vb_data *gs_vertexbuffer_get_data(const gs_vertbuffer_t *vertbuffer)
{
return vertbuffer->vbd.data;
}
void gs_indexbuffer_destroy(gs_indexbuffer_t *indexbuffer)
{
delete indexbuffer;
}
static inline void gs_indexbuffer_flush_internal(gs_indexbuffer_t *indexbuffer,
const void *data)
{
HRESULT hr;
if (!indexbuffer->dynamic)
return;
D3D11_MAPPED_SUBRESOURCE map;
hr = indexbuffer->device->context->Map(
indexbuffer->indexBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &map);
if (FAILED(hr))
return;
memcpy(map.pData, data, indexbuffer->num * indexbuffer->indexSize);
indexbuffer->device->context->Unmap(indexbuffer->indexBuffer, 0);
}
void gs_indexbuffer_flush(gs_indexbuffer_t *indexbuffer)
{
gs_indexbuffer_flush_internal(indexbuffer, indexbuffer->indices.data);
}
void gs_indexbuffer_flush_direct(gs_indexbuffer_t *indexbuffer,
const void *data)
{
gs_indexbuffer_flush_internal(indexbuffer, data);
}
void *gs_indexbuffer_get_data(const gs_indexbuffer_t *indexbuffer)
{
return indexbuffer->indices.data;
}
size_t gs_indexbuffer_get_num_indices(const gs_indexbuffer_t *indexbuffer)
{
return indexbuffer->num;
}
enum gs_index_type gs_indexbuffer_get_type(const gs_indexbuffer_t *indexbuffer)
{
return indexbuffer->type;
}
void gs_timer_destroy(gs_timer_t *timer)
{
delete timer;
}
void gs_timer_begin(gs_timer_t *timer)
{
timer->device->context->End(timer->query_begin);
}
void gs_timer_end(gs_timer_t *timer)
{
timer->device->context->End(timer->query_end);
}
bool gs_timer_get_data(gs_timer_t *timer, uint64_t *ticks)
{
uint64_t begin, end;
HRESULT hr_begin, hr_end;
do {
hr_begin = timer->device->context->GetData(
timer->query_begin, &begin, sizeof(begin), 0);
} while (hr_begin == S_FALSE);
do {
hr_end = timer->device->context->GetData(timer->query_end, &end,
sizeof(end), 0);
} while (hr_end == S_FALSE);
const bool succeeded = SUCCEEDED(hr_begin) && SUCCEEDED(hr_end);
if (succeeded)
*ticks = end - begin;
return succeeded;
}
void gs_timer_range_destroy(gs_timer_range_t *range)
{
delete range;
}
void gs_timer_range_begin(gs_timer_range_t *range)
{
range->device->context->Begin(range->query_disjoint);
}
void gs_timer_range_end(gs_timer_range_t *range)
{
range->device->context->End(range->query_disjoint);
}
bool gs_timer_range_get_data(gs_timer_range_t *range, bool *disjoint,
uint64_t *frequency)
{
D3D11_QUERY_DATA_TIMESTAMP_DISJOINT timestamp_disjoint;
HRESULT hr;
do {
hr = range->device->context->GetData(range->query_disjoint,
&timestamp_disjoint,
sizeof(timestamp_disjoint),
0);
} while (hr == S_FALSE);
const bool succeeded = SUCCEEDED(hr);
if (succeeded) {
*disjoint = timestamp_disjoint.Disjoint;
*frequency = timestamp_disjoint.Frequency;
}
return succeeded;
}
gs_timer::gs_timer(gs_device_t *device) : gs_obj(device, gs_type::gs_timer)
{
Rebuild(device->device);
}
gs_timer_range::gs_timer_range(gs_device_t *device)
: gs_obj(device, gs_type::gs_timer_range)
{
Rebuild(device->device);
}
extern "C" EXPORT bool device_gdi_texture_available(void)
{
return true;
}
extern "C" EXPORT bool device_shared_texture_available(void)
{
return true;
}
extern "C" EXPORT bool device_nv12_available(gs_device_t *device)
{
return device->nv12Supported;
}
extern "C" EXPORT void device_debug_marker_begin(gs_device_t *,
const char *markername,
const float color[4])
{
D3DCOLOR bgra = D3DCOLOR_ARGB((DWORD)(255.0f * color[3]),
(DWORD)(255.0f * color[0]),
(DWORD)(255.0f * color[1]),
(DWORD)(255.0f * color[2]));
wchar_t wide[64];
os_utf8_to_wcs(markername, 0, wide, _countof(wide));
D3DPERF_BeginEvent(bgra, wide);
}
extern "C" EXPORT void device_debug_marker_end(gs_device_t *)
{
D3DPERF_EndEvent();
}
extern "C" EXPORT gs_texture_t *
device_texture_create_gdi(gs_device_t *device, uint32_t width, uint32_t height)
{
gs_texture *texture = nullptr;
try {
texture = new gs_texture_2d(device, width, height, GS_BGRA, 1,
nullptr, GS_RENDER_TARGET,
GS_TEXTURE_2D, true);
} catch (const HRError &error) {
blog(LOG_ERROR, "device_texture_create_gdi (D3D11): %s (%08lX)",
error.str, error.hr);
LogD3D11ErrorDetails(error, device);
} catch (const char *error) {
blog(LOG_ERROR, "device_texture_create_gdi (D3D11): %s", error);
}
return texture;
}
static inline bool TextureGDICompatible(gs_texture_2d *tex2d, const char *func)
{
if (!tex2d->isGDICompatible) {
blog(LOG_ERROR, "%s (D3D11): Texture is not GDI compatible",
func);
return false;
}
return true;
}
extern "C" EXPORT void *gs_texture_get_dc(gs_texture_t *tex)
{
HDC hDC = nullptr;
if (tex->type != GS_TEXTURE_2D)
return nullptr;
gs_texture_2d *tex2d = static_cast<gs_texture_2d *>(tex);
if (!TextureGDICompatible(tex2d, "gs_texture_get_dc"))
return nullptr;
if (!tex2d->gdiSurface)
return nullptr;
tex2d->gdiSurface->GetDC(true, &hDC);
return hDC;
}
extern "C" EXPORT void gs_texture_release_dc(gs_texture_t *tex)
{
if (tex->type != GS_TEXTURE_2D)
return;
gs_texture_2d *tex2d = static_cast<gs_texture_2d *>(tex);
if (!TextureGDICompatible(tex2d, "gs_texture_release_dc"))
return;
tex2d->gdiSurface->ReleaseDC(nullptr);
}
extern "C" EXPORT gs_texture_t *device_texture_open_shared(gs_device_t *device,
uint32_t handle)
{
gs_texture *texture = nullptr;
try {
texture = new gs_texture_2d(device, handle);
} catch (const HRError &error) {
blog(LOG_ERROR, "gs_texture_open_shared (D3D11): %s (%08lX)",
error.str, error.hr);
LogD3D11ErrorDetails(error, device);
} catch (const char *error) {
blog(LOG_ERROR, "gs_texture_open_shared (D3D11): %s", error);
}
return texture;
}
extern "C" EXPORT uint32_t device_texture_get_shared_handle(gs_texture_t *tex)
{
gs_texture_2d *tex2d = reinterpret_cast<gs_texture_2d *>(tex);
if (tex->type != GS_TEXTURE_2D)
return GS_INVALID_HANDLE;
return tex2d->isShared ? tex2d->sharedHandle : GS_INVALID_HANDLE;
}
int device_texture_acquire_sync(gs_texture_t *tex, uint64_t key, uint32_t ms)
{
gs_texture_2d *tex2d = reinterpret_cast<gs_texture_2d *>(tex);
if (tex->type != GS_TEXTURE_2D)
return -1;
if (tex2d->acquired)
return 0;
ComQIPtr<IDXGIKeyedMutex> keyedMutex(tex2d->texture);
if (!keyedMutex)
return -1;
HRESULT hr = keyedMutex->AcquireSync(key, ms);
if (hr == S_OK) {
tex2d->acquired = true;
return 0;
} else if (hr == WAIT_TIMEOUT) {
return ETIMEDOUT;
}
return -1;
}
extern "C" EXPORT int device_texture_release_sync(gs_texture_t *tex,
uint64_t key)
{
gs_texture_2d *tex2d = reinterpret_cast<gs_texture_2d *>(tex);
if (tex->type != GS_TEXTURE_2D)
return -1;
if (!tex2d->acquired)
return 0;
ComQIPtr<IDXGIKeyedMutex> keyedMutex(tex2d->texture);
if (!keyedMutex)
return -1;
HRESULT hr = keyedMutex->ReleaseSync(key);
if (hr == S_OK) {
tex2d->acquired = false;
return 0;
}
return -1;
}
extern "C" EXPORT bool
device_texture_create_nv12(gs_device_t *device, gs_texture_t **p_tex_y,
gs_texture_t **p_tex_uv, uint32_t width,
uint32_t height, uint32_t flags)
{
if (!device->nv12Supported)
return false;
*p_tex_y = nullptr;
*p_tex_uv = nullptr;
gs_texture_2d *tex_y;
gs_texture_2d *tex_uv;
try {
tex_y = new gs_texture_2d(device, width, height, GS_R8, 1,
nullptr, flags, GS_TEXTURE_2D, false,
true);
tex_uv = new gs_texture_2d(device, tex_y->texture, flags);
} catch (const HRError &error) {
blog(LOG_ERROR, "gs_texture_create_nv12 (D3D11): %s (%08lX)",
error.str, error.hr);
LogD3D11ErrorDetails(error, device);
return false;
} catch (const char *error) {
blog(LOG_ERROR, "gs_texture_create_nv12 (D3D11): %s", error);
return false;
}
tex_y->pairedNV12texture = tex_uv;
tex_uv->pairedNV12texture = tex_y;
*p_tex_y = tex_y;
*p_tex_uv = tex_uv;
return true;
}
extern "C" EXPORT gs_stagesurf_t *
device_stagesurface_create_nv12(gs_device_t *device, uint32_t width,
uint32_t height)
{
gs_stage_surface *surf = NULL;
try {
surf = new gs_stage_surface(device, width, height);
} catch (const HRError &error) {
blog(LOG_ERROR,
"device_stagesurface_create (D3D11): %s "
"(%08lX)",
error.str, error.hr);
LogD3D11ErrorDetails(error, device);
}
return surf;
}
extern "C" EXPORT void
device_register_loss_callbacks(gs_device_t *device,
const gs_device_loss *callbacks)
{
device->loss_callbacks.emplace_back(*callbacks);
}
extern "C" EXPORT void device_unregister_loss_callbacks(gs_device_t *device,
void *data)
{
for (auto iter = device->loss_callbacks.begin();
iter != device->loss_callbacks.end(); ++iter) {
if (iter->data == data) {
device->loss_callbacks.erase(iter);
break;
}
}
}