ba21fb947e
There are cases where alpha is multiplied unnecessarily. This change attempts to use premultiplied alpha blending for composition. To keep this change simple, The filter chain will continue to use straight alpha. Otherwise, every source would need to modified to output premultiplied, and every filter modified for premultiplied input. "DrawAlphaDivide" shader techniques have been added to convert from premultiplied alpha to straight alpha for final output. "DrawMatrix" techniques ignore alpha, so they do not appear to need changing. One remaining issue is that scale effects are set up here to use the same shader logic for both scale filters (straight alpha - incorrectly), and output composition (premultiplied alpha - correctly). A fix could be made to add additional shaders for straight alpha, but the "real" fix may be to eliminate the straight alpha path at some point. For graphics, SrcBlendAlpha and DestBlendAlpha were both ONE, and could combine together to form alpha values greater than one. This is not as noticeable of a problem for UNORM targets because the channels are clamped, but it will likely become a problem in more situations if FLOAT targets are used. This change switches DestBlendAlpha to INVSRCALPHA. The blending behavior of stacked transparents is preserved without overflowing the alpha channel. obs-transitions: Use premultiplied alpha blend, and simplify shaders because both inputs and outputs use premultiplied alpha now. Fixes https://obsproject.com/mantis/view.php?id=1108
191 lines
4.9 KiB
Plaintext
191 lines
4.9 KiB
Plaintext
/*
|
|
* lanczos sharper
|
|
* note - this shader is adapted from the GPL bsnes shader, very good stuff
|
|
* there.
|
|
*/
|
|
|
|
uniform float4x4 ViewProj;
|
|
uniform texture2d image;
|
|
uniform float4x4 color_matrix;
|
|
uniform float2 base_dimension_i;
|
|
uniform float undistort_factor = 1.0;
|
|
|
|
sampler_state textureSampler
|
|
{
|
|
AddressU = Clamp;
|
|
AddressV = Clamp;
|
|
Filter = Linear;
|
|
};
|
|
|
|
struct VertData {
|
|
float4 pos : POSITION;
|
|
float2 uv : TEXCOORD0;
|
|
};
|
|
|
|
struct FragData {
|
|
float4 pos : POSITION;
|
|
float2 uv : TEXCOORD0;
|
|
float2 scale : TEXCOORD1;
|
|
};
|
|
|
|
FragData VSDefault(VertData v_in)
|
|
{
|
|
FragData vert_out;
|
|
vert_out.pos = mul(float4(v_in.pos.xyz, 1.0), ViewProj);
|
|
vert_out.uv = v_in.uv;
|
|
vert_out.scale = min(0.25 + abs(0.75 / mul(float4(1.0 / base_dimension_i.xy, 1.0, 1.0), ViewProj).xy), 1.0);
|
|
|
|
return vert_out;
|
|
}
|
|
|
|
float sinc(float x)
|
|
{
|
|
const float PIval = 3.1415926535897932384626433832795;
|
|
return sin(x * PIval) / (x * PIval);
|
|
}
|
|
|
|
float weight(float x, float radius)
|
|
{
|
|
float ax = abs(x);
|
|
if (x == 0.0)
|
|
return 1.0;
|
|
else if (ax < radius)
|
|
return sinc(x) * sinc(x / radius);
|
|
else
|
|
return 0.0;
|
|
}
|
|
|
|
float3 weight3(float x, float scale)
|
|
{
|
|
return float3(
|
|
weight((x * 2.0 + 0.0 * 2.0 - 3.0) * scale, 3.0),
|
|
weight((x * 2.0 + 1.0 * 2.0 - 3.0) * scale, 3.0),
|
|
weight((x * 2.0 + 2.0 * 2.0 - 3.0) * scale, 3.0));
|
|
}
|
|
|
|
float AspectUndistortX(float x, float a)
|
|
{
|
|
// The higher the power, the longer the linear part will be.
|
|
return (1.0 - a) * (x * x * x * x * x) + a * x;
|
|
}
|
|
|
|
float AspectUndistortU(float u)
|
|
{
|
|
// Normalize texture coord to -1.0 to 1.0 range, and back.
|
|
return AspectUndistortX((u - 0.5) * 2.0, undistort_factor) * 0.5 + 0.5;
|
|
}
|
|
|
|
float2 pixel_coord(float xpos, float ypos)
|
|
{
|
|
return float2(AspectUndistortU(xpos), ypos);
|
|
}
|
|
|
|
float4 pixel(float xpos, float ypos, bool undistort)
|
|
{
|
|
if (undistort)
|
|
return image.Sample(textureSampler, pixel_coord(xpos, ypos));
|
|
else
|
|
return image.Sample(textureSampler, float2(xpos, ypos));
|
|
}
|
|
|
|
float4 get_line(float ypos, float3 xpos1, float3 xpos2, float3 rowtap1,
|
|
float3 rowtap2, bool undistort)
|
|
{
|
|
return
|
|
pixel(xpos1.r, ypos, undistort) * rowtap1.r +
|
|
pixel(xpos1.g, ypos, undistort) * rowtap2.r +
|
|
pixel(xpos1.b, ypos, undistort) * rowtap1.g +
|
|
pixel(xpos2.r, ypos, undistort) * rowtap2.g +
|
|
pixel(xpos2.g, ypos, undistort) * rowtap1.b +
|
|
pixel(xpos2.b, ypos, undistort) * rowtap2.b;
|
|
}
|
|
|
|
float4 DrawLanczos(FragData v_in, bool undistort)
|
|
{
|
|
float2 stepxy = base_dimension_i;
|
|
float2 pos = v_in.uv + stepxy * 0.5;
|
|
float2 f = frac(pos / stepxy);
|
|
|
|
float3 rowtap1 = weight3((1.0 - f.x) / 2.0, v_in.scale.x);
|
|
float3 rowtap2 = weight3((1.0 - f.x) / 2.0 + 0.5, v_in.scale.x);
|
|
float3 coltap1 = weight3((1.0 - f.y) / 2.0, v_in.scale.y);
|
|
float3 coltap2 = weight3((1.0 - f.y) / 2.0 + 0.5, v_in.scale.y);
|
|
|
|
/* make sure all taps added together is exactly 1.0, otherwise some
|
|
* (very small) distortion can occur */
|
|
float suml = rowtap1.r + rowtap1.g + rowtap1.b + rowtap2.r + rowtap2.g + rowtap2.b;
|
|
float sumc = coltap1.r + coltap1.g + coltap1.b + coltap2.r + coltap2.g + coltap2.b;
|
|
rowtap1 /= suml;
|
|
rowtap2 /= suml;
|
|
coltap1 /= sumc;
|
|
coltap2 /= sumc;
|
|
|
|
float2 xystart = (-2.5 - f) * stepxy + pos;
|
|
float3 xpos1 = float3(xystart.x , xystart.x + stepxy.x , xystart.x + stepxy.x * 2.0);
|
|
float3 xpos2 = float3(xystart.x + stepxy.x * 3.0, xystart.x + stepxy.x * 4.0, xystart.x + stepxy.x * 5.0);
|
|
|
|
return
|
|
get_line(xystart.y , xpos1, xpos2, rowtap1, rowtap2, undistort) * coltap1.r +
|
|
get_line(xystart.y + stepxy.y , xpos1, xpos2, rowtap1, rowtap2, undistort) * coltap2.r +
|
|
get_line(xystart.y + stepxy.y * 2.0, xpos1, xpos2, rowtap1, rowtap2, undistort) * coltap1.g +
|
|
get_line(xystart.y + stepxy.y * 3.0, xpos1, xpos2, rowtap1, rowtap2, undistort) * coltap2.g +
|
|
get_line(xystart.y + stepxy.y * 4.0, xpos1, xpos2, rowtap1, rowtap2, undistort) * coltap1.b +
|
|
get_line(xystart.y + stepxy.y * 5.0, xpos1, xpos2, rowtap1, rowtap2, undistort) * coltap2.b;
|
|
}
|
|
|
|
float4 PSDrawLanczosRGBA(FragData v_in, bool undistort) : TARGET
|
|
{
|
|
return DrawLanczos(v_in, undistort);
|
|
}
|
|
|
|
float4 PSDrawLanczosRGBADivide(FragData v_in) : TARGET
|
|
{
|
|
float4 rgba = DrawLanczos(v_in, false);
|
|
float alpha = rgba.a;
|
|
float multiplier = (alpha > 0.0) ? (1.0 / alpha) : 0.0;
|
|
return float4(rgba.rgb * multiplier, alpha);
|
|
}
|
|
|
|
float4 PSDrawLanczosMatrix(FragData v_in) : TARGET
|
|
{
|
|
float3 rgb = DrawLanczos(v_in, false).rgb;
|
|
float3 yuv = mul(float4(saturate(rgb), 1.0), color_matrix).xyz;
|
|
return float4(yuv, 1.0);
|
|
}
|
|
|
|
technique Draw
|
|
{
|
|
pass
|
|
{
|
|
vertex_shader = VSDefault(v_in);
|
|
pixel_shader = PSDrawLanczosRGBA(v_in, false);
|
|
}
|
|
}
|
|
|
|
technique DrawAlphaDivide
|
|
{
|
|
pass
|
|
{
|
|
vertex_shader = VSDefault(v_in);
|
|
pixel_shader = PSDrawLanczosRGBADivide(v_in);
|
|
}
|
|
}
|
|
|
|
technique DrawUndistort
|
|
{
|
|
pass
|
|
{
|
|
vertex_shader = VSDefault(v_in);
|
|
pixel_shader = PSDrawLanczosRGBA(v_in, true);
|
|
}
|
|
}
|
|
|
|
technique DrawMatrix
|
|
{
|
|
pass
|
|
{
|
|
vertex_shader = VSDefault(v_in);
|
|
pixel_shader = PSDrawLanczosMatrix(v_in);
|
|
}
|
|
}
|