obs-studio/libobs-opengl/gl-subsystem.c
2013-12-22 04:51:11 +01:00

1117 lines
25 KiB
C

/******************************************************************************
Copyright (C) 2013 by Hugh Bailey <obs.jim@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
******************************************************************************/
#include <graphics/matrix3.h>
#include "gl-subsystem.h"
static void clear_textures(struct gs_device *device)
{
GLenum i;
for (i = 0; i < GS_MAX_TEXTURES; i++) {
if (device->cur_textures[i]) {
gl_active_texture(GL_TEXTURE0 + i);
gl_bind_texture(device->cur_textures[i]->gl_target, 0);
device->cur_textures[i] = NULL;
}
}
}
void convert_sampler_info(struct gs_sampler_state *sampler,
struct gs_sampler_info *info)
{
GLint max_anisotropy_max;
convert_filter(info->filter, &sampler->min_filter,
&sampler->mag_filter);
sampler->address_u = convert_address_mode(info->address_u);
sampler->address_v = convert_address_mode(info->address_v);
sampler->address_w = convert_address_mode(info->address_w);
sampler->max_anisotropy = info->max_anisotropy;
max_anisotropy_max = 1;
glGetIntegerv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &max_anisotropy_max);
gl_success("glGetIntegerv(GL_MAX_TEXTURE_ANISOTROPY_MAX)");
if (1 <= sampler->max_anisotropy &&
sampler->max_anisotropy <= max_anisotropy_max)
return;
if (sampler->max_anisotropy < 1)
sampler->max_anisotropy = 1;
else if (sampler->max_anisotropy > max_anisotropy_max)
sampler->max_anisotropy = max_anisotropy_max;
blog(LOG_INFO, "convert_sampler_info: 1 <= max_anisotropy <= "
"%d violated, selected: %d, set: %d",
max_anisotropy_max,
info->max_anisotropy, sampler->max_anisotropy);
}
device_t device_create(struct gs_init_data *info)
{
struct gs_device *device = bmalloc(sizeof(struct gs_device));
memset(device, 0, sizeof(struct gs_device));
device->plat = gl_platform_create(device, info);
if (!device->plat)
goto fail;
glGenProgramPipelines(1, &device->pipeline);
if (!gl_success("glGenProgramPipelines"))
goto fail;
glBindProgramPipeline(device->pipeline);
if (!gl_success("glBindProgramPipeline"))
goto fail;
#ifdef _DEBUG
glEnable(GL_DEBUG_OUTPUT);
if (glGetError() == GL_INVALID_ENUM)
blog(LOG_DEBUG, "OpenGL debug information not available");
#endif
gl_enable(GL_CULL_FACE);
device_leavecontext(device);
device->cur_swap = gl_platform_getswap(device->plat);
return device;
fail:
blog(LOG_ERROR, "device_create (GL) failed");
bfree(device);
return NULL;
}
void device_destroy(device_t device)
{
if (device) {
size_t i;
for (i = 0; i < device->fbos.num; i++)
fbo_info_destroy(device->fbos.array[i]);
if (device->pipeline)
glDeleteProgramPipelines(1, &device->pipeline);
da_free(device->proj_stack);
da_free(device->fbos);
gl_platform_destroy(device->plat);
bfree(device);
}
}
swapchain_t device_create_swapchain(device_t device, struct gs_init_data *info)
{
struct gs_swap_chain *swap = bmalloc(sizeof(struct gs_swap_chain));
memset(swap, 0, sizeof(struct gs_swap_chain));
swap->device = device;
swap->info = *info;
swap->wi = gl_windowinfo_create(info);
if (!swap->wi) {
blog(LOG_ERROR, "device_create_swapchain (GL) failed");
swapchain_destroy(swap);
return NULL;
}
return swap;
}
void device_resize(device_t device, uint32_t cx, uint32_t cy)
{
/* GL automatically resizes the device, so it doesn't do much */
device->cur_swap->info.cx = cx;
device->cur_swap->info.cy = cy;
}
void device_getsize(device_t device, uint32_t *cx, uint32_t *cy)
{
*cx = device->cur_swap->info.cx;
*cy = device->cur_swap->info.cy;
}
uint32_t device_getwidth(device_t device)
{
return device->cur_swap->info.cx;
}
uint32_t device_getheight(device_t device)
{
return device->cur_swap->info.cy;
}
texture_t device_create_volumetexture(device_t device, uint32_t width,
uint32_t height, uint32_t depth,
enum gs_color_format color_format, uint32_t levels,
const void **data, uint32_t flags)
{
/* TODO */
return NULL;
}
samplerstate_t device_create_samplerstate(device_t device,
struct gs_sampler_info *info)
{
struct gs_sampler_state *sampler;
sampler = bmalloc(sizeof(struct gs_sampler_state));
memset(sampler, 0, sizeof(struct gs_sampler_state));
sampler->device = device;
sampler->ref = 1;
convert_sampler_info(sampler, info);
return sampler;
}
enum gs_texture_type device_gettexturetype(device_t device,
texture_t texture)
{
return texture->type;
}
static void strip_mipmap_filter(GLint *filter)
{
switch (*filter) {
case GL_NEAREST:
case GL_LINEAR:
return;
case GL_NEAREST_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
*filter = GL_NEAREST;
return;
case GL_LINEAR_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_LINEAR:
*filter = GL_LINEAR;
return;
}
*filter = GL_NEAREST;
}
static bool load_texture_sampler(texture_t tex, samplerstate_t ss)
{
bool success = true;
GLint min_filter;
if (tex->cur_sampler == ss)
return true;
if (tex->cur_sampler)
samplerstate_release(tex->cur_sampler);
tex->cur_sampler = ss;
if (!ss)
return true;
samplerstate_addref(ss);
min_filter = ss->min_filter;
if (texture_isrect(tex))
strip_mipmap_filter(&min_filter);
if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_MIN_FILTER,
min_filter))
success = false;
if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_MAG_FILTER,
ss->mag_filter))
success = false;
if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_WRAP_S, ss->address_u))
success = false;
if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_WRAP_T, ss->address_v))
success = false;
if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_WRAP_R, ss->address_w))
success = false;
if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_MAX_ANISOTROPY_EXT,
ss->max_anisotropy))
success = false;
return success;
}
static inline struct shader_param *get_texture_param(device_t device, int unit)
{
struct gs_shader *shader = device->cur_pixel_shader;
size_t i;
for (i = 0; i < shader->params.num; i++) {
struct shader_param *param = shader->params.array+i;
if (param->type == SHADER_PARAM_TEXTURE) {
if (param->texture_id == unit)
return param;
}
}
return NULL;
}
void device_load_texture(device_t device, texture_t tex, int unit)
{
struct shader_param *param;
struct gs_sampler_state *sampler;
struct gs_texture *cur_tex = device->cur_textures[unit];
/* need a pixel shader to properly bind textures */
if (!device->cur_pixel_shader)
tex = NULL;
if (cur_tex == tex)
return;
if (!gl_active_texture(GL_TEXTURE0 + unit))
goto fail;
/* the target for the previous text may not be the same as the
* next texture, so unbind the previous texture first to be safe */
if (cur_tex && (!tex || cur_tex->gl_target != tex->gl_target))
gl_bind_texture(cur_tex->gl_target, 0);
device->cur_textures[unit] = tex;
param = get_texture_param(device, unit);
if (!param)
return;
param->texture = tex;
if (!tex)
return;
sampler = device->cur_samplers[param->sampler_id];
if (!gl_bind_texture(tex->gl_target, tex->texture))
goto fail;
if (sampler && !load_texture_sampler(tex, sampler))
goto fail;
return;
fail:
blog(LOG_ERROR, "device_load_texture (GL) failed");
}
static bool load_sampler_on_textures(device_t device, samplerstate_t ss,
int sampler_unit)
{
struct gs_shader *shader = device->cur_pixel_shader;
size_t i;
for (i = 0; i < shader->params.num; i++) {
struct shader_param *param = shader->params.array+i;
if (param->type == SHADER_PARAM_TEXTURE &&
param->sampler_id == (uint32_t)sampler_unit &&
param->texture) {
if (!gl_active_texture(GL_TEXTURE0 + param->texture_id))
return false;
if (!load_texture_sampler(param->texture, ss))
return false;
}
}
return true;
}
void device_load_samplerstate(device_t device, samplerstate_t ss, int unit)
{
/* need a pixel shader to properly bind samplers */
if (!device->cur_pixel_shader)
ss = NULL;
if (device->cur_samplers[unit] == ss)
return;
device->cur_samplers[unit] = ss;
if (!ss)
return;
if (!load_sampler_on_textures(device, ss, unit))
blog(LOG_ERROR, "device_load_samplerstate (GL) failed");
return;
}
void device_load_vertexshader(device_t device, shader_t vertshader)
{
GLuint program = 0;
vertbuffer_t cur_vb = device->cur_vertex_buffer;
if (device->cur_vertex_shader == vertshader)
return;
if (vertshader && vertshader->type != SHADER_VERTEX) {
blog(LOG_ERROR, "Specified shader is not a vertex shader");
goto fail;
}
/* unload and reload the vertex buffer to sync the buffers up with
* the specific shader */
if (cur_vb && !vertexbuffer_load(device, NULL))
goto fail;
device->cur_vertex_shader = vertshader;
if (vertshader)
program = vertshader->program;
glUseProgramStages(device->pipeline, GL_VERTEX_SHADER_BIT, program);
if (!gl_success("glUseProgramStages"))
goto fail;
if (cur_vb && !vertexbuffer_load(device, cur_vb))
goto fail;
return;
fail:
blog(LOG_ERROR, "device_load_vertexshader (GL) failed");
}
static void load_default_pixelshader_samplers(struct gs_device *device,
struct gs_shader *ps)
{
size_t i;
if (!ps)
return;
for (i = 0; i < ps->samplers.num; i++) {
struct gs_sampler_state *ss = ps->samplers.array[i];
device->cur_samplers[i] = ss;
}
for (; i < GS_MAX_TEXTURES; i++)
device->cur_samplers[i] = NULL;
}
void device_load_pixelshader(device_t device, shader_t pixelshader)
{
GLuint program = 0;
if (device->cur_pixel_shader == pixelshader)
return;
if (pixelshader && pixelshader->type != SHADER_PIXEL) {
blog(LOG_ERROR, "Specified shader is not a pixel shader");
goto fail;
}
device->cur_pixel_shader = pixelshader;
if (pixelshader)
program = pixelshader->program;
glUseProgramStages(device->pipeline, GL_FRAGMENT_SHADER_BIT, program);
if (!gl_success("glUseProgramStages"))
goto fail;
clear_textures(device);
if (pixelshader)
load_default_pixelshader_samplers(device, pixelshader);
return;
fail:
blog(LOG_ERROR, "device_load_pixelshader (GL) failed");
}
void device_load_defaultsamplerstate(device_t device, bool b_3d, int unit)
{
/* TODO */
}
shader_t device_getvertexshader(device_t device)
{
return device->cur_vertex_shader;
}
shader_t device_getpixelshader(device_t device)
{
return device->cur_pixel_shader;
}
texture_t device_getrendertarget(device_t device)
{
return device->cur_render_target;
}
zstencil_t device_getzstenciltarget(device_t device)
{
return device->cur_zstencil_buffer;
}
static bool get_tex_dimensions(texture_t tex, uint32_t *width, uint32_t *height)
{
if (tex->type == GS_TEXTURE_2D) {
struct gs_texture_2d *tex2d = (struct gs_texture_2d*)tex;
*width = tex2d->width;
*height = tex2d->height;
return true;
} else if (tex->type == GS_TEXTURE_CUBE) {
struct gs_texture_cube *cube = (struct gs_texture_cube*)tex;
*width = cube->size;
*height = cube->size;
return true;
}
blog(LOG_ERROR, "Texture must be 2D or cubemap");
return false;
}
/*
* This automatically manages FBOs so that render targets are always given
* an FBO that matches their width/height/format to maximize optimization
*/
static struct fbo_info *get_fbo(struct gs_device *device, texture_t tex)
{
size_t i;
uint32_t width, height;
GLuint fbo;
struct fbo_info *ptr;
if (!get_tex_dimensions(tex, &width, &height))
return NULL;
for (i = 0; i < device->fbos.num; i++) {
ptr = device->fbos.array[i];
if (ptr->width == width && ptr->height == height &&
ptr->format == tex->format)
return ptr;
}
glGenFramebuffers(1, &fbo);
if (!gl_success("glGenFramebuffers"))
return NULL;
ptr = bmalloc(sizeof(struct fbo_info));
ptr->fbo = fbo;
ptr->width = width;
ptr->height = height;
ptr->format = tex->format;
ptr->cur_render_target = NULL;
ptr->cur_render_side = 0;
ptr->cur_zstencil_buffer = NULL;
da_push_back(device->fbos, &ptr);
return ptr;
}
static bool set_current_fbo(device_t device, struct fbo_info *fbo)
{
if (device->cur_fbo != fbo) {
GLuint fbo_obj = fbo ? fbo->fbo : 0;
if (!gl_bind_framebuffer(GL_DRAW_FRAMEBUFFER, fbo_obj))
return false;
}
device->cur_fbo = fbo;
return true;
}
static bool attach_rendertarget(struct fbo_info *fbo, texture_t tex, int side)
{
if (fbo->cur_render_target == tex)
return true;
fbo->cur_render_target = tex;
if (tex->type == GS_TEXTURE_2D) {
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
tex->texture, 0);
} else if (tex->type == GS_TEXTURE_CUBE) {
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
GL_TEXTURE_CUBE_MAP_POSITIVE_X + side,
tex->texture, 0);
} else {
return false;
}
return gl_success("glFramebufferTexture2D");
}
static bool attach_zstencil(struct fbo_info *fbo, zstencil_t zs)
{
GLuint zsbuffer = 0;
GLenum zs_attachment = GL_DEPTH_STENCIL_ATTACHMENT;
if (fbo->cur_zstencil_buffer == zs)
return true;
fbo->cur_zstencil_buffer = zs;
if (zs) {
zsbuffer = zs->buffer;
zs_attachment = zs->attachment;
}
glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER,
zs_attachment, GL_RENDERBUFFER, zsbuffer);
if (!gl_success("glFramebufferRenderbuffer"))
return false;
return true;
}
static bool set_target(device_t device, texture_t tex, int side, zstencil_t zs)
{
struct fbo_info *fbo;
if (device->cur_render_target == tex &&
device->cur_zstencil_buffer == zs &&
device->cur_render_side == side)
return true;
device->cur_render_target = tex;
device->cur_render_side = side;
device->cur_zstencil_buffer = zs;
if (!tex)
return set_current_fbo(device, NULL);
fbo = get_fbo(device, tex);
if (!fbo)
return false;
set_current_fbo(device, fbo);
if (!attach_rendertarget(fbo, tex, side))
return false;
if (!attach_zstencil(fbo, zs))
return false;
return true;
}
void device_setrendertarget(device_t device, texture_t tex, zstencil_t zstencil)
{
if (tex) {
if (tex->type != GS_TEXTURE_2D) {
blog(LOG_ERROR, "Texture is not a 2D texture");
goto fail;
}
if (!tex->is_render_target) {
blog(LOG_ERROR, "Texture is not a render target");
goto fail;
}
}
if (!set_target(device, tex, 0, zstencil))
goto fail;
return;
fail:
blog(LOG_ERROR, "device_setrendertarget (GL) failed");
}
void device_setcuberendertarget(device_t device, texture_t cubetex,
int side, zstencil_t zstencil)
{
if (cubetex) {
if (cubetex->type != GS_TEXTURE_CUBE) {
blog(LOG_ERROR, "Texture is not a cube texture");
goto fail;
}
if (!cubetex->is_render_target) {
blog(LOG_ERROR, "Texture is not a render target");
goto fail;
}
}
if (!set_target(device, cubetex, side, zstencil))
goto fail;
return;
fail:
blog(LOG_ERROR, "device_setcuberendertarget (GL) failed");
}
void device_copy_texture(device_t device, texture_t dst, texture_t src)
{
struct gs_texture_2d *src2d = (struct gs_texture_2d*)src;
struct gs_texture_2d *dst2d = (struct gs_texture_2d*)dst;
if (!src) {
blog(LOG_ERROR, "Source texture is NULL");
goto fail;
}
if (!dst) {
blog(LOG_ERROR, "Destination texture is NULL");
goto fail;
}
if (dst->type != GS_TEXTURE_2D || src->type != GS_TEXTURE_2D) {
blog(LOG_ERROR, "Source and destination textures must be 2D "
"textures");
goto fail;
}
if (dst->format != src->format) {
blog(LOG_ERROR, "Source and destination formats do not match");
goto fail;
}
if (dst2d->width != src2d->width || dst2d->height != src2d->height) {
blog(LOG_ERROR, "Source and destination must have "
"the same dimensions");
goto fail;
}
if (!gl_copy_texture(device, dst->texture, dst->gl_target,
src->texture, src->gl_target,
src2d->width, src2d->height))
goto fail;
return;
fail:
blog(LOG_ERROR, "device_copy_texture (GL) failed");
}
void device_beginscene(device_t device)
{
clear_textures(device);
}
static inline bool can_render(device_t device)
{
if (!device->cur_vertex_shader) {
blog(LOG_ERROR, "No vertex shader specified");
return false;
}
if (!device->cur_pixel_shader) {
blog(LOG_ERROR, "No pixel shader specified");
return false;
}
if (!device->cur_vertex_buffer) {
blog(LOG_ERROR, "No vertex buffer specified");
return false;
}
return true;
}
static void update_viewproj_matrix(struct gs_device *device)
{
struct gs_shader *vs = device->cur_vertex_shader;
struct matrix3 cur_matrix;
gs_matrix_get(&cur_matrix);
matrix4_from_matrix3(&device->cur_view, &cur_matrix);
matrix4_mul(&device->cur_viewproj, &device->cur_view,
&device->cur_proj);
matrix4_transpose(&device->cur_viewproj, &device->cur_viewproj);
if (vs->viewproj)
shader_setmatrix4(vs, vs->viewproj, &device->cur_viewproj);
}
static inline bool check_shader_pipeline_validity(device_t device)
{
int valid = false;
glValidateProgramPipeline(device->pipeline);
if (!gl_success("glValidateProgramPipeline"))
return false;
glGetProgramPipelineiv(device->pipeline, GL_VALIDATE_STATUS, &valid);
if (!gl_success("glGetProgramPipelineiv"))
return false;
if (!valid)
blog(LOG_ERROR, "Shader pipeline appears to be invalid");
return valid != 0;
}
void device_draw(device_t device, enum gs_draw_mode draw_mode,
uint32_t start_vert, uint32_t num_verts)
{
struct gs_index_buffer *ib = device->cur_index_buffer;
GLenum topology = convert_gs_topology(draw_mode);
effect_t effect = gs_geteffect();
if (!can_render(device))
goto fail;
if (effect)
effect_updateparams(effect);
shader_update_textures(device->cur_pixel_shader);
update_viewproj_matrix(device);
#ifdef _DEBUG
if (!check_shader_pipeline_validity(device))
goto fail;
#endif
if (ib) {
if (num_verts == 0)
num_verts = (uint32_t)device->cur_index_buffer->num;
glDrawElements(topology, num_verts, ib->gl_type,
(const GLvoid*)(start_vert * ib->width));
if (!gl_success("glDrawElements"))
goto fail;
} else {
if (num_verts == 0)
num_verts = (uint32_t)device->cur_vertex_buffer->num;
glDrawArrays(topology, start_vert, num_verts);
if (!gl_success("glDrawArrays"))
goto fail;
}
return;
fail:
blog(LOG_ERROR, "device_draw (GL) failed");
}
void device_endscene(device_t device)
{
/* does nothing */
}
void device_clear(device_t device, uint32_t clear_flags,
struct vec4 *color, float depth, uint8_t stencil)
{
GLbitfield gl_flags = 0;
if (clear_flags & GS_CLEAR_COLOR) {
glClearColor(color->x, color->y, color->z, color->w);
gl_flags |= GL_COLOR_BUFFER_BIT;
}
if (clear_flags & GS_CLEAR_DEPTH) {
glClearDepth(depth);
gl_flags |= GL_DEPTH_BUFFER_BIT;
}
if (clear_flags & GS_CLEAR_STENCIL) {
glClearStencil(stencil);
gl_flags |= GL_STENCIL_BUFFER_BIT;
}
glClear(gl_flags);
if (!gl_success("glClear"))
blog(LOG_ERROR, "device_clear (GL) failed");
}
void device_setcullmode(device_t device, enum gs_cull_mode mode)
{
if (device->cur_cull_mode == mode)
return;
if (device->cur_cull_mode == GS_NEITHER)
gl_enable(GL_CULL_FACE);
device->cur_cull_mode = mode;
if (mode == GS_BACK)
gl_cull_face(GL_BACK);
else if (mode == GS_FRONT)
gl_cull_face(GL_FRONT);
else
gl_disable(GL_CULL_FACE);
}
enum gs_cull_mode device_getcullmode(device_t device)
{
return device->cur_cull_mode;
}
void device_enable_blending(device_t device, bool enable)
{
if (enable)
gl_enable(GL_BLEND);
else
gl_disable(GL_BLEND);
}
void device_enable_depthtest(device_t device, bool enable)
{
if (enable)
gl_enable(GL_DEPTH_TEST);
else
gl_disable(GL_DEPTH_TEST);
}
void device_enable_stenciltest(device_t device, bool enable)
{
if (enable)
gl_enable(GL_STENCIL_TEST);
else
gl_disable(GL_STENCIL_TEST);
}
void device_enable_stencilwrite(device_t device, bool enable)
{
if (enable)
glStencilMask(0xFFFFFFFF);
else
glStencilMask(0);
}
void device_enable_color(device_t device, bool red, bool green,
bool blue, bool alpha)
{
glColorMask(red, green, blue, alpha);
}
void device_blendfunction(device_t device, enum gs_blend_type src,
enum gs_blend_type dest)
{
GLenum gl_src = convert_gs_blend_type(src);
GLenum gl_dst = convert_gs_blend_type(dest);
glBlendFunc(gl_src, gl_dst);
if (!gl_success("glBlendFunc"))
blog(LOG_ERROR, "device_blendfunction (GL) failed");
}
void device_depthfunction(device_t device, enum gs_depth_test test)
{
GLenum gl_test = convert_gs_depth_test(test);
glDepthFunc(gl_test);
if (!gl_success("glDepthFunc"))
blog(LOG_ERROR, "device_depthfunction (GL) failed");
}
void device_stencilfunction(device_t device, enum gs_stencil_side side,
enum gs_depth_test test)
{
GLenum gl_side = convert_gs_stencil_side(side);
GLenum gl_test = convert_gs_depth_test(test);
glStencilFuncSeparate(gl_side, gl_test, 0, 0xFFFFFFFF);
if (!gl_success("glStencilFuncSeparate"))
blog(LOG_ERROR, "device_stencilfunction (GL) failed");
}
void device_stencilop(device_t device, enum gs_stencil_side side,
enum gs_stencil_op fail, enum gs_stencil_op zfail,
enum gs_stencil_op zpass)
{
GLenum gl_side = convert_gs_stencil_side(side);
GLenum gl_fail = convert_gs_stencil_op(fail);
GLenum gl_zfail = convert_gs_stencil_op(zfail);
GLenum gl_zpass = convert_gs_stencil_op(zpass);
glStencilOpSeparate(gl_side, gl_fail, gl_zfail, gl_zpass);
if (!gl_success("glStencilOpSeparate"))
blog(LOG_ERROR, "device_stencilop (GL) failed");
}
void device_enable_fullscreen(device_t device, bool enable)
{
/* TODO */
}
int device_fullscreen_enabled(device_t device)
{
/* TODO */
return false;
}
void device_setdisplaymode(device_t device,
const struct gs_display_mode *mode)
{
/* TODO */
}
void device_getdisplaymode(device_t device,
struct gs_display_mode *mode)
{
/* TODO */
}
void device_setcolorramp(device_t device, float gamma, float brightness,
float contrast)
{
/* TODO */
}
static inline uint32_t get_target_height(struct gs_device *device)
{
if (!device->cur_render_target)
return device_getheight(device);
if (device->cur_render_target->type == GS_TEXTURE_2D)
return texture_getheight(device->cur_render_target);
else /* cube map */
return cubetexture_getsize(device->cur_render_target);
}
void device_setviewport(device_t device, int x, int y, int width,
int height)
{
uint32_t base_height;
/* GL uses bottom-up coordinates for viewports. We want top-down */
if (device->cur_render_target) {
base_height = get_target_height(device);
} else {
uint32_t dw;
gl_getclientsize(device->cur_swap, &dw, &base_height);
}
glViewport(x, base_height - y - height, width, height);
if (!gl_success("glViewport"))
blog(LOG_ERROR, "device_setviewport (GL) failed");
device->cur_viewport.x = x;
device->cur_viewport.y = y;
device->cur_viewport.cx = width;
device->cur_viewport.cy = height;
}
void device_getviewport(device_t device, struct gs_rect *rect)
{
*rect = device->cur_viewport;
}
void device_setscissorrect(device_t device, struct gs_rect *rect)
{
glScissor(rect->x, rect->y, rect->cx, rect->cy);
if (!gl_success("glScissor"))
blog(LOG_ERROR, "device_setscissorrect (GL) failed");
}
void device_ortho(device_t device, float left, float right,
float top, float bottom, float near, float far)
{
struct matrix4 *dst = &device->cur_proj;
float rml = right-left;
float bmt = bottom-top;
float fmn = far-near;
vec4_zero(&dst->x);
vec4_zero(&dst->y);
vec4_zero(&dst->z);
vec4_zero(&dst->t);
dst->x.x = 2.0f / rml;
dst->t.x = (left+right) / -rml;
dst->y.y = 2.0f / -bmt;
dst->t.y = (bottom+top) / bmt;
dst->z.z = -2.0f / fmn;
dst->t.z = (far+near) / -fmn;
dst->t.w = 1.0f;
}
void device_frustum(device_t device, float left, float right,
float top, float bottom, float near, float far)
{
struct matrix4 *dst = &device->cur_proj;
float rml = right-left;
float tmb = top-bottom;
float nmf = near-far;
float nearx2 = 2.0f*near;
vec4_zero(&dst->x);
vec4_zero(&dst->y);
vec4_zero(&dst->z);
vec4_zero(&dst->t);
dst->x.x = nearx2 / rml;
dst->z.x = (left+right) / rml;
dst->y.y = nearx2 / tmb;
dst->z.y = (bottom+top) / tmb;
dst->z.z = (far+near) / nmf;
dst->t.z = 2.0f * (near*far) / nmf;
dst->z.w = -1.0f;
}
void device_projection_push(device_t device)
{
da_push_back(device->proj_stack, &device->cur_proj);
}
void device_projection_pop(device_t device)
{
struct matrix4 *end;
if (!device->proj_stack.num)
return;
end = da_end(device->proj_stack);
device->cur_proj = *end;
da_pop_back(device->proj_stack);
}
void swapchain_destroy(swapchain_t swapchain)
{
if (!swapchain)
return;
if (swapchain->device->cur_swap == swapchain)
device_load_swapchain(swapchain->device, NULL);
gl_windowinfo_destroy(swapchain->wi);
bfree(swapchain);
}
void volumetexture_destroy(texture_t voltex)
{
/* TODO */
}
uint32_t volumetexture_getwidth(texture_t voltex)
{
/* TODO */
return 0;
}
uint32_t volumetexture_getheight(texture_t voltex)
{
/* TODO */
return 0;
}
uint32_t volumetexture_getdepth(texture_t voltex)
{
/* TODO */
return 0;
}
enum gs_color_format volumetexture_getcolorformat(texture_t voltex)
{
/* TODO */
return GS_UNKNOWN;
}
void samplerstate_destroy(samplerstate_t samplerstate)
{
samplerstate_release(samplerstate);
}