obs-studio/libobs/util/profiler.c
2021-08-23 22:57:10 -07:00

1183 lines
28 KiB
C

#include <inttypes.h>
#include "profiler.h"
#include "darray.h"
#include "dstr.h"
#include "platform.h"
#include "threading.h"
#include <math.h>
#include <zlib.h>
//#define TRACK_OVERHEAD
struct profiler_snapshot {
DARRAY(profiler_snapshot_entry_t) roots;
};
struct profiler_snapshot_entry {
const char *name;
profiler_time_entries_t times;
uint64_t min_time;
uint64_t max_time;
uint64_t overall_count;
profiler_time_entries_t times_between_calls;
uint64_t expected_time_between_calls;
uint64_t min_time_between_calls;
uint64_t max_time_between_calls;
uint64_t overall_between_calls_count;
DARRAY(profiler_snapshot_entry_t) children;
};
typedef struct profiler_time_entry profiler_time_entry;
typedef struct profile_call profile_call;
struct profile_call {
const char *name;
#ifdef TRACK_OVERHEAD
uint64_t overhead_start;
#endif
uint64_t start_time;
uint64_t end_time;
#ifdef TRACK_OVERHEAD
uint64_t overhead_end;
#endif
uint64_t expected_time_between_calls;
DARRAY(profile_call) children;
profile_call *parent;
};
typedef struct profile_times_table_entry profile_times_table_entry;
struct profile_times_table_entry {
size_t probes;
profiler_time_entry entry;
};
typedef struct profile_times_table profile_times_table;
struct profile_times_table {
size_t size;
size_t occupied;
size_t max_probe_count;
profile_times_table_entry *entries;
size_t old_start_index;
size_t old_occupied;
profile_times_table_entry *old_entries;
};
typedef struct profile_entry profile_entry;
struct profile_entry {
const char *name;
profile_times_table times;
#ifdef TRACK_OVERHEAD
profile_times_table overhead;
#endif
uint64_t expected_time_between_calls;
profile_times_table times_between_calls;
DARRAY(profile_entry) children;
};
typedef struct profile_root_entry profile_root_entry;
struct profile_root_entry {
pthread_mutex_t *mutex;
const char *name;
profile_entry *entry;
profile_call *prev_call;
};
static inline uint64_t diff_ns_to_usec(uint64_t prev, uint64_t next)
{
return (next - prev + 500) / 1000;
}
static inline void update_max_probes(profile_times_table *map, size_t val)
{
map->max_probe_count =
map->max_probe_count < val ? val : map->max_probe_count;
}
static void migrate_old_entries(profile_times_table *map, bool limit_items);
static void grow_hashmap(profile_times_table *map, uint64_t usec,
uint64_t count);
static void add_hashmap_entry(profile_times_table *map, uint64_t usec,
uint64_t count)
{
size_t probes = 1;
size_t start = usec % map->size;
for (;; probes += 1) {
size_t idx = (start + probes) % map->size;
profile_times_table_entry *entry = &map->entries[idx];
if (!entry->probes) {
entry->probes = probes;
entry->entry.time_delta = usec;
entry->entry.count = count;
map->occupied += 1;
update_max_probes(map, probes);
return;
}
if (entry->entry.time_delta == usec) {
entry->entry.count += count;
return;
}
if (entry->probes >= probes)
continue;
if (map->occupied / (double)map->size > 0.7) {
grow_hashmap(map, usec, count);
return;
}
size_t old_probes = entry->probes;
uint64_t old_count = entry->entry.count;
uint64_t old_usec = entry->entry.time_delta;
entry->probes = probes;
entry->entry.count = count;
entry->entry.time_delta = usec;
update_max_probes(map, probes);
probes = old_probes;
count = old_count;
usec = old_usec;
start = usec % map->size;
}
}
static void init_hashmap(profile_times_table *map, size_t size)
{
map->size = size;
map->occupied = 0;
map->max_probe_count = 0;
map->entries = bzalloc(sizeof(profile_times_table_entry) * size);
map->old_start_index = 0;
map->old_occupied = 0;
map->old_entries = NULL;
}
static void migrate_old_entries(profile_times_table *map, bool limit_items)
{
if (!map->old_entries)
return;
if (!map->old_occupied) {
bfree(map->old_entries);
map->old_entries = NULL;
return;
}
for (size_t i = 0; !limit_items || i < 8; i++, map->old_start_index++) {
if (!map->old_occupied)
return;
profile_times_table_entry *entry =
&map->old_entries[map->old_start_index];
if (!entry->probes)
continue;
add_hashmap_entry(map, entry->entry.time_delta,
entry->entry.count);
map->old_occupied -= 1;
}
}
static void grow_hashmap(profile_times_table *map, uint64_t usec,
uint64_t count)
{
migrate_old_entries(map, false);
size_t old_size = map->size;
size_t old_occupied = map->occupied;
profile_times_table_entry *entries = map->entries;
init_hashmap(map, (old_size * 2 < 16) ? 16 : (old_size * 2));
map->old_occupied = old_occupied;
map->old_entries = entries;
add_hashmap_entry(map, usec, count);
}
static profile_entry *init_entry(profile_entry *entry, const char *name)
{
entry->name = name;
init_hashmap(&entry->times, 1);
#ifdef TRACK_OVERHEAD
init_hashmap(&entry->overhead, 1);
#endif
entry->expected_time_between_calls = 0;
init_hashmap(&entry->times_between_calls, 1);
return entry;
}
static profile_entry *get_child(profile_entry *parent, const char *name)
{
const size_t num = parent->children.num;
for (size_t i = 0; i < num; i++) {
profile_entry *child = &parent->children.array[i];
if (child->name == name)
return child;
}
return init_entry(da_push_back_new(parent->children), name);
}
static void merge_call(profile_entry *entry, profile_call *call,
profile_call *prev_call)
{
const size_t num = call->children.num;
for (size_t i = 0; i < num; i++) {
profile_call *child = &call->children.array[i];
merge_call(get_child(entry, child->name), child, NULL);
}
if (entry->expected_time_between_calls != 0 && prev_call) {
migrate_old_entries(&entry->times_between_calls, true);
uint64_t usec = diff_ns_to_usec(prev_call->start_time,
call->start_time);
add_hashmap_entry(&entry->times_between_calls, usec, 1);
}
migrate_old_entries(&entry->times, true);
uint64_t usec = diff_ns_to_usec(call->start_time, call->end_time);
add_hashmap_entry(&entry->times, usec, 1);
#ifdef TRACK_OVERHEAD
migrate_old_entries(&entry->overhead, true);
usec = diff_ns_to_usec(call->overhead_start, call->start_time);
usec += diff_ns_to_usec(call->end_time, call->overhead_end);
add_hashmap_entry(&entry->overhead, usec, 1);
#endif
}
static bool enabled = false;
static pthread_mutex_t root_mutex = PTHREAD_MUTEX_INITIALIZER;
static DARRAY(profile_root_entry) root_entries;
static THREAD_LOCAL profile_call *thread_context = NULL;
static THREAD_LOCAL bool thread_enabled = true;
void profiler_start(void)
{
pthread_mutex_lock(&root_mutex);
enabled = true;
pthread_mutex_unlock(&root_mutex);
}
void profiler_stop(void)
{
pthread_mutex_lock(&root_mutex);
enabled = false;
pthread_mutex_unlock(&root_mutex);
}
void profile_reenable_thread(void)
{
if (thread_enabled)
return;
pthread_mutex_lock(&root_mutex);
thread_enabled = enabled;
pthread_mutex_unlock(&root_mutex);
}
static bool lock_root(void)
{
pthread_mutex_lock(&root_mutex);
if (!enabled) {
pthread_mutex_unlock(&root_mutex);
thread_enabled = false;
return false;
}
return true;
}
static profile_root_entry *get_root_entry(const char *name)
{
profile_root_entry *r_entry = NULL;
for (size_t i = 0; i < root_entries.num; i++) {
if (root_entries.array[i].name == name) {
r_entry = &root_entries.array[i];
break;
}
}
if (!r_entry) {
r_entry = da_push_back_new(root_entries);
r_entry->mutex = bmalloc(sizeof(pthread_mutex_t));
pthread_mutex_init(r_entry->mutex, NULL);
r_entry->name = name;
r_entry->entry = bzalloc(sizeof(profile_entry));
init_entry(r_entry->entry, name);
}
return r_entry;
}
void profile_register_root(const char *name,
uint64_t expected_time_between_calls)
{
if (!lock_root())
return;
get_root_entry(name)->entry->expected_time_between_calls =
(expected_time_between_calls + 500) / 1000;
pthread_mutex_unlock(&root_mutex);
}
static void free_call_context(profile_call *context);
static void merge_context(profile_call *context)
{
pthread_mutex_t *mutex = NULL;
profile_entry *entry = NULL;
profile_call *prev_call = NULL;
if (!lock_root()) {
free_call_context(context);
return;
}
profile_root_entry *r_entry = get_root_entry(context->name);
mutex = r_entry->mutex;
entry = r_entry->entry;
prev_call = r_entry->prev_call;
r_entry->prev_call = context;
pthread_mutex_lock(mutex);
pthread_mutex_unlock(&root_mutex);
merge_call(entry, context, prev_call);
pthread_mutex_unlock(mutex);
free_call_context(prev_call);
}
void profile_start(const char *name)
{
if (!thread_enabled)
return;
profile_call new_call = {
.name = name,
#ifdef TRACK_OVERHEAD
.overhead_start = os_gettime_ns(),
#endif
.parent = thread_context,
};
profile_call *call = NULL;
if (new_call.parent) {
size_t idx = da_push_back(new_call.parent->children, &new_call);
call = &new_call.parent->children.array[idx];
} else {
call = bmalloc(sizeof(profile_call));
memcpy(call, &new_call, sizeof(profile_call));
}
thread_context = call;
call->start_time = os_gettime_ns();
}
void profile_end(const char *name)
{
uint64_t end = os_gettime_ns();
if (!thread_enabled)
return;
profile_call *call = thread_context;
if (!call) {
blog(LOG_ERROR, "Called profile end with no active profile");
return;
}
if (!call->name)
call->name = name;
if (call->name != name) {
blog(LOG_ERROR,
"Called profile end with mismatching name: "
"start(\"%s\"[%p]) <-> end(\"%s\"[%p])",
call->name, call->name, name, name);
profile_call *parent = call->parent;
while (parent && parent->parent && parent->name != name)
parent = parent->parent;
if (!parent || parent->name != name)
return;
while (call->name != name) {
profile_end(call->name);
call = call->parent;
}
}
thread_context = call->parent;
call->end_time = end;
#ifdef TRACK_OVERHEAD
call->overhead_end = os_gettime_ns();
#endif
if (call->parent)
return;
merge_context(call);
}
static int profiler_time_entry_compare(const void *first, const void *second)
{
int64_t diff = ((profiler_time_entry *)second)->time_delta -
((profiler_time_entry *)first)->time_delta;
return diff < 0 ? -1 : (diff > 0 ? 1 : 0);
}
static uint64_t copy_map_to_array(profile_times_table *map,
profiler_time_entries_t *entry_buffer,
uint64_t *min_, uint64_t *max_)
{
migrate_old_entries(map, false);
da_reserve((*entry_buffer), map->occupied);
da_resize((*entry_buffer), 0);
uint64_t min__ = ~(uint64_t)0;
uint64_t max__ = 0;
uint64_t calls = 0;
for (size_t i = 0; i < map->size; i++) {
if (!map->entries[i].probes)
continue;
profiler_time_entry *entry = &map->entries[i].entry;
da_push_back((*entry_buffer), entry);
calls += entry->count;
min__ = (min__ < entry->time_delta) ? min__ : entry->time_delta;
max__ = (max__ > entry->time_delta) ? max__ : entry->time_delta;
}
if (min_)
*min_ = min__;
if (max_)
*max_ = max__;
return calls;
}
typedef void (*profile_entry_print_func)(profiler_snapshot_entry_t *entry,
struct dstr *indent_buffer,
struct dstr *output_buffer,
unsigned indent, uint64_t active,
uint64_t parent_calls);
/* UTF-8 characters */
#define VPIPE_RIGHT " \xe2\x94\xa3"
#define VPIPE " \xe2\x94\x83"
#define DOWN_RIGHT " \xe2\x94\x97"
static void make_indent_string(struct dstr *indent_buffer, unsigned indent,
uint64_t active)
{
indent_buffer->len = 0;
if (!indent) {
dstr_cat_ch(indent_buffer, 0);
return;
}
for (size_t i = 0; i < indent; i++) {
const char *fragment = "";
bool last = i + 1 == indent;
if (active & ((uint64_t)1 << i))
fragment = last ? VPIPE_RIGHT : VPIPE;
else
fragment = last ? DOWN_RIGHT : " ";
dstr_cat(indent_buffer, fragment);
}
}
static void gather_stats(uint64_t expected_time_between_calls,
profiler_time_entries_t *entries, uint64_t calls,
uint64_t *percentile99, uint64_t *median,
double *percent_within_bounds)
{
if (!entries->num) {
*percentile99 = 0;
*median = 0;
*percent_within_bounds = 0.;
return;
}
/*if (entry_buffer->num > 2)
blog(LOG_INFO, "buffer-size %lu, overall count %llu\n"
"map-size %lu, occupied %lu, probes %lu",
entry_buffer->num, calls,
map->size, map->occupied,
map->max_probe_count);*/
uint64_t accu = 0;
for (size_t i = 0; i < entries->num; i++) {
uint64_t old_accu = accu;
accu += entries->array[i].count;
if (old_accu < calls * 0.01 && accu >= calls * 0.01)
*percentile99 = entries->array[i].time_delta;
else if (old_accu < calls * 0.5 && accu >= calls * 0.5) {
*median = entries->array[i].time_delta;
break;
}
}
*percent_within_bounds = 0.;
if (!expected_time_between_calls)
return;
accu = 0;
for (size_t i = 0; i < entries->num; i++) {
profiler_time_entry *entry = &entries->array[i];
if (entry->time_delta < expected_time_between_calls)
break;
accu += entry->count;
}
*percent_within_bounds = (1. - (double)accu / calls) * 100;
}
#define G_MS "g\xC2\xA0ms"
static void profile_print_entry(profiler_snapshot_entry_t *entry,
struct dstr *indent_buffer,
struct dstr *output_buffer, unsigned indent,
uint64_t active, uint64_t parent_calls)
{
uint64_t calls = entry->overall_count;
uint64_t min_ = entry->min_time;
uint64_t max_ = entry->max_time;
uint64_t percentile99 = 0;
uint64_t median = 0;
double percent_within_bounds = 0.;
gather_stats(entry->expected_time_between_calls, &entry->times, calls,
&percentile99, &median, &percent_within_bounds);
make_indent_string(indent_buffer, indent, active);
if (min_ == max_) {
dstr_printf(output_buffer, "%s%s: %" G_MS, indent_buffer->array,
entry->name, min_ / 1000.);
} else {
dstr_printf(output_buffer,
"%s%s: min=%" G_MS ", median=%" G_MS ", "
"max=%" G_MS ", 99th percentile=%" G_MS,
indent_buffer->array, entry->name, min_ / 1000.,
median / 1000., max_ / 1000., percentile99 / 1000.);
if (entry->expected_time_between_calls) {
double expected_ms =
entry->expected_time_between_calls / 1000.;
dstr_catf(output_buffer, ", %g%% below %" G_MS,
percent_within_bounds, expected_ms);
}
}
if (parent_calls && calls != parent_calls) {
double calls_per_parent = (double)calls / parent_calls;
if (lround(calls_per_parent * 10) != 10)
dstr_catf(output_buffer, ", %g calls per parent call",
calls_per_parent);
}
blog(LOG_INFO, "%s", output_buffer->array);
active |= (uint64_t)1 << indent;
for (size_t i = 0; i < entry->children.num; i++) {
if ((i + 1) == entry->children.num)
active &= (1 << indent) - 1;
profile_print_entry(&entry->children.array[i], indent_buffer,
output_buffer, indent + 1, active, calls);
}
}
static void gather_stats_between(profiler_time_entries_t *entries,
uint64_t calls, uint64_t lower_bound,
uint64_t upper_bound, uint64_t min_,
uint64_t max_, uint64_t *median,
double *percent, double *lower, double *higher)
{
*median = 0;
*percent = 0.;
*lower = 0.;
*higher = 0.;
if (!entries->num)
return;
uint64_t accu = 0;
for (size_t i = 0; i < entries->num; i++) {
accu += entries->array[i].count;
if (accu < calls * 0.5)
continue;
*median = entries->array[i].time_delta;
break;
}
bool found_upper_bound = max_ <= upper_bound;
bool found_lower_bound = false;
if (min_ >= upper_bound) {
*higher = 100.;
return;
}
if (found_upper_bound && min_ >= lower_bound) {
*percent = 100.;
return;
}
accu = 0;
for (size_t i = 0; i < entries->num; i++) {
uint64_t delta = entries->array[i].time_delta;
if (!found_upper_bound && delta <= upper_bound) {
*higher = (double)accu / calls * 100;
accu = 0;
found_upper_bound = true;
}
if (!found_lower_bound && delta < lower_bound) {
*percent = (double)accu / calls * 100;
accu = 0;
found_lower_bound = true;
}
accu += entries->array[i].count;
}
if (!found_upper_bound) {
*higher = 100.;
} else if (!found_lower_bound) {
*percent = (double)accu / calls * 100;
} else {
*lower = (double)accu / calls * 100;
}
}
static void profile_print_entry_expected(profiler_snapshot_entry_t *entry,
struct dstr *indent_buffer,
struct dstr *output_buffer,
unsigned indent, uint64_t active,
uint64_t parent_calls)
{
UNUSED_PARAMETER(parent_calls);
if (!entry->expected_time_between_calls)
return;
uint64_t expected_time = entry->expected_time_between_calls;
uint64_t min_ = entry->min_time_between_calls;
uint64_t max_ = entry->max_time_between_calls;
uint64_t median = 0;
double percent = 0.;
double lower = 0.;
double higher = 0.;
gather_stats_between(&entry->times_between_calls,
entry->overall_between_calls_count,
(uint64_t)(expected_time * 0.98),
(uint64_t)(expected_time * 1.02 + 0.5), min_, max_,
&median, &percent, &lower, &higher);
make_indent_string(indent_buffer, indent, active);
blog(LOG_INFO,
"%s%s: min=%" G_MS ", median=%" G_MS ", max=%" G_MS ", %g%% "
"within ±2%% of %" G_MS " (%g%% lower, %g%% higher)",
indent_buffer->array, entry->name, min_ / 1000., median / 1000.,
max_ / 1000., percent, expected_time / 1000., lower, higher);
active |= (uint64_t)1 << indent;
for (size_t i = 0; i < entry->children.num; i++) {
if ((i + 1) == entry->children.num)
active &= (1 << indent) - 1;
profile_print_entry_expected(&entry->children.array[i],
indent_buffer, output_buffer,
indent + 1, active, 0);
}
}
void profile_print_func(const char *intro, profile_entry_print_func print,
profiler_snapshot_t *snap)
{
struct dstr indent_buffer = {0};
struct dstr output_buffer = {0};
bool free_snapshot = !snap;
if (!snap)
snap = profile_snapshot_create();
blog(LOG_INFO, "%s", intro);
for (size_t i = 0; i < snap->roots.num; i++) {
print(&snap->roots.array[i], &indent_buffer, &output_buffer, 0,
0, 0);
}
blog(LOG_INFO, "=================================================");
if (free_snapshot)
profile_snapshot_free(snap);
dstr_free(&output_buffer);
dstr_free(&indent_buffer);
}
void profiler_print(profiler_snapshot_t *snap)
{
profile_print_func("== Profiler Results =============================",
profile_print_entry, snap);
}
void profiler_print_time_between_calls(profiler_snapshot_t *snap)
{
profile_print_func("== Profiler Time Between Calls ==================",
profile_print_entry_expected, snap);
}
static void free_call_children(profile_call *call)
{
if (!call)
return;
const size_t num = call->children.num;
for (size_t i = 0; i < num; i++)
free_call_children(&call->children.array[i]);
da_free(call->children);
}
static void free_call_context(profile_call *context)
{
free_call_children(context);
bfree(context);
}
static void free_hashmap(profile_times_table *map)
{
map->size = 0;
bfree(map->entries);
map->entries = NULL;
bfree(map->old_entries);
map->old_entries = NULL;
}
static void free_profile_entry(profile_entry *entry)
{
for (size_t i = 0; i < entry->children.num; i++)
free_profile_entry(&entry->children.array[i]);
free_hashmap(&entry->times);
#ifdef TRACK_OVERHEAD
free_hashmap(&entry->overhead);
#endif
free_hashmap(&entry->times_between_calls);
da_free(entry->children);
}
void profiler_free(void)
{
DARRAY(profile_root_entry) old_root_entries = {0};
pthread_mutex_lock(&root_mutex);
enabled = false;
da_move(old_root_entries, root_entries);
pthread_mutex_unlock(&root_mutex);
for (size_t i = 0; i < old_root_entries.num; i++) {
profile_root_entry *entry = &old_root_entries.array[i];
pthread_mutex_lock(entry->mutex);
pthread_mutex_unlock(entry->mutex);
pthread_mutex_destroy(entry->mutex);
bfree(entry->mutex);
entry->mutex = NULL;
free_call_context(entry->prev_call);
free_profile_entry(entry->entry);
bfree(entry->entry);
}
da_free(old_root_entries);
pthread_mutex_destroy(&root_mutex);
}
/* ------------------------------------------------------------------------- */
/* Profiler name storage */
struct profiler_name_store {
pthread_mutex_t mutex;
DARRAY(char *) names;
};
profiler_name_store_t *profiler_name_store_create(void)
{
profiler_name_store_t *store = bzalloc(sizeof(profiler_name_store_t));
if (pthread_mutex_init(&store->mutex, NULL))
goto error;
return store;
error:
bfree(store);
return NULL;
}
void profiler_name_store_free(profiler_name_store_t *store)
{
if (!store)
return;
for (size_t i = 0; i < store->names.num; i++)
bfree(store->names.array[i]);
da_free(store->names);
pthread_mutex_destroy(&store->mutex);
bfree(store);
}
const char *profile_store_name(profiler_name_store_t *store, const char *format,
...)
{
va_list args;
va_start(args, format);
struct dstr str = {0};
dstr_vprintf(&str, format, args);
va_end(args);
const char *result = NULL;
pthread_mutex_lock(&store->mutex);
size_t idx = da_push_back(store->names, &str.array);
result = store->names.array[idx];
pthread_mutex_unlock(&store->mutex);
return result;
}
/* ------------------------------------------------------------------------- */
/* Profiler data access */
static void add_entry_to_snapshot(profile_entry *entry,
profiler_snapshot_entry_t *s_entry)
{
s_entry->name = entry->name;
s_entry->overall_count =
copy_map_to_array(&entry->times, &s_entry->times,
&s_entry->min_time, &s_entry->max_time);
if ((s_entry->expected_time_between_calls =
entry->expected_time_between_calls))
s_entry->overall_between_calls_count =
copy_map_to_array(&entry->times_between_calls,
&s_entry->times_between_calls,
&s_entry->min_time_between_calls,
&s_entry->max_time_between_calls);
da_reserve(s_entry->children, entry->children.num);
for (size_t i = 0; i < entry->children.num; i++)
add_entry_to_snapshot(&entry->children.array[i],
da_push_back_new(s_entry->children));
}
static void sort_snapshot_entry(profiler_snapshot_entry_t *entry)
{
qsort(entry->times.array, entry->times.num, sizeof(profiler_time_entry),
profiler_time_entry_compare);
if (entry->expected_time_between_calls)
qsort(entry->times_between_calls.array,
entry->times_between_calls.num,
sizeof(profiler_time_entry), profiler_time_entry_compare);
for (size_t i = 0; i < entry->children.num; i++)
sort_snapshot_entry(&entry->children.array[i]);
}
profiler_snapshot_t *profile_snapshot_create(void)
{
profiler_snapshot_t *snap = bzalloc(sizeof(profiler_snapshot_t));
pthread_mutex_lock(&root_mutex);
da_reserve(snap->roots, root_entries.num);
for (size_t i = 0; i < root_entries.num; i++) {
pthread_mutex_lock(root_entries.array[i].mutex);
add_entry_to_snapshot(root_entries.array[i].entry,
da_push_back_new(snap->roots));
pthread_mutex_unlock(root_entries.array[i].mutex);
}
pthread_mutex_unlock(&root_mutex);
for (size_t i = 0; i < snap->roots.num; i++)
sort_snapshot_entry(&snap->roots.array[i]);
return snap;
}
static void free_snapshot_entry(profiler_snapshot_entry_t *entry)
{
for (size_t i = 0; i < entry->children.num; i++)
free_snapshot_entry(&entry->children.array[i]);
da_free(entry->children);
da_free(entry->times_between_calls);
da_free(entry->times);
}
void profile_snapshot_free(profiler_snapshot_t *snap)
{
if (!snap)
return;
for (size_t i = 0; i < snap->roots.num; i++)
free_snapshot_entry(&snap->roots.array[i]);
da_free(snap->roots);
bfree(snap);
}
typedef void (*dump_csv_func)(void *data, struct dstr *buffer);
static void entry_dump_csv(struct dstr *buffer,
const profiler_snapshot_entry_t *parent,
const profiler_snapshot_entry_t *entry,
dump_csv_func func, void *data)
{
const char *parent_name = parent ? parent->name : NULL;
for (size_t i = 0; i < entry->times.num; i++) {
dstr_printf(buffer,
"%p,%p,%p,%p,%s,0,"
"%" PRIu64 ",%" PRIu64 "\n",
entry, parent, entry->name, parent_name,
entry->name, entry->times.array[i].time_delta,
entry->times.array[i].count);
func(data, buffer);
}
for (size_t i = 0; i < entry->times_between_calls.num; i++) {
dstr_printf(buffer,
"%p,%p,%p,%p,%s,"
"%" PRIu64 ",%" PRIu64 ",%" PRIu64 "\n",
entry, parent, entry->name, parent_name,
entry->name, entry->expected_time_between_calls,
entry->times_between_calls.array[i].time_delta,
entry->times_between_calls.array[i].count);
func(data, buffer);
}
for (size_t i = 0; i < entry->children.num; i++)
entry_dump_csv(buffer, entry, &entry->children.array[i], func,
data);
}
static void profiler_snapshot_dump(const profiler_snapshot_t *snap,
dump_csv_func func, void *data)
{
struct dstr buffer = {0};
dstr_init_copy(&buffer, "id,parent_id,name_id,parent_name_id,name,"
"time_between_calls,time_delta_µs,count\n");
func(data, &buffer);
for (size_t i = 0; i < snap->roots.num; i++)
entry_dump_csv(&buffer, NULL, &snap->roots.array[i], func,
data);
dstr_free(&buffer);
}
static void dump_csv_fwrite(void *data, struct dstr *buffer)
{
fwrite(buffer->array, 1, buffer->len, data);
}
bool profiler_snapshot_dump_csv(const profiler_snapshot_t *snap,
const char *filename)
{
FILE *f = os_fopen(filename, "wb+");
if (!f)
return false;
profiler_snapshot_dump(snap, dump_csv_fwrite, f);
fclose(f);
return true;
}
static void dump_csv_gzwrite(void *data, struct dstr *buffer)
{
gzwrite(data, buffer->array, (unsigned)buffer->len);
}
bool profiler_snapshot_dump_csv_gz(const profiler_snapshot_t *snap,
const char *filename)
{
gzFile gz;
#ifdef _WIN32
wchar_t *filename_w = NULL;
os_utf8_to_wcs_ptr(filename, 0, &filename_w);
if (!filename_w)
return false;
gz = gzopen_w(filename_w, "wb");
bfree(filename_w);
#else
gz = gzopen(filename, "wb");
#endif
if (!gz)
return false;
profiler_snapshot_dump(snap, dump_csv_gzwrite, gz);
#ifdef _WIN32
gzclose_w(gz);
#else
gzclose(gz);
#endif
return true;
}
size_t profiler_snapshot_num_roots(profiler_snapshot_t *snap)
{
return snap ? snap->roots.num : 0;
}
void profiler_snapshot_enumerate_roots(profiler_snapshot_t *snap,
profiler_entry_enum_func func,
void *context)
{
if (!snap)
return;
for (size_t i = 0; i < snap->roots.num; i++)
if (!func(context, &snap->roots.array[i]))
break;
}
void profiler_snapshot_filter_roots(profiler_snapshot_t *snap,
profiler_name_filter_func func, void *data)
{
for (size_t i = 0; i < snap->roots.num;) {
bool remove = false;
bool res = func(data, snap->roots.array[i].name, &remove);
if (remove) {
free_snapshot_entry(&snap->roots.array[i]);
da_erase(snap->roots, i);
}
if (!res)
break;
if (!remove)
i += 1;
}
}
size_t profiler_snapshot_num_children(profiler_snapshot_entry_t *entry)
{
return entry ? entry->children.num : 0;
}
void profiler_snapshot_enumerate_children(profiler_snapshot_entry_t *entry,
profiler_entry_enum_func func,
void *context)
{
if (!entry)
return;
for (size_t i = 0; i < entry->children.num; i++)
if (!func(context, &entry->children.array[i]))
break;
}
const char *profiler_snapshot_entry_name(profiler_snapshot_entry_t *entry)
{
return entry ? entry->name : NULL;
}
profiler_time_entries_t *
profiler_snapshot_entry_times(profiler_snapshot_entry_t *entry)
{
return entry ? &entry->times : NULL;
}
uint64_t profiler_snapshot_entry_overall_count(profiler_snapshot_entry_t *entry)
{
return entry ? entry->overall_count : 0;
}
uint64_t profiler_snapshot_entry_min_time(profiler_snapshot_entry_t *entry)
{
return entry ? entry->min_time : 0;
}
uint64_t profiler_snapshot_entry_max_time(profiler_snapshot_entry_t *entry)
{
return entry ? entry->max_time : 0;
}
profiler_time_entries_t *
profiler_snapshot_entry_times_between_calls(profiler_snapshot_entry_t *entry)
{
return entry ? &entry->times_between_calls : NULL;
}
uint64_t profiler_snapshot_entry_expected_time_between_calls(
profiler_snapshot_entry_t *entry)
{
return entry ? entry->expected_time_between_calls : 0;
}
uint64_t
profiler_snapshot_entry_min_time_between_calls(profiler_snapshot_entry_t *entry)
{
return entry ? entry->min_time_between_calls : 0;
}
uint64_t
profiler_snapshot_entry_max_time_between_calls(profiler_snapshot_entry_t *entry)
{
return entry ? entry->max_time_between_calls : 0;
}
uint64_t profiler_snapshot_entry_overall_between_calls_count(
profiler_snapshot_entry_t *entry)
{
return entry ? entry->overall_between_calls_count : 0;
}