Michael R. Crusoe 9f72a8ef8c
libos: Freshen SIMDe code copy
Up to date with cafec4b952

Documentation was added to libobs/util/simde/README.libobs
2020-05-29 12:37:14 +02:00

3719 lines
104 KiB
C

/* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Copyright:
* 2017-2020 Evan Nemerson <evan@nemerson.com>
* 2015-2017 John W. Ratcliff <jratcliffscarab@gmail.com>
* 2015 Brandon Rowlett <browlett@nvidia.com>
* 2015 Ken Fast <kfast@gdeb.com>
*/
#if !defined(SIMDE_X86_SSE_H)
#define SIMDE_X86_SSE_H
#include "mmx.h"
#if !defined(SIMDE_X86_AVX512F_NATIVE) && defined(SIMDE_ENABLE_NATIVE_ALIASES)
#define SIMDE_X86_AVX512F_ENABLE_NATIVE_ALIASES
#endif
#if defined(_WIN32)
#include <windows.h>
#endif
HEDLEY_DIAGNOSTIC_PUSH
SIMDE_DISABLE_UNWANTED_DIAGNOSTICS
SIMDE_BEGIN_DECLS_
typedef union {
#if defined(SIMDE_VECTOR_SUBSCRIPT)
SIMDE_ALIGN(16) int8_t i8 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
SIMDE_ALIGN(16) int16_t i16 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
SIMDE_ALIGN(16) int32_t i32 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
SIMDE_ALIGN(16) int64_t i64 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
SIMDE_ALIGN(16) uint8_t u8 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
SIMDE_ALIGN(16) uint16_t u16 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
SIMDE_ALIGN(16) uint32_t u32 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
SIMDE_ALIGN(16) uint64_t u64 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
#if defined(SIMDE_HAVE_INT128_)
SIMDE_ALIGN(16) simde_int128 i128 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
SIMDE_ALIGN(16) simde_uint128 u128 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
#endif
SIMDE_ALIGN(16) simde_float32 f32 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
SIMDE_ALIGN(16) int_fast32_t i32f SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
SIMDE_ALIGN(16) uint_fast32_t u32f SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
#else
SIMDE_ALIGN(16) int8_t i8[16];
SIMDE_ALIGN(16) int16_t i16[8];
SIMDE_ALIGN(16) int32_t i32[4];
SIMDE_ALIGN(16) int64_t i64[2];
SIMDE_ALIGN(16) uint8_t u8[16];
SIMDE_ALIGN(16) uint16_t u16[8];
SIMDE_ALIGN(16) uint32_t u32[4];
SIMDE_ALIGN(16) uint64_t u64[2];
#if defined(SIMDE_HAVE_INT128_)
SIMDE_ALIGN(16) simde_int128 i128[1];
SIMDE_ALIGN(16) simde_uint128 u128[1];
#endif
SIMDE_ALIGN(16) simde_float32 f32[4];
SIMDE_ALIGN(16) int_fast32_t i32f[16 / sizeof(int_fast32_t)];
SIMDE_ALIGN(16) uint_fast32_t u32f[16 / sizeof(uint_fast32_t)];
#endif
SIMDE_ALIGN(16) simde__m64_private m64_private[2];
SIMDE_ALIGN(16) simde__m64 m64[2];
#if defined(SIMDE_X86_SSE_NATIVE)
SIMDE_ALIGN(16) __m128 n;
#elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
SIMDE_ALIGN(16) int8x16_t neon_i8;
SIMDE_ALIGN(16) int16x8_t neon_i16;
SIMDE_ALIGN(16) int32x4_t neon_i32;
SIMDE_ALIGN(16) int64x2_t neon_i64;
SIMDE_ALIGN(16) uint8x16_t neon_u8;
SIMDE_ALIGN(16) uint16x8_t neon_u16;
SIMDE_ALIGN(16) uint32x4_t neon_u32;
SIMDE_ALIGN(16) uint64x2_t neon_u64;
SIMDE_ALIGN(16) float32x4_t neon_f32;
#if defined(SIMDE_ARM_NEON_A64V8_NATIVE)
SIMDE_ALIGN(16) float64x2_t neon_f64;
#endif
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
SIMDE_ALIGN(16) v128_t wasm_v128;
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
SIMDE_ALIGN(16) SIMDE_POWER_ALTIVEC_VECTOR(unsigned char) altivec_u8;
SIMDE_ALIGN(16) SIMDE_POWER_ALTIVEC_VECTOR(unsigned short) altivec_u16;
SIMDE_ALIGN(16) SIMDE_POWER_ALTIVEC_VECTOR(unsigned int) altivec_u32;
SIMDE_ALIGN(16)
SIMDE_POWER_ALTIVEC_VECTOR(unsigned long long) altivec_u64;
SIMDE_ALIGN(16) SIMDE_POWER_ALTIVEC_VECTOR(signed char) altivec_i8;
SIMDE_ALIGN(16) SIMDE_POWER_ALTIVEC_VECTOR(signed short) altivec_i16;
SIMDE_ALIGN(16) SIMDE_POWER_ALTIVEC_VECTOR(signed int) altivec_i32;
SIMDE_ALIGN(16)
SIMDE_POWER_ALTIVEC_VECTOR(signed long long) altivec_i64;
SIMDE_ALIGN(16) SIMDE_POWER_ALTIVEC_VECTOR(float) altivec_f32;
#if defined(SIMDE_POWER_ALTIVEC_P7_NATIVE)
SIMDE_ALIGN(16) SIMDE_POWER_ALTIVEC_VECTOR(double) altivec_f64;
#endif
#endif
} simde__m128_private;
#if defined(SIMDE_X86_SSE_NATIVE)
typedef __m128 simde__m128;
#elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
typedef float32x4_t simde__m128;
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
typedef v128_t simde__m128;
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
typedef SIMDE_POWER_ALTIVEC_VECTOR(float) simde__m128;
#elif defined(SIMDE_VECTOR_SUBSCRIPT)
typedef simde_float32 simde__m128 SIMDE_ALIGN(16)
SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
#else
typedef simde__m128_private simde__m128;
#endif
#if !defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_ENABLE_NATIVE_ALIASES)
#define SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES
typedef simde__m128 __m128;
#endif
HEDLEY_STATIC_ASSERT(16 == sizeof(simde__m128), "simde__m128 size incorrect");
HEDLEY_STATIC_ASSERT(16 == sizeof(simde__m128_private),
"simde__m128_private size incorrect");
#if defined(SIMDE_CHECK_ALIGNMENT) && defined(SIMDE_ALIGN_OF)
HEDLEY_STATIC_ASSERT(SIMDE_ALIGN_OF(simde__m128) == 16,
"simde__m128 is not 16-byte aligned");
HEDLEY_STATIC_ASSERT(SIMDE_ALIGN_OF(simde__m128_private) == 16,
"simde__m128_private is not 16-byte aligned");
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde__m128_from_private(simde__m128_private v)
{
simde__m128 r;
simde_memcpy(&r, &v, sizeof(r));
return r;
}
SIMDE_FUNCTION_ATTRIBUTES
simde__m128_private simde__m128_to_private(simde__m128 v)
{
simde__m128_private r;
simde_memcpy(&r, &v, sizeof(r));
return r;
}
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, int8x16_t, neon, i8)
SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, int16x8_t, neon, i16)
SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, int32x4_t, neon, i32)
SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, int64x2_t, neon, i64)
SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, uint8x16_t, neon, u8)
SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, uint16x8_t, neon, u16)
SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, uint32x4_t, neon, u32)
SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, uint64x2_t, neon, u64)
SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, float32x4_t, neon, f32)
#if defined(SIMDE_ARM_NEON_A64V8_NATIVE)
SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, float64x2_t, neon, f64)
#endif
#endif /* defined(SIMDE_ARM_NEON_A32V7_NATIVE) */
#if defined(SIMDE_DIAGNOSTIC_DISABLE_UNINITIALIZED_)
HEDLEY_DIAGNOSTIC_POP
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_set_ps(simde_float32 e3, simde_float32 e2,
simde_float32 e1, simde_float32 e0)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_set_ps(e3, e2, e1, e0);
#else
simde__m128_private r_;
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
SIMDE_ALIGN(16) simde_float32 data[4] = {e0, e1, e2, e3};
r_.neon_f32 = vld1q_f32(data);
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
r_.wasm_v128 = wasm_f32x4_make(e0, e1, e2, e3);
#else
r_.f32[0] = e0;
r_.f32[1] = e1;
r_.f32[2] = e2;
r_.f32[3] = e3;
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_set_ps(e3, e2, e1, e0) simde_mm_set_ps(e3, e2, e1, e0)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_set_ps1(simde_float32 a)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_set_ps1(a);
#elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
return vdupq_n_f32(a);
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
(void)a;
return vec_splats(a);
#else
return simde_mm_set_ps(a, a, a, a);
#endif
}
#define simde_mm_set1_ps(a) simde_mm_set_ps1(a)
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_set_ps1(a) simde_mm_set_ps1(a)
#define _mm_set1_ps(a) simde_mm_set1_ps(a)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_move_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_move_ss(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 =
vsetq_lane_f32(vgetq_lane_f32(b_.neon_f32, 0), a_.neon_f32, 0);
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
SIMDE_POWER_ALTIVEC_VECTOR(unsigned char)
m = {16, 17, 18, 19, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
r_.altivec_f32 = vec_perm(a_.altivec_f32, b_.altivec_f32, m);
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
r_.wasm_v128 = wasm_v8x16_shuffle(b_.wasm_v128, a_.wasm_v128, 0, 1, 2,
3, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31);
#elif defined(SIMDE_SHUFFLE_VECTOR_)
r_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.f32, b_.f32, 4, 1, 2, 3);
#else
r_.f32[0] = b_.f32[0];
r_.f32[1] = a_.f32[1];
r_.f32[2] = a_.f32[2];
r_.f32[3] = a_.f32[3];
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_move_ss(a, b) simde_mm_move_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_add_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_add_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vaddq_f32(a_.neon_f32, b_.neon_f32);
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
r_.wasm_v128 = wasm_f32x4_add(a_.wasm_v128, b_.wasm_v128);
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
r_.altivec_f32 = vec_add(a_.altivec_f32, b_.altivec_f32);
#elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
r_.f32 = a_.f32 + b_.f32;
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.f32[i] = a_.f32[i] + b_.f32[i];
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_add_ps(a, b) simde_mm_add_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_add_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_add_ss(a, b);
#elif defined(SIMDE_ASSUME_VECTORIZATION)
return simde_mm_move_ss(a, simde_mm_add_ps(a, b));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
r_.f32[0] = a_.f32[0] + b_.f32[0];
r_.f32[1] = a_.f32[1];
r_.f32[2] = a_.f32[2];
r_.f32[3] = a_.f32[3];
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_add_ss(a, b) simde_mm_add_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_and_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_and_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_i32 = vandq_s32(a_.neon_i32, b_.neon_i32);
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
r_.wasm_v128 = wasm_v128_and(a_.wasm_v128, b_.wasm_v128);
#elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
r_.i32 = a_.i32 & b_.i32;
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
r_.altivec_f32 = vec_and(a_.altivec_f32, b_.altivec_f32);
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.i32) / sizeof(r_.i32[0])); i++) {
r_.i32[i] = a_.i32[i] & b_.i32[i];
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_and_ps(a, b) simde_mm_and_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_andnot_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_andnot_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_i32 = vbicq_s32(b_.neon_i32, a_.neon_i32);
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
r_.wasm_v128 = wasm_v128_andnot(b_.wasm_v128, a_.wasm_v128);
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
r_.altivec_f32 = vec_andc(b_.altivec_f32, a_.altivec_f32);
#elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
r_.i32 = ~a_.i32 & b_.i32;
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.i32) / sizeof(r_.i32[0])); i++) {
r_.i32[i] = ~(a_.i32[i]) & b_.i32[i];
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_andnot_ps(a, b) simde_mm_andnot_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m64 simde_mm_avg_pu16(simde__m64 a, simde__m64 b)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_avg_pu16(a, b);
#else
simde__m64_private r_, a_ = simde__m64_to_private(a),
b_ = simde__m64_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_u16 = vrhadd_u16(b_.neon_u16, a_.neon_u16);
#elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS) && \
defined(SIMDE_VECTOR_SUBSCRIPT_SCALAR) && \
defined(SIMDE_CONVERT_VECTOR_)
uint32_t wa SIMDE_VECTOR(16);
uint32_t wb SIMDE_VECTOR(16);
uint32_t wr SIMDE_VECTOR(16);
SIMDE_CONVERT_VECTOR_(wa, a_.u16);
SIMDE_CONVERT_VECTOR_(wb, b_.u16);
wr = (wa + wb + 1) >> 1;
SIMDE_CONVERT_VECTOR_(r_.u16, wr);
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.u16) / sizeof(r_.u16[0])); i++) {
r_.u16[i] = (a_.u16[i] + b_.u16[i] + 1) >> 1;
}
#endif
return simde__m64_from_private(r_);
#endif
}
#define simde_m_pavgw(a, b) simde_mm_avg_pu16(a, b)
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_avg_pu16(a, b) simde_mm_avg_pu16(a, b)
#define _m_pavgw(a, b) simde_mm_avg_pu16(a, b)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m64 simde_mm_avg_pu8(simde__m64 a, simde__m64 b)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_avg_pu8(a, b);
#else
simde__m64_private r_, a_ = simde__m64_to_private(a),
b_ = simde__m64_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_u8 = vrhadd_u8(b_.neon_u8, a_.neon_u8);
#elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS) && \
defined(SIMDE_VECTOR_SUBSCRIPT_SCALAR) && \
defined(SIMDE_CONVERT_VECTOR_)
uint16_t wa SIMDE_VECTOR(16);
uint16_t wb SIMDE_VECTOR(16);
uint16_t wr SIMDE_VECTOR(16);
SIMDE_CONVERT_VECTOR_(wa, a_.u8);
SIMDE_CONVERT_VECTOR_(wb, b_.u8);
wr = (wa + wb + 1) >> 1;
SIMDE_CONVERT_VECTOR_(r_.u8, wr);
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.u8) / sizeof(r_.u8[0])); i++) {
r_.u8[i] = (a_.u8[i] + b_.u8[i] + 1) >> 1;
}
#endif
return simde__m64_from_private(r_);
#endif
}
#define simde_m_pavgb(a, b) simde_mm_avg_pu8(a, b)
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_avg_pu8(a, b) simde_mm_avg_pu8(a, b)
#define _m_pavgb(a, b) simde_mm_avg_pu8(a, b)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpeq_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_cmpeq_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_u32 = vceqq_f32(a_.neon_f32, b_.neon_f32);
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
r_.wasm_v128 = wasm_f32x4_eq(a_.wasm_v128, b_.wasm_v128);
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
r_.altivec_f32 = (SIMDE_POWER_ALTIVEC_VECTOR(float))vec_cmpeq(
a_.altivec_f32, b_.altivec_f32);
#elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
r_.i32 = HEDLEY_STATIC_CAST(__typeof__(r_.i32), a_.f32 == b_.f32);
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.u32[i] = (a_.f32[i] == b_.f32[i]) ? ~UINT32_C(0)
: UINT32_C(0);
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpeq_ps(a, b) simde_mm_cmpeq_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpeq_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_cmpeq_ss(a, b);
#elif defined(SIMDE_ASSUME_VECTORIZATION)
return simde_mm_move_ss(a, simde_mm_cmpeq_ps(a, b));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
r_.u32[0] = (a_.f32[0] == b_.f32[0]) ? ~UINT32_C(0) : UINT32_C(0);
SIMDE_VECTORIZE
for (size_t i = 1; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.u32[i] = a_.u32[i];
}
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpeq_ss(a, b) simde_mm_cmpeq_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpge_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_cmpge_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_u32 = vcgeq_f32(a_.neon_f32, b_.neon_f32);
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
r_.wasm_v128 = wasm_f32x4_ge(a_.wasm_v128, b_.wasm_v128);
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
r_.altivec_f32 = (SIMDE_POWER_ALTIVEC_VECTOR(float))vec_cmpge(
a_.altivec_f32, b_.altivec_f32);
#elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
r_.i32 = HEDLEY_STATIC_CAST(__typeof__(r_.i32), (a_.f32 >= b_.f32));
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.u32[i] = (a_.f32[i] >= b_.f32[i]) ? ~UINT32_C(0)
: UINT32_C(0);
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpge_ps(a, b) simde_mm_cmpge_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpge_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE) && !defined(__PGI)
return _mm_cmpge_ss(a, b);
#elif defined(SIMDE_ASSUME_VECTORIZATION)
return simde_mm_move_ss(a, simde_mm_cmpge_ps(a, b));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
r_.u32[0] = (a_.f32[0] >= b_.f32[0]) ? ~UINT32_C(0) : UINT32_C(0);
SIMDE_VECTORIZE
for (size_t i = 1; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.u32[i] = a_.u32[i];
}
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpge_ss(a, b) simde_mm_cmpge_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpgt_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_cmpgt_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_u32 = vcgtq_f32(a_.neon_f32, b_.neon_f32);
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
r_.wasm_v128 = wasm_f32x4_gt(a_.wasm_v128, b_.wasm_v128);
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
r_.altivec_f32 = (SIMDE_POWER_ALTIVEC_VECTOR(float))vec_cmpgt(
a_.altivec_f32, b_.altivec_f32);
#elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
r_.i32 = HEDLEY_STATIC_CAST(__typeof__(r_.i32), (a_.f32 > b_.f32));
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.u32[i] = (a_.f32[i] > b_.f32[i]) ? ~UINT32_C(0)
: UINT32_C(0);
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpgt_ps(a, b) simde_mm_cmpgt_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpgt_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE) && !defined(__PGI)
return _mm_cmpgt_ss(a, b);
#elif defined(SIMDE_ASSUME_VECTORIZATION)
return simde_mm_move_ss(a, simde_mm_cmpgt_ps(a, b));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
r_.u32[0] = (a_.f32[0] > b_.f32[0]) ? ~UINT32_C(0) : UINT32_C(0);
SIMDE_VECTORIZE
for (size_t i = 1; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.u32[i] = a_.u32[i];
}
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpgt_ss(a, b) simde_mm_cmpgt_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmple_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_cmple_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_u32 = vcleq_f32(a_.neon_f32, b_.neon_f32);
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
r_.wasm_v128 = wasm_f32x4_le(a_.wasm_v128, b_.wasm_v128);
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
r_.altivec_f32 = (SIMDE_POWER_ALTIVEC_VECTOR(float))vec_cmple(
a_.altivec_f32, b_.altivec_f32);
#elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
r_.i32 = HEDLEY_STATIC_CAST(__typeof__(r_.i32), (a_.f32 <= b_.f32));
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.u32[i] = (a_.f32[i] <= b_.f32[i]) ? ~UINT32_C(0)
: UINT32_C(0);
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmple_ps(a, b) simde_mm_cmple_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmple_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_cmple_ss(a, b);
#elif defined(SIMDE_ASSUME_VECTORIZATION)
return simde_mm_move_ss(a, simde_mm_cmple_ps(a, b));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
r_.u32[0] = (a_.f32[0] <= b_.f32[0]) ? ~UINT32_C(0) : UINT32_C(0);
SIMDE_VECTORIZE
for (size_t i = 1; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.u32[i] = a_.u32[i];
}
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmple_ss(a, b) simde_mm_cmple_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmplt_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_cmplt_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_u32 = vcltq_f32(a_.neon_f32, b_.neon_f32);
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
r_.wasm_v128 = wasm_f32x4_lt(a_.wasm_v128, b_.wasm_v128);
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
r_.altivec_f32 = (SIMDE_POWER_ALTIVEC_VECTOR(float))vec_cmplt(
a_.altivec_f32, b_.altivec_f32);
#elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
r_.i32 = HEDLEY_STATIC_CAST(__typeof__(r_.i32), (a_.f32 < b_.f32));
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.u32[i] = (a_.f32[i] < b_.f32[i]) ? ~UINT32_C(0)
: UINT32_C(0);
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmplt_ps(a, b) simde_mm_cmplt_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmplt_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_cmplt_ss(a, b);
#elif defined(SIMDE_ASSUME_VECTORIZATION)
return simde_mm_move_ss(a, simde_mm_cmplt_ps(a, b));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
r_.u32[0] = (a_.f32[0] < b_.f32[0]) ? ~UINT32_C(0) : UINT32_C(0);
SIMDE_VECTORIZE
for (size_t i = 1; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.u32[i] = a_.u32[i];
}
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmplt_ss(a, b) simde_mm_cmplt_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpneq_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_cmpneq_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_u32 = vmvnq_u32(vceqq_f32(a_.neon_f32, b_.neon_f32));
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
r_.wasm_v128 = wasm_f32x4_ne(a_.wasm_v128, b_.wasm_v128);
#elif defined(SIMDE_POWER_ALTIVEC_P9_NATIVE) && SIMDE_ARCH_POWER_CHECK(900) && \
!defined(HEDLEY_IBM_VERSION)
/* vec_cmpne(vector float, vector float) is missing from XL C/C++ v16.1.1,
though the documentation (table 89 on page 432 of the IBM XL C/C++ for
Linux Compiler Reference, Version 16.1.1) shows that it should be
present. Both GCC and clang support it. */
r_.altivec_f32 = (SIMDE_POWER_ALTIVEC_VECTOR(float))vec_cmpne(
a_.altivec_f32, b_.altivec_f32);
#elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
r_.i32 = HEDLEY_STATIC_CAST(__typeof__(r_.i32), (a_.f32 != b_.f32));
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.u32[i] = (a_.f32[i] != b_.f32[i]) ? ~UINT32_C(0)
: UINT32_C(0);
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpneq_ps(a, b) simde_mm_cmpneq_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpneq_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_cmpneq_ss(a, b);
#elif defined(SIMDE_ASSUME_VECTORIZATION)
return simde_mm_move_ss(a, simde_mm_cmpneq_ps(a, b));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
r_.u32[0] = (a_.f32[0] != b_.f32[0]) ? ~UINT32_C(0) : UINT32_C(0);
SIMDE_VECTORIZE
for (size_t i = 1; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.u32[i] = a_.u32[i];
}
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpneq_ss(a, b) simde_mm_cmpneq_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpnge_ps(simde__m128 a, simde__m128 b)
{
return simde_mm_cmplt_ps(a, b);
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpnge_ps(a, b) simde_mm_cmpnge_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpnge_ss(simde__m128 a, simde__m128 b)
{
return simde_mm_cmplt_ss(a, b);
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpnge_ss(a, b) simde_mm_cmpnge_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpngt_ps(simde__m128 a, simde__m128 b)
{
return simde_mm_cmple_ps(a, b);
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpngt_ps(a, b) simde_mm_cmpngt_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpngt_ss(simde__m128 a, simde__m128 b)
{
return simde_mm_cmple_ss(a, b);
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpngt_ss(a, b) simde_mm_cmpngt_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpnle_ps(simde__m128 a, simde__m128 b)
{
return simde_mm_cmpgt_ps(a, b);
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpnle_ps(a, b) simde_mm_cmpnle_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpnle_ss(simde__m128 a, simde__m128 b)
{
return simde_mm_cmpgt_ss(a, b);
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpnle_ss(a, b) simde_mm_cmpnle_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpnlt_ps(simde__m128 a, simde__m128 b)
{
return simde_mm_cmpge_ps(a, b);
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpnlt_ps(a, b) simde_mm_cmpnlt_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpnlt_ss(simde__m128 a, simde__m128 b)
{
return simde_mm_cmpge_ss(a, b);
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpnlt_ss(a, b) simde_mm_cmpnlt_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpord_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_cmpord_ps(a, b);
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
return wasm_v128_and(wasm_f32x4_eq(a, a), wasm_f32x4_eq(b, b));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
/* Note: NEON does not have ordered compare builtin
Need to compare a eq a and b eq b to check for NaN
Do AND of results to get final */
uint32x4_t ceqaa = vceqq_f32(a_.neon_f32, a_.neon_f32);
uint32x4_t ceqbb = vceqq_f32(b_.neon_f32, b_.neon_f32);
r_.neon_u32 = vandq_u32(ceqaa, ceqbb);
#elif defined(simde_math_isnanf)
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.u32[i] = (simde_math_isnanf(a_.f32[i]) ||
simde_math_isnanf(b_.f32[i]))
? UINT32_C(0)
: ~UINT32_C(0);
}
#else
HEDLEY_UNREACHABLE();
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpord_ps(a, b) simde_mm_cmpord_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpunord_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_cmpunord_ps(a, b);
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
return wasm_v128_or(wasm_f32x4_ne(a, a), wasm_f32x4_ne(b, b));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
uint32x4_t ceqaa = vceqq_f32(a_.neon_f32, a_.neon_f32);
uint32x4_t ceqbb = vceqq_f32(b_.neon_f32, b_.neon_f32);
r_.neon_u32 = vmvnq_u32(vandq_u32(ceqaa, ceqbb));
#elif defined(simde_math_isnanf)
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.u32[i] = (simde_math_isnanf(a_.f32[i]) ||
simde_math_isnanf(b_.f32[i]))
? ~UINT32_C(0)
: UINT32_C(0);
}
#else
HEDLEY_UNREACHABLE();
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpunord_ps(a, b) simde_mm_cmpunord_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpunord_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE) && !defined(__PGI)
return _mm_cmpunord_ss(a, b);
#elif defined(SIMDE_ASSUME_VECTORIZATION)
return simde_mm_move_ss(a, simde_mm_cmpunord_ps(a, b));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(simde_math_isnanf)
r_.u32[0] =
(simde_math_isnanf(a_.f32[0]) || simde_math_isnanf(b_.f32[0]))
? ~UINT32_C(0)
: UINT32_C(0);
SIMDE_VECTORIZE
for (size_t i = 1; i < (sizeof(r_.u32) / sizeof(r_.u32[0])); i++) {
r_.u32[i] = a_.u32[i];
}
#else
HEDLEY_UNREACHABLE();
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpunord_ss(a, b) simde_mm_cmpunord_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
int simde_mm_comieq_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_comieq_ss(a, b);
#else
simde__m128_private a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
uint32x4_t a_not_nan = vceqq_f32(a_.neon_f32, a_.neon_f32);
uint32x4_t b_not_nan = vceqq_f32(b_.neon_f32, b_.neon_f32);
uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan));
uint32x4_t a_eq_b = vceqq_f32(a_.neon_f32, b_.neon_f32);
return !!(vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_eq_b), 0) != 0);
#else
return a_.f32[0] == b_.f32[0];
#endif
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_comieq_ss(a, b) simde_mm_comieq_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
int simde_mm_comige_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_comige_ss(a, b);
#else
simde__m128_private a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
uint32x4_t a_not_nan = vceqq_f32(a_.neon_f32, a_.neon_f32);
uint32x4_t b_not_nan = vceqq_f32(b_.neon_f32, b_.neon_f32);
uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
uint32x4_t a_ge_b = vcgeq_f32(a_.neon_f32, b_.neon_f32);
return !!(vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_ge_b), 0) != 0);
#else
return a_.f32[0] >= b_.f32[0];
#endif
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_comige_ss(a, b) simde_mm_comige_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
int simde_mm_comigt_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_comigt_ss(a, b);
#else
simde__m128_private a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
uint32x4_t a_not_nan = vceqq_f32(a_.neon_f32, a_.neon_f32);
uint32x4_t b_not_nan = vceqq_f32(b_.neon_f32, b_.neon_f32);
uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
uint32x4_t a_gt_b = vcgtq_f32(a_.neon_f32, b_.neon_f32);
return !!(vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_gt_b), 0) != 0);
#else
return a_.f32[0] > b_.f32[0];
#endif
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_comigt_ss(a, b) simde_mm_comigt_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
int simde_mm_comile_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_comile_ss(a, b);
#else
simde__m128_private a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
uint32x4_t a_not_nan = vceqq_f32(a_.neon_f32, a_.neon_f32);
uint32x4_t b_not_nan = vceqq_f32(b_.neon_f32, b_.neon_f32);
uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan));
uint32x4_t a_le_b = vcleq_f32(a_.neon_f32, b_.neon_f32);
return !!(vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_le_b), 0) != 0);
#else
return a_.f32[0] <= b_.f32[0];
#endif
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_comile_ss(a, b) simde_mm_comile_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
int simde_mm_comilt_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_comilt_ss(a, b);
#else
simde__m128_private a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
uint32x4_t a_not_nan = vceqq_f32(a_.neon_f32, a_.neon_f32);
uint32x4_t b_not_nan = vceqq_f32(b_.neon_f32, b_.neon_f32);
uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan));
uint32x4_t a_lt_b = vcltq_f32(a_.neon_f32, b_.neon_f32);
return !!(vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_lt_b), 0) != 0);
#else
return a_.f32[0] < b_.f32[0];
#endif
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_comilt_ss(a, b) simde_mm_comilt_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
int simde_mm_comineq_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_comineq_ss(a, b);
#else
simde__m128_private a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
uint32x4_t a_not_nan = vceqq_f32(a_.neon_f32, a_.neon_f32);
uint32x4_t b_not_nan = vceqq_f32(b_.neon_f32, b_.neon_f32);
uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
uint32x4_t a_neq_b = vmvnq_u32(vceqq_f32(a_.neon_f32, b_.neon_f32));
return !!(vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_neq_b), 0) != 0);
#else
return a_.f32[0] != b_.f32[0];
#endif
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_comineq_ss(a, b) simde_mm_comineq_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvt_pi2ps(simde__m128 a, simde__m64 b)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_cvt_pi2ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a);
simde__m64_private b_ = simde__m64_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vcombine_f32(vcvt_f32_s32(b_.neon_i32),
vget_high_f32(a_.neon_f32));
#elif defined(SIMDE_CONVERT_VECTOR_)
SIMDE_CONVERT_VECTOR_(r_.m64_private[0].f32, b_.i32);
r_.m64_private[1] = a_.m64_private[1];
#else
r_.f32[0] = (simde_float32)b_.i32[0];
r_.f32[1] = (simde_float32)b_.i32[1];
r_.i32[2] = a_.i32[2];
r_.i32[3] = a_.i32[3];
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvt_pi2ps(a, b) simde_mm_cvt_pi2ps((a), b)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m64 simde_mm_cvt_ps2pi(simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_cvt_ps2pi(a);
#else
simde__m64_private r_;
simde__m128_private a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_i32 = vcvt_s32_f32(vget_low_f32(a_.neon_f32));
#elif defined(SIMDE_CONVERT_VECTOR_) && !defined(__clang__)
SIMDE_CONVERT_VECTOR_(r_.i32, a_.m64_private[0].f32);
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.i32) / sizeof(r_.i32[0])); i++) {
r_.i32[i] = HEDLEY_STATIC_CAST(int32_t, a_.f32[i]);
}
#endif
return simde__m64_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvt_ps2pi(a) simde_mm_cvt_ps2pi((a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvt_si2ss(simde__m128 a, int32_t b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_cvt_si2ss(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vsetq_lane_f32((float)b, a_.neon_f32, 0);
#else
r_.f32[0] = HEDLEY_STATIC_CAST(simde_float32, b);
r_.i32[1] = a_.i32[1];
r_.i32[2] = a_.i32[2];
r_.i32[3] = a_.i32[3];
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvt_si2ss(a, b) simde_mm_cvt_si2ss((a), b)
#endif
SIMDE_FUNCTION_ATTRIBUTES
int32_t simde_mm_cvt_ss2si(simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_cvt_ss2si(a);
#else
simde__m128_private a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V8_NATIVE) && !defined(SIMDE_BUG_GCC_95399)
return vgetq_lane_s32(vcvtnq_s32_f32(a_.neon_f32), 0);
#elif defined(simde_math_nearbyintf)
return SIMDE_CONVERT_FTOI(int32_t, simde_math_nearbyintf(a_.f32[0]));
#else
HEDLEY_UNREACHABLE();
#endif
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvt_ss2si(a) simde_mm_cvt_ss2si((a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvtpi16_ps(simde__m64 a)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_cvtpi16_ps(a);
#else
simde__m128_private r_;
simde__m64_private a_ = simde__m64_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE) && 0 /* TODO */
r_.neon_f32 = vmovl_s16(
vget_low_s16(vuzp1q_s16(a_.neon_i16, vmovq_n_s16(0))));
#elif defined(SIMDE_CONVERT_VECTOR_)
SIMDE_CONVERT_VECTOR_(r_.f32, a_.i16);
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
simde_float32 v = a_.i16[i];
r_.f32[i] = v;
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvtpi16_ps(a) simde_mm_cvtpi16_ps(a)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvtpi32_ps(simde__m128 a, simde__m64 b)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_cvtpi32_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a);
simde__m64_private b_ = simde__m64_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vcombine_f32(vcvt_f32_s32(b_.neon_i32),
vget_high_f32(a_.neon_f32));
#elif defined(SIMDE_CONVERT_VECTOR_)
SIMDE_CONVERT_VECTOR_(r_.m64_private[0].f32, b_.i32);
r_.m64_private[1] = a_.m64_private[1];
#else
r_.f32[0] = (simde_float32)b_.i32[0];
r_.f32[1] = (simde_float32)b_.i32[1];
r_.i32[2] = a_.i32[2];
r_.i32[3] = a_.i32[3];
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvtpi32_ps(a, b) simde_mm_cvtpi32_ps((a), b)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvtpi32x2_ps(simde__m64 a, simde__m64 b)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_cvtpi32x2_ps(a, b);
#else
simde__m128_private r_;
simde__m64_private a_ = simde__m64_to_private(a),
b_ = simde__m64_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vcvtq_f32_s32(vcombine_s32(a_.neon_i32, b_.neon_i32));
#elif defined(SIMDE_CONVERT_VECTOR_)
SIMDE_CONVERT_VECTOR_(r_.m64_private[0].f32, a_.i32);
SIMDE_CONVERT_VECTOR_(r_.m64_private[1].f32, b_.i32);
#else
r_.f32[0] = (simde_float32)a_.i32[0];
r_.f32[1] = (simde_float32)a_.i32[1];
r_.f32[2] = (simde_float32)b_.i32[0];
r_.f32[3] = (simde_float32)b_.i32[1];
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvtpi32x2_ps(a, b) simde_mm_cvtpi32x2_ps(a, b)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvtpi8_ps(simde__m64 a)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_cvtpi8_ps(a);
#else
simde__m128_private r_;
simde__m64_private a_ = simde__m64_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 =
vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(a_.neon_i8))));
#else
r_.f32[0] = HEDLEY_STATIC_CAST(simde_float32, a_.i8[0]);
r_.f32[1] = HEDLEY_STATIC_CAST(simde_float32, a_.i8[1]);
r_.f32[2] = HEDLEY_STATIC_CAST(simde_float32, a_.i8[2]);
r_.f32[3] = HEDLEY_STATIC_CAST(simde_float32, a_.i8[3]);
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvtpi8_ps(a) simde_mm_cvtpi8_ps(a)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m64 simde_mm_cvtps_pi16(simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_cvtps_pi16(a);
#else
simde__m64_private r_;
simde__m128_private a_ = simde__m128_to_private(a);
#if defined(SIMDE_CONVERT_VECTOR_)
SIMDE_CONVERT_VECTOR_(r_.i16, a_.f32);
#elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_i16 = vmovn_s32(vcvtq_s32_f32(a_.neon_f32));
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.i16) / sizeof(r_.i16[0])); i++) {
r_.i16[i] = SIMDE_CONVERT_FTOI(int16_t, a_.f32[i]);
}
#endif
return simde__m64_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvtps_pi16(a) simde_mm_cvtps_pi16((a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m64 simde_mm_cvtps_pi32(simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_cvtps_pi32(a);
#else
simde__m64_private r_;
simde__m128_private a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_i32 = vcvt_s32_f32(vget_low_f32(a_.neon_f32));
#elif defined(SIMDE_CONVERT_VECTOR_)
SIMDE_CONVERT_VECTOR_(r_.i32, a_.m64_private[0].f32);
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.i32) / sizeof(r_.i32[0])); i++) {
r_.i32[i] = SIMDE_CONVERT_FTOI(int32_t, a_.f32[i]);
}
#endif
return simde__m64_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvtps_pi32(a) simde_mm_cvtps_pi32((a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m64 simde_mm_cvtps_pi8(simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_cvtps_pi8(a);
#else
simde__m64_private r_;
simde__m128_private a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
int16x4_t b = vmovn_s32(vcvtq_s32_f32(a_.neon_f32));
int16x8_t c = vcombine_s16(b, vmov_n_s16(0));
r_.neon_i8 = vmovn_s16(c);
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(a_.f32) / sizeof(a_.f32[0])); i++) {
r_.i8[i] = SIMDE_CONVERT_FTOI(int8_t, a_.f32[i]);
}
/* Note: the upper half is undefined */
#endif
return simde__m64_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvtps_pi8(a) simde_mm_cvtps_pi8((a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvtpu16_ps(simde__m64 a)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_cvtpu16_ps(a);
#else
simde__m128_private r_;
simde__m64_private a_ = simde__m64_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vcvtq_f32_u32(vmovl_u16(a_.neon_u16));
#elif defined(SIMDE_CONVERT_VECTOR_)
SIMDE_CONVERT_VECTOR_(r_.f32, a_.u16);
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.f32[i] = (simde_float32)a_.u16[i];
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvtpu16_ps(a) simde_mm_cvtpu16_ps(a)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvtpu8_ps(simde__m64 a)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_cvtpu8_ps(a);
#else
simde__m128_private r_;
simde__m64_private a_ = simde__m64_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 =
vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8(a_.neon_u8))));
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.f32[i] = HEDLEY_STATIC_CAST(simde_float32, a_.u8[i]);
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvtpu8_ps(a) simde_mm_cvtpu8_ps(a)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvtsi32_ss(simde__m128 a, int32_t b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_cvtsi32_ss(a, b);
#else
simde__m128_private r_;
simde__m128_private a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vsetq_lane_f32((simde_float32)b, a_.neon_f32, 0);
#else
r_.f32[0] = HEDLEY_STATIC_CAST(simde_float32, b);
SIMDE_VECTORIZE
for (size_t i = 1; i < (sizeof(r_.i32) / sizeof(r_.i32[0])); i++) {
r_.i32[i] = a_.i32[i];
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvtsi32_ss(a, b) simde_mm_cvtsi32_ss((a), b)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvtsi64_ss(simde__m128 a, int64_t b)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_ARCH_AMD64)
#if !defined(__PGI)
return _mm_cvtsi64_ss(a, b);
#else
return _mm_cvtsi64x_ss(a, b);
#endif
#else
simde__m128_private r_;
simde__m128_private a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vsetq_lane_f32((simde_float32)b, a_.neon_f32, 0);
#else
r_ = a_;
r_.f32[0] = HEDLEY_STATIC_CAST(simde_float32, b);
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvtsi64_ss(a, b) simde_mm_cvtsi64_ss((a), b)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde_float32 simde_mm_cvtss_f32(simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_cvtss_f32(a);
#else
simde__m128_private a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
return vgetq_lane_f32(a_.neon_f32, 0);
#else
return a_.f32[0];
#endif
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvtss_f32(a) simde_mm_cvtss_f32((a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
int32_t simde_mm_cvtss_si32(simde__m128 a)
{
return simde_mm_cvt_ss2si(a);
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvtss_si32(a) simde_mm_cvtss_si32((a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
int64_t simde_mm_cvtss_si64(simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_ARCH_AMD64)
#if !defined(__PGI)
return _mm_cvtss_si64(a);
#else
return _mm_cvtss_si64x(a);
#endif
#else
simde__m128_private a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
return SIMDE_CONVERT_FTOI(int64_t, vgetq_lane_f32(a_.neon_f32, 0));
#else
return SIMDE_CONVERT_FTOI(int64_t, a_.f32[0]);
#endif
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvtss_si64(a) simde_mm_cvtss_si64((a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m64 simde_mm_cvtt_ps2pi(simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_cvtt_ps2pi(a);
#else
simde__m64_private r_;
simde__m128_private a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_i32 = vcvt_s32_f32(vget_low_f32(a_.neon_f32));
#elif defined(SIMDE_CONVERT_VECTOR_)
SIMDE_CONVERT_VECTOR_(r_.i32, a_.m64_private[0].f32);
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.i32[i] = SIMDE_CONVERT_FTOI(int32_t, a_.f32[i]);
}
#endif
return simde__m64_from_private(r_);
#endif
}
#define simde_mm_cvttps_pi32(a) simde_mm_cvtt_ps2pi(a)
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvtt_ps2pi(a) simde_mm_cvtt_ps2pi((a))
#define _mm_cvttps_pi32(a) simde_mm_cvttps_pi32((a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
int32_t simde_mm_cvtt_ss2si(simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_cvtt_ss2si(a);
#else
simde__m128_private a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
return SIMDE_CONVERT_FTOI(int32_t, vgetq_lane_f32(a_.neon_f32, 0));
#else
return SIMDE_CONVERT_FTOI(int32_t, a_.f32[0]);
#endif
#endif
}
#define simde_mm_cvttss_si32(a) simde_mm_cvtt_ss2si((a))
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvtt_ss2si(a) simde_mm_cvtt_ss2si((a))
#define _mm_cvttss_si32(a) simde_mm_cvtt_ss2si((a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
int64_t simde_mm_cvttss_si64(simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_ARCH_AMD64) && \
!defined(_MSC_VER)
#if defined(__PGI)
return _mm_cvttss_si64x(a);
#else
return _mm_cvttss_si64(a);
#endif
#else
simde__m128_private a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
return SIMDE_CONVERT_FTOI(int64_t, vgetq_lane_f32(a_.neon_f32, 0));
#else
return SIMDE_CONVERT_FTOI(int64_t, a_.f32[0]);
#endif
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cvttss_si64(a) simde_mm_cvttss_si64((a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpord_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_cmpord_ss(a, b);
#elif defined(SIMDE_ASSUME_VECTORIZATION)
return simde_mm_move_ss(a, simde_mm_cmpord_ps(a, b));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a);
#if defined(simde_math_isnanf)
r_.u32[0] = (simde_math_isnanf(simde_mm_cvtss_f32(a)) ||
simde_math_isnanf(simde_mm_cvtss_f32(b)))
? UINT32_C(0)
: ~UINT32_C(0);
SIMDE_VECTORIZE
for (size_t i = 1; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.u32[i] = a_.u32[i];
}
#else
HEDLEY_UNREACHABLE();
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_cmpord_ss(a, b) simde_mm_cmpord_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_div_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_div_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A64V8_NATIVE)
r_.neon_f32 = vdivq_f32(a_.neon_f32, b_.neon_f32);
#elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
float32x4_t recip0 = vrecpeq_f32(b_.neon_f32);
float32x4_t recip1 =
vmulq_f32(recip0, vrecpsq_f32(recip0, b_.neon_f32));
r_.neon_f32 = vmulq_f32(a_.neon_f32, recip1);
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
r_.wasm_v128 = wasm_f32x4_div(a_.wasm_v128, b_.wasm_v128);
#elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
r_.f32 = a_.f32 / b_.f32;
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.f32[i] = a_.f32[i] / b_.f32[i];
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_div_ps(a, b) simde_mm_div_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_div_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_div_ss(a, b);
#elif defined(SIMDE_ASSUME_VECTORIZATION)
return simde_mm_move_ss(a, simde_mm_div_ps(a, b));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
r_.f32[0] = a_.f32[0] / b_.f32[0];
SIMDE_VECTORIZE
for (size_t i = 1; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.f32[i] = a_.f32[i];
}
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_div_ss(a, b) simde_mm_div_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
int16_t simde_mm_extract_pi16(simde__m64 a, const int imm8)
SIMDE_REQUIRE_RANGE(imm8, 0, 3)
{
simde__m64_private a_ = simde__m64_to_private(a);
return a_.i16[imm8];
}
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE) && \
!defined(HEDLEY_PGI_VERSION)
#if HEDLEY_HAS_WARNING("-Wvector-conversion")
/* https://bugs.llvm.org/show_bug.cgi?id=44589 */
#define simde_mm_extract_pi16(a, imm8) \
(HEDLEY_DIAGNOSTIC_PUSH _Pragma( \
"clang diagnostic ignored \"-Wvector-conversion\"") \
HEDLEY_STATIC_CAST(int16_t, _mm_extract_pi16((a), (imm8))) \
HEDLEY_DIAGNOSTIC_POP)
#else
#define simde_mm_extract_pi16(a, imm8) \
HEDLEY_STATIC_CAST(int16_t, _mm_extract_pi16(a, imm8))
#endif
#elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
#define simde_mm_extract_pi16(a, imm8) \
vget_lane_s16(simde__m64_to_private(a).neon_i16, imm8)
#endif
#define simde_m_pextrw(a, imm8) simde_mm_extract_pi16(a, imm8)
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_extract_pi16(a, imm8) simde_mm_extract_pi16((a), (imm8))
#endif
enum {
#if defined(SIMDE_X86_SSE_NATIVE)
SIMDE_MM_ROUND_NEAREST = _MM_ROUND_NEAREST,
SIMDE_MM_ROUND_DOWN = _MM_ROUND_DOWN,
SIMDE_MM_ROUND_UP = _MM_ROUND_UP,
SIMDE_MM_ROUND_TOWARD_ZERO = _MM_ROUND_TOWARD_ZERO
#else
SIMDE_MM_ROUND_NEAREST
#if defined(FE_TONEAREST)
= FE_TONEAREST
#endif
,
SIMDE_MM_ROUND_DOWN
#if defined(FE_DOWNWARD)
= FE_DOWNWARD
#endif
,
SIMDE_MM_ROUND_UP
#if defined(FE_UPWARD)
= FE_UPWARD
#endif
,
SIMDE_MM_ROUND_TOWARD_ZERO
#if defined(FE_TOWARDZERO)
= FE_TOWARDZERO
#endif
#endif
};
SIMDE_FUNCTION_ATTRIBUTES
unsigned int SIMDE_MM_GET_ROUNDING_MODE(void)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _MM_GET_ROUNDING_MODE();
#elif defined(SIMDE_HAVE_FENV_H)
return HEDLEY_STATIC_CAST(unsigned int, fegetround());
#else
HEDLEY_UNREACHABLE();
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _MM_GET_ROUNDING_MODE() SIMDE_MM_GET_ROUNDING_MODE()
#endif
SIMDE_FUNCTION_ATTRIBUTES
void SIMDE_MM_SET_ROUNDING_MODE(unsigned int a)
{
#if defined(SIMDE_X86_SSE_NATIVE)
_MM_SET_ROUNDING_MODE(a);
#elif defined(SIMDE_HAVE_FENV_H)
fesetround(HEDLEY_STATIC_CAST(int, a));
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _MM_SET_ROUNDING_MODE(a) SIMDE_MM_SET_ROUNDING_MODE(a)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m64 simde_mm_insert_pi16(simde__m64 a, int16_t i, const int imm8)
SIMDE_REQUIRE_RANGE(imm8, 0, 3)
{
simde__m64_private r_, a_ = simde__m64_to_private(a);
r_.i64[0] = a_.i64[0];
r_.i16[imm8] = i;
return simde__m64_from_private(r_);
}
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE) && \
!defined(__PGI)
#if HEDLEY_HAS_WARNING("-Wvector-conversion")
/* https://bugs.llvm.org/show_bug.cgi?id=44589 */
#define ssimde_mm_insert_pi16(a, i, imm8) \
(HEDLEY_DIAGNOSTIC_PUSH _Pragma( \
"clang diagnostic ignored \"-Wvector-conversion\"")( \
_mm_insert_pi16((a), (i), (imm8))) HEDLEY_DIAGNOSTIC_POP)
#else
#define simde_mm_insert_pi16(a, i, imm8) _mm_insert_pi16(a, i, imm8)
#endif
#elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
#define simde_mm_insert_pi16(a, i, imm8) \
simde__m64_from_neon_i16( \
vset_lane_s16((i), simde__m64_to_neon_i16(a), (imm8)))
#endif
#define simde_m_pinsrw(a, i, imm8) (simde_mm_insert_pi16(a, i, imm8))
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_insert_pi16(a, i, imm8) simde_mm_insert_pi16(a, i, imm8)
#define _m_pinsrw(a, i, imm8) simde_mm_insert_pi16(a, i, imm8)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128
simde_mm_load_ps(simde_float32 const mem_addr[HEDLEY_ARRAY_PARAM(4)])
{
simde_assert_aligned(16, mem_addr);
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_load_ps(mem_addr);
#else
simde__m128_private r_;
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vld1q_f32(mem_addr);
#elif defined(SIMDE_POWER_ALTIVEC_P7_NATIVE)
r_.altivec_f32 = vec_vsx_ld(0, mem_addr);
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
r_.altivec_f32 = vec_ld(0, mem_addr);
#else
r_ = *SIMDE_ALIGN_CAST(simde__m128_private const *, mem_addr);
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_load_ps(mem_addr) simde_mm_load_ps(mem_addr)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_load_ps1(simde_float32 const *mem_addr)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_load_ps1(mem_addr);
#else
simde__m128_private r_;
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vld1q_dup_f32(mem_addr);
#else
r_ = simde__m128_to_private(simde_mm_set1_ps(*mem_addr));
#endif
return simde__m128_from_private(r_);
#endif
}
#define simde_mm_load1_ps(mem_addr) simde_mm_load_ps1(mem_addr)
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_load_ps1(mem_addr) simde_mm_load_ps1(mem_addr)
#define _mm_load1_ps(mem_addr) simde_mm_load_ps1(mem_addr)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_load_ss(simde_float32 const *mem_addr)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_load_ss(mem_addr);
#else
simde__m128_private r_;
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vsetq_lane_f32(*mem_addr, vdupq_n_f32(0), 0);
#else
r_.f32[0] = *mem_addr;
r_.i32[1] = 0;
r_.i32[2] = 0;
r_.i32[3] = 0;
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_load_ss(mem_addr) simde_mm_load_ss(mem_addr)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_loadh_pi(simde__m128 a, simde__m64 const *mem_addr)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_loadh_pi(a,
HEDLEY_REINTERPRET_CAST(__m64 const *, mem_addr));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vcombine_f32(
vget_low_f32(a_.neon_f32),
vld1_f32(HEDLEY_REINTERPRET_CAST(const float32_t *, mem_addr)));
#else
simde__m64_private b_ =
*HEDLEY_REINTERPRET_CAST(simde__m64_private const *, mem_addr);
r_.f32[0] = a_.f32[0];
r_.f32[1] = a_.f32[1];
r_.f32[2] = b_.f32[0];
r_.f32[3] = b_.f32[1];
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_loadh_pi(a, mem_addr) \
simde_mm_loadh_pi((a), (simde__m64 const *)(mem_addr))
#endif
/* The SSE documentation says that there are no alignment requirements
for mem_addr. Unfortunately they used the __m64 type for the argument
which is supposed to be 8-byte aligned, so some compilers (like clang
with -Wcast-align) will generate a warning if you try to cast, say,
a simde_float32* to a simde__m64* for this function.
I think the choice of argument type is unfortunate, but I do think we
need to stick to it here. If there is demand I can always add something
like simde_x_mm_loadl_f32(simde__m128, simde_float32 mem_addr[2]) */
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_loadl_pi(simde__m128 a, simde__m64 const *mem_addr)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_loadl_pi(a,
HEDLEY_REINTERPRET_CAST(__m64 const *, mem_addr));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vcombine_f32(
vld1_f32(HEDLEY_REINTERPRET_CAST(const float32_t *, mem_addr)),
vget_high_f32(a_.neon_f32));
#else
simde__m64_private b_;
simde_memcpy(&b_, mem_addr, sizeof(b_));
r_.i32[0] = b_.i32[0];
r_.i32[1] = b_.i32[1];
r_.i32[2] = a_.i32[2];
r_.i32[3] = a_.i32[3];
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_loadl_pi(a, mem_addr) \
simde_mm_loadl_pi((a), (simde__m64 const *)(mem_addr))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128
simde_mm_loadr_ps(simde_float32 const mem_addr[HEDLEY_ARRAY_PARAM(4)])
{
simde_assert_aligned(16, mem_addr);
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_loadr_ps(mem_addr);
#else
simde__m128_private r_,
v_ = simde__m128_to_private(simde_mm_load_ps(mem_addr));
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vrev64q_f32(v_.neon_f32);
r_.neon_f32 = vextq_f32(r_.neon_f32, r_.neon_f32, 2);
#elif defined(SIMDE_SHUFFLE_VECTOR_)
r_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, v_.f32, v_.f32, 3, 2, 1, 0);
#else
r_.f32[0] = v_.f32[3];
r_.f32[1] = v_.f32[2];
r_.f32[2] = v_.f32[1];
r_.f32[3] = v_.f32[0];
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_loadr_ps(mem_addr) simde_mm_loadr_ps(mem_addr)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128
simde_mm_loadu_ps(simde_float32 const mem_addr[HEDLEY_ARRAY_PARAM(4)])
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_loadu_ps(mem_addr);
#else
simde__m128_private r_;
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 =
vld1q_f32(HEDLEY_REINTERPRET_CAST(const float32_t *, mem_addr));
#else
r_.f32[0] = mem_addr[0];
r_.f32[1] = mem_addr[1];
r_.f32[2] = mem_addr[2];
r_.f32[3] = mem_addr[3];
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_loadu_ps(mem_addr) simde_mm_loadu_ps(mem_addr)
#endif
SIMDE_FUNCTION_ATTRIBUTES
void simde_mm_maskmove_si64(simde__m64 a, simde__m64 mask, int8_t *mem_addr)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
_mm_maskmove_si64(a, mask, HEDLEY_REINTERPRET_CAST(char *, mem_addr));
#else
simde__m64_private a_ = simde__m64_to_private(a),
mask_ = simde__m64_to_private(mask);
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(a_.i8) / sizeof(a_.i8[0])); i++)
if (mask_.i8[i] < 0)
mem_addr[i] = a_.i8[i];
#endif
}
#define simde_m_maskmovq(a, mask, mem_addr) \
simde_mm_maskmove_si64(a, mask, mem_addr)
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_maskmove_si64(a, mask, mem_addr) \
simde_mm_maskmove_si64( \
(a), (mask), \
SIMDE_CHECKED_REINTERPRET_CAST(int8_t *, char *, (mem_addr)))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m64 simde_mm_max_pi16(simde__m64 a, simde__m64 b)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_max_pi16(a, b);
#else
simde__m64_private r_, a_ = simde__m64_to_private(a),
b_ = simde__m64_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_i16 = vmax_s16(a_.neon_i16, b_.neon_i16);
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.i16) / sizeof(r_.i16[0])); i++) {
r_.i16[i] = (a_.i16[i] > b_.i16[i]) ? a_.i16[i] : b_.i16[i];
}
#endif
return simde__m64_from_private(r_);
#endif
}
#define simde_m_pmaxsw(a, b) simde_mm_max_pi16(a, b)
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_max_pi16(a, b) simde_mm_max_pi16(a, b)
#define _m_pmaxsw(a, b) simde_mm_max_pi16(a, b)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_max_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_max_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vmaxq_f32(a_.neon_f32, b_.neon_f32);
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
r_.altivec_f32 = vec_max(a_.altivec_f32, b_.altivec_f32);
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.f32[i] = (a_.f32[i] > b_.f32[i]) ? a_.f32[i] : b_.f32[i];
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_max_ps(a, b) simde_mm_max_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m64 simde_mm_max_pu8(simde__m64 a, simde__m64 b)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_max_pu8(a, b);
#else
simde__m64_private r_, a_ = simde__m64_to_private(a),
b_ = simde__m64_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_u8 = vmax_u8(a_.neon_u8, b_.neon_u8);
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.u8) / sizeof(r_.u8[0])); i++) {
r_.u8[i] = (a_.u8[i] > b_.u8[i]) ? a_.u8[i] : b_.u8[i];
}
#endif
return simde__m64_from_private(r_);
#endif
}
#define simde_m_pmaxub(a, b) simde_mm_max_pu8(a, b)
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_max_pu8(a, b) simde_mm_max_pu8(a, b)
#define _m_pmaxub(a, b) simde_mm_max_pu8(a, b)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_max_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_max_ss(a, b);
#elif defined(SIMDE_ASSUME_VECTORIZATION)
return simde_mm_move_ss(a, simde_mm_max_ps(a, b));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
r_.f32[0] = (a_.f32[0] > b_.f32[0]) ? a_.f32[0] : b_.f32[0];
r_.f32[1] = a_.f32[1];
r_.f32[2] = a_.f32[2];
r_.f32[3] = a_.f32[3];
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_max_ss(a, b) simde_mm_max_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m64 simde_mm_min_pi16(simde__m64 a, simde__m64 b)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_min_pi16(a, b);
#else
simde__m64_private r_, a_ = simde__m64_to_private(a),
b_ = simde__m64_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_i16 = vmin_s16(a_.neon_i16, b_.neon_i16);
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.i16) / sizeof(r_.i16[0])); i++) {
r_.i16[i] = (a_.i16[i] < b_.i16[i]) ? a_.i16[i] : b_.i16[i];
}
#endif
return simde__m64_from_private(r_);
#endif
}
#define simde_m_pminsw(a, b) simde_mm_min_pi16(a, b)
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_min_pi16(a, b) simde_mm_min_pi16(a, b)
#define _m_pminsw(a, b) simde_mm_min_pi16(a, b)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_min_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_min_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vminq_f32(a_.neon_f32, b_.neon_f32);
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
r_.altivec_f32 = vec_min(a_.altivec_f32, b_.altivec_f32);
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.f32[i] = (a_.f32[i] < b_.f32[i]) ? a_.f32[i] : b_.f32[i];
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_min_ps(a, b) simde_mm_min_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m64 simde_mm_min_pu8(simde__m64 a, simde__m64 b)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_min_pu8(a, b);
#else
simde__m64_private r_, a_ = simde__m64_to_private(a),
b_ = simde__m64_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_u8 = vmin_u8(a_.neon_u8, b_.neon_u8);
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.u8) / sizeof(r_.u8[0])); i++) {
r_.u8[i] = (a_.u8[i] < b_.u8[i]) ? a_.u8[i] : b_.u8[i];
}
#endif
return simde__m64_from_private(r_);
#endif
}
#define simde_m_pminub(a, b) simde_mm_min_pu8(a, b)
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_min_pu8(a, b) simde_mm_min_pu8(a, b)
#define _m_pminub(a, b) simde_mm_min_pu8(a, b)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_min_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_min_ss(a, b);
#elif defined(SIMDE_ASSUME_VECTORIZATION)
return simde_mm_move_ss(a, simde_mm_min_ps(a, b));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
r_.f32[0] = (a_.f32[0] < b_.f32[0]) ? a_.f32[0] : b_.f32[0];
r_.f32[1] = a_.f32[1];
r_.f32[2] = a_.f32[2];
r_.f32[3] = a_.f32[3];
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_min_ss(a, b) simde_mm_min_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_movehl_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_movehl_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_SHUFFLE_VECTOR_)
r_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.f32, b_.f32, 6, 7, 2, 3);
#else
r_.f32[0] = b_.f32[2];
r_.f32[1] = b_.f32[3];
r_.f32[2] = a_.f32[2];
r_.f32[3] = a_.f32[3];
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_movehl_ps(a, b) simde_mm_movehl_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_movelh_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_movelh_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_SHUFFLE_VECTOR_)
r_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.f32, b_.f32, 0, 1, 4, 5);
#else
r_.f32[0] = a_.f32[0];
r_.f32[1] = a_.f32[1];
r_.f32[2] = b_.f32[0];
r_.f32[3] = b_.f32[1];
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_movelh_ps(a, b) simde_mm_movelh_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
int simde_mm_movemask_pi8(simde__m64 a)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_movemask_pi8(a);
#else
simde__m64_private a_ = simde__m64_to_private(a);
int r = 0;
const size_t nmemb = sizeof(a_.i8) / sizeof(a_.i8[0]);
SIMDE_VECTORIZE_REDUCTION(| : r)
for (size_t i = 0; i < nmemb; i++) {
r |= (a_.u8[nmemb - 1 - i] >> 7) << (nmemb - 1 - i);
}
return r;
#endif
}
#define simde_m_pmovmskb(a, b) simde_mm_movemask_pi8(a, b)
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_movemask_pi8(a) simde_mm_movemask_pi8(a)
#endif
SIMDE_FUNCTION_ATTRIBUTES
int simde_mm_movemask_ps(simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_movemask_ps(a);
#else
int r = 0;
simde__m128_private a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
/* TODO: check to see if NEON version is faster than the portable version */
static const uint32x4_t movemask = {1, 2, 4, 8};
static const uint32x4_t highbit = {0x80000000, 0x80000000, 0x80000000,
0x80000000};
uint32x4_t t0 = a_.neon_u32;
uint32x4_t t1 = vtstq_u32(t0, highbit);
uint32x4_t t2 = vandq_u32(t1, movemask);
uint32x2_t t3 = vorr_u32(vget_low_u32(t2), vget_high_u32(t2));
r = vget_lane_u32(t3, 0) | vget_lane_u32(t3, 1);
#else
SIMDE_VECTORIZE_REDUCTION(| : r)
for (size_t i = 0; i < sizeof(a_.u32) / sizeof(a_.u32[0]); i++) {
r |= (a_.u32[i] >> ((sizeof(a_.u32[i]) * CHAR_BIT) - 1)) << i;
}
#endif
return r;
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_movemask_ps(a) simde_mm_movemask_ps((a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_mul_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_mul_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vmulq_f32(a_.neon_f32, b_.neon_f32);
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
r_.wasm_v128 = wasm_f32x4_mul(a_.wasm_v128, b_.wasm_v128);
#elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
r_.f32 = a_.f32 * b_.f32;
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.f32[i] = a_.f32[i] * b_.f32[i];
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_mul_ps(a, b) simde_mm_mul_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_mul_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_mul_ss(a, b);
#elif defined(SIMDE_ASSUME_VECTORIZATION)
return simde_mm_move_ss(a, simde_mm_mul_ps(a, b));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
r_.f32[0] = a_.f32[0] * b_.f32[0];
r_.f32[1] = a_.f32[1];
r_.f32[2] = a_.f32[2];
r_.f32[3] = a_.f32[3];
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_mul_ss(a, b) simde_mm_mul_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m64 simde_mm_mulhi_pu16(simde__m64 a, simde__m64 b)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_mulhi_pu16(a, b);
#else
simde__m64_private r_, a_ = simde__m64_to_private(a),
b_ = simde__m64_to_private(b);
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.u16) / sizeof(r_.u16[0])); i++) {
r_.u16[i] = HEDLEY_STATIC_CAST(
uint16_t, ((HEDLEY_STATIC_CAST(uint32_t, a_.u16[i]) *
HEDLEY_STATIC_CAST(uint32_t, b_.u16[i])) >>
UINT32_C(16)));
}
return simde__m64_from_private(r_);
#endif
}
#define simde_m_pmulhuw(a, b) simde_mm_mulhi_pu16(a, b)
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_mulhi_pu16(a, b) simde_mm_mulhi_pu16(a, b)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_or_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_or_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_i32 = vorrq_s32(a_.neon_i32, b_.neon_i32);
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
r_.altivec_i32 = vec_or(a_.altivec_i32, b_.altivec_i32);
#elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
r_.i32f = a_.i32f | b_.i32f;
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.u32) / sizeof(r_.u32[0])); i++) {
r_.u32[i] = a_.u32[i] | b_.u32[i];
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_or_ps(a, b) simde_mm_or_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
void simde_mm_prefetch(char const *p, int i)
{
(void)p;
(void)i;
}
#if defined(SIMDE_X86_SSE_NATIVE)
#define simde_mm_prefetch(p, i) _mm_prefetch(p, i)
#endif
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_prefetch(p, i) simde_mm_prefetch(p, i)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_rcp_ps(simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_rcp_ps(a);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
float32x4_t recip = vrecpeq_f32(a_.neon_f32);
#if SIMDE_ACCURACY_PREFERENCE > 0
for (int i = 0; i < SIMDE_ACCURACY_PREFERENCE; ++i) {
recip = vmulq_f32(recip, vrecpsq_f32(recip, a_.neon_f32));
}
#endif
r_.neon_f32 = recip;
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
r_.altivec_f32 = vec_re(a_.altivec_f32);
#elif defined(SIMDE_VECTOR_SUBSCRIPT_SCALAR)
r_.f32 = 1.0f / a_.f32;
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.f32[i] = 1.0f / a_.f32[i];
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_rcp_ps(a) simde_mm_rcp_ps((a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_rcp_ss(simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_rcp_ss(a);
#elif defined(SIMDE_ASSUME_VECTORIZATION)
return simde_mm_move_ss(a, simde_mm_rcp_ps(a));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a);
r_.f32[0] = 1.0f / a_.f32[0];
r_.f32[1] = a_.f32[1];
r_.f32[2] = a_.f32[2];
r_.f32[3] = a_.f32[3];
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_rcp_ss(a) simde_mm_rcp_ss((a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_rsqrt_ps(simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_rsqrt_ps(a);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vrsqrteq_f32(a_.neon_f32);
#elif defined(__STDC_IEC_559__)
/* https://basesandframes.files.wordpress.com/2020/04/even_faster_math_functions_green_2020.pdf
Pages 100 - 103 */
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
#if SIMDE_ACCURACY_PREFERENCE <= 0
r_.i32[i] = INT32_C(0x5F37624F) - (a_.i32[i] >> 1);
#else
simde_float32 x = a_.f32[i];
simde_float32 xhalf = SIMDE_FLOAT32_C(0.5) * x;
int32_t ix;
simde_memcpy(&ix, &x, sizeof(ix));
#if SIMDE_ACCURACY_PREFERENCE == 1
ix = INT32_C(0x5F375A82) - (ix >> 1);
#else
ix = INT32_C(0x5F37599E) - (ix >> 1);
#endif
simde_memcpy(&x, &ix, sizeof(x));
#if SIMDE_ACCURACY_PREFERENCE >= 2
x = x * (SIMDE_FLOAT32_C(1.5008909) - xhalf * x * x);
#endif
x = x * (SIMDE_FLOAT32_C(1.5008909) - xhalf * x * x);
r_.f32[i] = x;
#endif
}
#elif defined(simde_math_sqrtf)
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.f32[i] = 1.0f / simde_math_sqrtf(a_.f32[i]);
}
#else
HEDLEY_UNREACHABLE();
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_rsqrt_ps(a) simde_mm_rsqrt_ps((a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_rsqrt_ss(simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_rsqrt_ss(a);
#elif defined(SIMDE_ASSUME_VECTORIZATION)
return simde_mm_move_ss(a, simde_mm_rsqrt_ps(a));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a);
#if defined(__STDC_IEC_559__)
{
#if SIMDE_ACCURACY_PREFERENCE <= 0
r_.i32[0] = INT32_C(0x5F37624F) - (a_.i32[0] >> 1);
#else
simde_float32 x = a_.f32[0];
simde_float32 xhalf = SIMDE_FLOAT32_C(0.5) * x;
int32_t ix;
simde_memcpy(&ix, &x, sizeof(ix));
#if SIMDE_ACCURACY_PREFERENCE == 1
ix = INT32_C(0x5F375A82) - (ix >> 1);
#else
ix = INT32_C(0x5F37599E) - (ix >> 1);
#endif
simde_memcpy(&x, &ix, sizeof(x));
#if SIMDE_ACCURACY_PREFERENCE >= 2
x = x * (SIMDE_FLOAT32_C(1.5008909) - xhalf * x * x);
#endif
x = x * (SIMDE_FLOAT32_C(1.5008909) - xhalf * x * x);
r_.f32[0] = x;
#endif
}
r_.f32[1] = a_.f32[1];
r_.f32[2] = a_.f32[2];
r_.f32[3] = a_.f32[3];
#elif defined(simde_math_sqrtf)
r_.f32[0] = 1.0f / simde_math_sqrtf(a_.f32[0]);
r_.f32[1] = a_.f32[1];
r_.f32[2] = a_.f32[2];
r_.f32[3] = a_.f32[3];
#else
HEDLEY_UNREACHABLE();
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_rsqrt_ss(a) simde_mm_rsqrt_ss((a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m64 simde_mm_sad_pu8(simde__m64 a, simde__m64 b)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
return _mm_sad_pu8(a, b);
#else
simde__m64_private r_, a_ = simde__m64_to_private(a),
b_ = simde__m64_to_private(b);
uint16_t sum = 0;
#if defined(SIMDE_HAVE_STDLIB_H)
SIMDE_VECTORIZE_REDUCTION(+ : sum)
for (size_t i = 0; i < (sizeof(r_.u8) / sizeof(r_.u8[0])); i++) {
sum += HEDLEY_STATIC_CAST(uint8_t, abs(a_.u8[i] - b_.u8[i]));
}
r_.i16[0] = HEDLEY_STATIC_CAST(int16_t, sum);
r_.i16[1] = 0;
r_.i16[2] = 0;
r_.i16[3] = 0;
#else
HEDLEY_UNREACHABLE();
#endif
return simde__m64_from_private(r_);
#endif
}
#define simde_m_psadbw(a, b) simde_mm_sad_pu8(a, b)
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_sad_pu8(a, b) simde_mm_sad_pu8(a, b)
#define _m_psadbw(a, b) simde_mm_sad_pu8(a, b)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_set_ss(simde_float32 a)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_set_ss(a);
#elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
return vsetq_lane_f32(a, vdupq_n_f32(SIMDE_FLOAT32_C(0.0)), 0);
#else
return simde_mm_set_ps(SIMDE_FLOAT32_C(0.0), SIMDE_FLOAT32_C(0.0),
SIMDE_FLOAT32_C(0.0), a);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_set_ss(a) simde_mm_set_ss(a)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_setr_ps(simde_float32 e3, simde_float32 e2,
simde_float32 e1, simde_float32 e0)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_setr_ps(e3, e2, e1, e0);
#elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
SIMDE_ALIGN(16) simde_float32 data[4] = {e3, e2, e1, e0};
return vld1q_f32(data);
#else
return simde_mm_set_ps(e0, e1, e2, e3);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_setr_ps(e3, e2, e1, e0) simde_mm_setr_ps(e3, e2, e1, e0)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_setzero_ps(void)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_setzero_ps();
#elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
return vdupq_n_f32(SIMDE_FLOAT32_C(0.0));
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
return vec_splats((float)0);
#else
simde__m128 r;
simde_memset(&r, 0, sizeof(r));
return r;
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_setzero_ps() simde_mm_setzero_ps()
#endif
#if defined(SIMDE_DIAGNOSTIC_DISABLE_UNINITIALIZED_)
HEDLEY_DIAGNOSTIC_PUSH
SIMDE_DIAGNOSTIC_DISABLE_UNINITIALIZED_
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_undefined_ps(void)
{
simde__m128_private r_;
#if defined(SIMDE_HAVE_UNDEFINED128)
r_.n = _mm_undefined_ps();
#elif !defined(SIMDE_DIAGNOSTIC_DISABLE_UNINITIALIZED_)
r_ = simde__m128_to_private(simde_mm_setzero_ps());
#endif
return simde__m128_from_private(r_);
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_undefined_ps() simde_mm_undefined_ps()
#endif
#if defined(SIMDE_DIAGNOSTIC_DISABLE_UNINITIALIZED_)
HEDLEY_DIAGNOSTIC_POP
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_x_mm_setone_ps(void)
{
simde__m128 t = simde_mm_setzero_ps();
return simde_mm_cmpeq_ps(t, t);
}
SIMDE_FUNCTION_ATTRIBUTES
void simde_mm_sfence(void)
{
/* TODO: Use Hedley. */
#if defined(SIMDE_X86_SSE_NATIVE)
_mm_sfence();
#elif defined(__GNUC__) && \
((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7))
__atomic_thread_fence(__ATOMIC_SEQ_CST);
#elif !defined(__INTEL_COMPILER) && defined(__STDC_VERSION__) && \
(__STDC_VERSION__ >= 201112L) && !defined(__STDC_NO_ATOMICS__)
#if defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ < 9)
__atomic_thread_fence(__ATOMIC_SEQ_CST);
#else
atomic_thread_fence(memory_order_seq_cst);
#endif
#elif defined(_MSC_VER)
MemoryBarrier();
#elif HEDLEY_HAS_EXTENSION(c_atomic)
__c11_atomic_thread_fence(__ATOMIC_SEQ_CST);
#elif defined(__GNUC__) && \
((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1))
__sync_synchronize();
#elif defined(_OPENMP)
#pragma omp critical(simde_mm_sfence_)
{
}
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_sfence() simde_mm_sfence()
#endif
#define SIMDE_MM_SHUFFLE(z, y, x, w) \
(((z) << 6) | ((y) << 4) | ((x) << 2) | (w))
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _MM_SHUFFLE(z, y, x, w) SIMDE_MM_SHUFFLE(z, y, x, w)
#endif
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE) && \
!defined(__PGI)
#define simde_mm_shuffle_pi16(a, imm8) _mm_shuffle_pi16(a, imm8)
#elif defined(SIMDE_SHUFFLE_VECTOR_)
#define simde_mm_shuffle_pi16(a, imm8) \
(__extension__({ \
const simde__m64_private simde__tmp_a_ = \
simde__m64_to_private(a); \
simde__m64_from_private((simde__m64_private){ \
.i16 = SIMDE_SHUFFLE_VECTOR_( \
16, 8, (simde__tmp_a_).i16, \
(simde__tmp_a_).i16, (((imm8)) & 3), \
(((imm8) >> 2) & 3), (((imm8) >> 4) & 3), \
(((imm8) >> 6) & 3))}); \
}))
#else
SIMDE_FUNCTION_ATTRIBUTES
simde__m64 simde_mm_shuffle_pi16(simde__m64 a, const int imm8)
SIMDE_REQUIRE_RANGE(imm8, 0, 255)
{
simde__m64_private r_;
simde__m64_private a_ = simde__m64_to_private(a);
for (size_t i = 0; i < sizeof(r_.i16) / sizeof(r_.i16[0]); i++) {
r_.i16[i] = a_.i16[(imm8 >> (i * 2)) & 3];
}
HEDLEY_DIAGNOSTIC_PUSH
#if HEDLEY_HAS_WARNING("-Wconditional-uninitialized")
#pragma clang diagnostic ignored "-Wconditional-uninitialized"
#endif
return simde__m64_from_private(r_);
HEDLEY_DIAGNOSTIC_POP
}
#endif
#if defined(SIMDE_X86_SSE_NATIVE) && !defined(__PGI)
#define simde_m_pshufw(a, imm8) _m_pshufw(a, imm8)
#else
#define simde_m_pshufw(a, imm8) simde_mm_shuffle_pi16(a, imm8)
#endif
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_shuffle_pi16(a, imm8) simde_mm_shuffle_pi16(a, imm8)
#define _m_pshufw(a, imm8) simde_mm_shuffle_pi16(a, imm8)
#endif
#if defined(SIMDE_X86_SSE_NATIVE) && !defined(__PGI)
#define simde_mm_shuffle_ps(a, b, imm8) _mm_shuffle_ps(a, b, imm8)
#elif defined(SIMDE_SHUFFLE_VECTOR_)
#define simde_mm_shuffle_ps(a, b, imm8) \
(__extension__({ \
simde__m128_from_private((simde__m128_private){ \
.f32 = SIMDE_SHUFFLE_VECTOR_( \
32, 16, simde__m128_to_private(a).f32, \
simde__m128_to_private(b).f32, (((imm8)) & 3), \
(((imm8) >> 2) & 3), (((imm8) >> 4) & 3) + 4, \
(((imm8) >> 6) & 3) + 4)}); \
}))
#else
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_shuffle_ps(simde__m128 a, simde__m128 b, const int imm8)
SIMDE_REQUIRE_RANGE(imm8, 0, 255)
{
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
r_.f32[0] = a_.f32[(imm8 >> 0) & 3];
r_.f32[1] = a_.f32[(imm8 >> 2) & 3];
r_.f32[2] = b_.f32[(imm8 >> 4) & 3];
r_.f32[3] = b_.f32[(imm8 >> 6) & 3];
return simde__m128_from_private(r_);
}
#endif
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_shuffle_ps(a, b, imm8) simde_mm_shuffle_ps((a), (b), imm8)
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_sqrt_ps(simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_sqrt_ps(a);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
float32x4_t recipsq = vrsqrteq_f32(a_.neon_f32);
float32x4_t sq = vrecpeq_f32(recipsq);
/* ??? use step versions of both sqrt and recip for better accuracy? */
r_.neon_f32 = sq;
#elif defined(simde_math_sqrt)
SIMDE_VECTORIZE
for (size_t i = 0; i < sizeof(r_.f32) / sizeof(r_.f32[0]); i++) {
r_.f32[i] = simde_math_sqrtf(a_.f32[i]);
}
#else
HEDLEY_UNREACHABLE();
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_sqrt_ps(a) simde_mm_sqrt_ps((a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_sqrt_ss(simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_sqrt_ss(a);
#elif defined(SIMDE_ASSUME_VECTORIZATION)
return simde_mm_move_ss(a, simde_mm_sqrt_ps(a));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a);
#if defined(simde_math_sqrtf)
r_.f32[0] = simde_math_sqrtf(a_.f32[0]);
r_.f32[1] = a_.f32[1];
r_.f32[2] = a_.f32[2];
r_.f32[3] = a_.f32[3];
#else
HEDLEY_UNREACHABLE();
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_sqrt_ss(a) simde_mm_sqrt_ss((a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
void simde_mm_store_ps(simde_float32 mem_addr[4], simde__m128 a)
{
simde_assert_aligned(16, mem_addr);
#if defined(SIMDE_X86_SSE_NATIVE)
_mm_store_ps(mem_addr, a);
#else
simde__m128_private a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
vst1q_f32(mem_addr, a_.neon_f32);
#elif defined(SIMDE_POWER_ALTIVE_P7_NATIVE)
vec_vsx_st(a_.altivec_32, 0, mem_addr);
#elif defined(SIMDE_POWER_ALTIVE_P5_NATIVE)
vec_st(a_.altivec_32, 0, mem_addr);
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
wasm_v128_store(mem_addr, a_.wasm_v128);
#else
SIMDE_VECTORIZE_ALIGNED(mem_addr : 16)
for (size_t i = 0; i < sizeof(a_.f32) / sizeof(a_.f32[0]); i++) {
mem_addr[i] = a_.f32[i];
}
#endif
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_store_ps(mem_addr, a) \
simde_mm_store_ps(SIMDE_CHECKED_REINTERPRET_CAST( \
float *, simde_float32 *, mem_addr), \
(a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
void simde_mm_store_ps1(simde_float32 mem_addr[4], simde__m128 a)
{
simde_assert_aligned(16, mem_addr);
#if defined(SIMDE_X86_SSE_NATIVE)
_mm_store_ps1(mem_addr, a);
#else
simde__m128_private a_ = simde__m128_to_private(a);
SIMDE_VECTORIZE_ALIGNED(mem_addr : 16)
for (size_t i = 0; i < sizeof(a_.f32) / sizeof(a_.f32[0]); i++) {
mem_addr[i] = a_.f32[0];
}
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_store_ps1(mem_addr, a) \
simde_mm_store_ps1(SIMDE_CHECKED_REINTERPRET_CAST( \
float *, simde_float32 *, mem_addr), \
(a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
void simde_mm_store_ss(simde_float32 *mem_addr, simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE)
_mm_store_ss(mem_addr, a);
#else
simde__m128_private a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
vst1q_lane_f32(mem_addr, a_.neon_f32, 0);
#else
*mem_addr = a_.f32[0];
#endif
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_store_ss(mem_addr, a) \
simde_mm_store_ss(SIMDE_CHECKED_REINTERPRET_CAST( \
float *, simde_float32 *, mem_addr), \
(a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
void simde_mm_store1_ps(simde_float32 mem_addr[4], simde__m128 a)
{
simde_assert_aligned(16, mem_addr);
#if defined(SIMDE_X86_SSE_NATIVE)
_mm_store1_ps(mem_addr, a);
#else
simde_mm_store_ps1(mem_addr, a);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_store1_ps(mem_addr, a) \
simde_mm_store1_ps(SIMDE_CHECKED_REINTERPRET_CAST( \
float *, simde_float32 *, mem_addr), \
(a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
void simde_mm_storeh_pi(simde__m64 *mem_addr, simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE)
_mm_storeh_pi(HEDLEY_REINTERPRET_CAST(__m64 *, mem_addr), a);
#else
simde__m64_private *dest_ =
HEDLEY_REINTERPRET_CAST(simde__m64_private *, mem_addr);
simde__m128_private a_ = simde__m128_to_private(a);
dest_->f32[0] = a_.f32[2];
dest_->f32[1] = a_.f32[3];
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_storeh_pi(mem_addr, a) simde_mm_storeh_pi(mem_addr, (a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
void simde_mm_storel_pi(simde__m64 *mem_addr, simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE)
_mm_storel_pi(HEDLEY_REINTERPRET_CAST(__m64 *, mem_addr), a);
#else
simde__m64_private *dest_ =
HEDLEY_REINTERPRET_CAST(simde__m64_private *, mem_addr);
simde__m128_private a_ = simde__m128_to_private(a);
dest_->f32[0] = a_.f32[0];
dest_->f32[1] = a_.f32[1];
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_storel_pi(mem_addr, a) simde_mm_storel_pi(mem_addr, (a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
void simde_mm_storer_ps(simde_float32 mem_addr[4], simde__m128 a)
{
simde_assert_aligned(16, mem_addr);
#if defined(SIMDE_X86_SSE_NATIVE)
_mm_storer_ps(mem_addr, a);
#else
simde__m128_private a_ = simde__m128_to_private(a);
#if defined(SIMDE_SHUFFLE_VECTOR_)
a_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.f32, a_.f32, 3, 2, 1, 0);
simde_mm_store_ps(mem_addr, simde__m128_from_private(a_));
#else
SIMDE_VECTORIZE_ALIGNED(mem_addr : 16)
for (size_t i = 0; i < sizeof(a_.f32) / sizeof(a_.f32[0]); i++) {
mem_addr[i] =
a_.f32[((sizeof(a_.f32) / sizeof(a_.f32[0])) - 1) - i];
}
#endif
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_storer_ps(mem_addr, a) \
simde_mm_storer_ps(SIMDE_CHECKED_REINTERPRET_CAST( \
float *, simde_float32 *, mem_addr), \
(a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
void simde_mm_storeu_ps(simde_float32 mem_addr[4], simde__m128 a)
{
#if defined(SIMDE_X86_SSE_NATIVE)
_mm_storeu_ps(mem_addr, a);
#else
simde__m128_private a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
vst1q_f32(mem_addr, a_.neon_f32);
#else
simde_memcpy(mem_addr, &a_, sizeof(a_));
#endif
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_storeu_ps(mem_addr, a) \
simde_mm_storeu_ps(SIMDE_CHECKED_REINTERPRET_CAST( \
float *, simde_float32 *, mem_addr), \
(a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_sub_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_sub_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_f32 = vsubq_f32(a_.neon_f32, b_.neon_f32);
#elif defined(SIMDE_WASM_SIMD128_NATIVE)
r_.wasm_v128 = wasm_f32x4_sub(a_.wasm_v128, b_.wasm_v128);
#elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
r_.f32 = a_.f32 - b_.f32;
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
r_.f32[i] = a_.f32[i] - b_.f32[i];
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_sub_ps(a, b) simde_mm_sub_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_sub_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_sub_ss(a, b);
#elif defined(SIMDE_ASSUME_VECTORIZATION)
return simde_mm_move_ss(a, simde_mm_sub_ps(a, b));
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
r_.f32[0] = a_.f32[0] - b_.f32[0];
r_.f32[1] = a_.f32[1];
r_.f32[2] = a_.f32[2];
r_.f32[3] = a_.f32[3];
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_sub_ss(a, b) simde_mm_sub_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
int simde_mm_ucomieq_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_ucomieq_ss(a, b);
#else
simde__m128_private a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
int r;
#if defined(SIMDE_HAVE_FENV_H)
fenv_t envp;
int x = feholdexcept(&envp);
r = a_.f32[0] == b_.f32[0];
if (HEDLEY_LIKELY(x == 0))
fesetenv(&envp);
#else
r = a_.f32[0] == b_.f32[0];
#endif
return r;
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_ucomieq_ss(a, b) simde_mm_ucomieq_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
int simde_mm_ucomige_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_ucomige_ss(a, b);
#else
simde__m128_private a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
int r;
#if defined(SIMDE_HAVE_FENV_H)
fenv_t envp;
int x = feholdexcept(&envp);
r = a_.f32[0] >= b_.f32[0];
if (HEDLEY_LIKELY(x == 0))
fesetenv(&envp);
#else
r = a_.f32[0] >= b_.f32[0];
#endif
return r;
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_ucomige_ss(a, b) simde_mm_ucomige_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
int simde_mm_ucomigt_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_ucomigt_ss(a, b);
#else
simde__m128_private a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
int r;
#if defined(SIMDE_HAVE_FENV_H)
fenv_t envp;
int x = feholdexcept(&envp);
r = a_.f32[0] > b_.f32[0];
if (HEDLEY_LIKELY(x == 0))
fesetenv(&envp);
#else
r = a_.f32[0] > b_.f32[0];
#endif
return r;
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_ucomigt_ss(a, b) simde_mm_ucomigt_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
int simde_mm_ucomile_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_ucomile_ss(a, b);
#else
simde__m128_private a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
int r;
#if defined(SIMDE_HAVE_FENV_H)
fenv_t envp;
int x = feholdexcept(&envp);
r = a_.f32[0] <= b_.f32[0];
if (HEDLEY_LIKELY(x == 0))
fesetenv(&envp);
#else
r = a_.f32[0] <= b_.f32[0];
#endif
return r;
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_ucomile_ss(a, b) simde_mm_ucomile_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
int simde_mm_ucomilt_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_ucomilt_ss(a, b);
#else
simde__m128_private a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
int r;
#if defined(SIMDE_HAVE_FENV_H)
fenv_t envp;
int x = feholdexcept(&envp);
r = a_.f32[0] < b_.f32[0];
if (HEDLEY_LIKELY(x == 0))
fesetenv(&envp);
#else
r = a_.f32[0] < b_.f32[0];
#endif
return r;
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_ucomilt_ss(a, b) simde_mm_ucomilt_ss((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
int simde_mm_ucomineq_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_ucomineq_ss(a, b);
#else
simde__m128_private a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
int r;
#if defined(SIMDE_HAVE_FENV_H)
fenv_t envp;
int x = feholdexcept(&envp);
r = a_.f32[0] != b_.f32[0];
if (HEDLEY_LIKELY(x == 0))
fesetenv(&envp);
#else
r = a_.f32[0] != b_.f32[0];
#endif
return r;
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_ucomineq_ss(a, b) simde_mm_ucomineq_ss((a), (b))
#endif
#if defined(SIMDE_X86_SSE_NATIVE)
#if defined(__has_builtin)
#if __has_builtin(__builtin_ia32_undef128)
#define SIMDE_HAVE_UNDEFINED128
#endif
#elif !defined(__PGI) && !defined(SIMDE_BUG_GCC_REV_208793) && \
!defined(_MSC_VER)
#define SIMDE_HAVE_UNDEFINED128
#endif
#endif
#if defined(SIMDE_DIAGNOSTIC_DISABLE_UNINITIALIZED_)
HEDLEY_DIAGNOSTIC_PUSH
SIMDE_DIAGNOSTIC_DISABLE_UNINITIALIZED_
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_unpackhi_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_unpackhi_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
float32x2_t a1 = vget_high_f32(a_.neon_f32);
float32x2_t b1 = vget_high_f32(b_.neon_f32);
float32x2x2_t result = vzip_f32(a1, b1);
r_.neon_f32 = vcombine_f32(result.val[0], result.val[1]);
#elif defined(SIMDE_SHUFFLE_VECTOR_)
r_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.f32, b_.f32, 2, 6, 3, 7);
#else
r_.f32[0] = a_.f32[2];
r_.f32[1] = b_.f32[2];
r_.f32[2] = a_.f32[3];
r_.f32[3] = b_.f32[3];
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_unpackhi_ps(a, b) simde_mm_unpackhi_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_unpacklo_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_unpacklo_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_SHUFFLE_VECTOR_)
r_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.f32, b_.f32, 0, 4, 1, 5);
#elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
float32x2_t a1 = vget_low_f32(a_.neon_f32);
float32x2_t b1 = vget_low_f32(b_.neon_f32);
float32x2x2_t result = vzip_f32(a1, b1);
r_.neon_f32 = vcombine_f32(result.val[0], result.val[1]);
#else
r_.f32[0] = a_.f32[0];
r_.f32[1] = b_.f32[0];
r_.f32[2] = a_.f32[1];
r_.f32[3] = b_.f32[1];
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_unpacklo_ps(a, b) simde_mm_unpacklo_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
simde__m128 simde_mm_xor_ps(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_xor_ps(a, b);
#else
simde__m128_private r_, a_ = simde__m128_to_private(a),
b_ = simde__m128_to_private(b);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
r_.neon_i32 = veorq_s32(a_.neon_i32, b_.neon_i32);
#elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
r_.altivec_i32 = vec_xor(a_.altivec_i32, b_.altivec_i32);
#elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
r_.i32f = a_.i32f ^ b_.i32f;
#else
SIMDE_VECTORIZE
for (size_t i = 0; i < (sizeof(r_.u32) / sizeof(r_.u32[0])); i++) {
r_.u32[i] = a_.u32[i] ^ b_.u32[i];
}
#endif
return simde__m128_from_private(r_);
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_xor_ps(a, b) simde_mm_xor_ps((a), (b))
#endif
SIMDE_FUNCTION_ATTRIBUTES
void simde_mm_stream_pi(simde__m64 *mem_addr, simde__m64 a)
{
#if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
_mm_stream_pi(HEDLEY_REINTERPRET_CAST(__m64 *, mem_addr), a);
#else
simde__m64_private *dest = HEDLEY_REINTERPRET_CAST(simde__m64_private *,
mem_addr),
a_ = simde__m64_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
dest->i64[0] = vget_lane_s64(a_.neon_i64, 0);
#else
dest->i64[0] = a_.i64[0];
#endif
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_stream_pi(mem_addr, a) simde_mm_stream_pi(mem_addr, (a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
void simde_mm_stream_ps(simde_float32 mem_addr[4], simde__m128 a)
{
simde_assert_aligned(16, mem_addr);
#if defined(SIMDE_X86_SSE_NATIVE)
_mm_stream_ps(mem_addr, a);
#else
simde__m128_private a_ = simde__m128_to_private(a);
#if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
vst1q_f32(SIMDE_ASSUME_ALIGNED(16, mem_addr), a_.neon_f32);
#else
simde_memcpy(SIMDE_ASSUME_ALIGNED(16, mem_addr), &a_, sizeof(a_));
#endif
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_stream_ps(mem_addr, a) \
simde_mm_stream_ps(SIMDE_CHECKED_REINTERPRET_CAST( \
float *, simde_float32 *, mem_addr), \
(a))
#endif
SIMDE_FUNCTION_ATTRIBUTES
uint32_t simde_mm_getcsr(void)
{
#if defined(SIMDE_X86_SSE_NATIVE)
return _mm_getcsr();
#else
uint32_t r = 0;
#if defined(SIMDE_HAVE_FENV_H)
int rounding_mode = fegetround();
switch (rounding_mode) {
#if defined(FE_TONEAREST)
case FE_TONEAREST:
break;
#endif
#if defined(FE_UPWARD)
case FE_UPWARD:
r |= 2 << 13;
break;
#endif
#if defined(FE_DOWNWARD)
case FE_DOWNWARD:
r |= 1 << 13;
break;
#endif
#if defined(FE_TOWARDZERO)
case FE_TOWARDZERO:
r = 3 << 13;
break;
#endif
}
#else
HEDLEY_UNREACHABLE();
#endif
return r;
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_getcsr() simde_mm_getcsr()
#endif
SIMDE_FUNCTION_ATTRIBUTES
void simde_mm_setcsr(uint32_t a)
{
#if defined(SIMDE_X86_SSE_NATIVE)
_mm_setcsr(a);
#else
switch ((a >> 13) & 3) {
#if defined(FE_TONEAREST)
case 0:
fesetround(FE_TONEAREST);
#endif
#if defined(FE_DOWNWARD)
break;
case 1:
fesetround(FE_DOWNWARD);
#endif
#if defined(FE_UPWARD)
break;
case 2:
fesetround(FE_UPWARD);
#endif
#if defined(FE_TOWARDZERO)
break;
case 3:
fesetround(FE_TOWARDZERO);
break;
#endif
}
#endif
}
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _mm_setcsr(a) simde_mm_setcsr(a)
#endif
#define SIMDE_MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
do { \
simde__m128 tmp3, tmp2, tmp1, tmp0; \
tmp0 = simde_mm_unpacklo_ps((row0), (row1)); \
tmp2 = simde_mm_unpacklo_ps((row2), (row3)); \
tmp1 = simde_mm_unpackhi_ps((row0), (row1)); \
tmp3 = simde_mm_unpackhi_ps((row2), (row3)); \
row0 = simde_mm_movelh_ps(tmp0, tmp2); \
row1 = simde_mm_movehl_ps(tmp2, tmp0); \
row2 = simde_mm_movelh_ps(tmp1, tmp3); \
row3 = simde_mm_movehl_ps(tmp3, tmp1); \
} while (0)
#if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
SIMDE_MM_TRANSPOSE4_PS(row0, row1, row2, row3)
#endif
#if defined(_MM_EXCEPT_INVALID)
#define SIMDE_MM_EXCEPT_INVALID _MM_EXCEPT_INVALID
#else
#define SIMDE_MM_EXCEPT_INVALID (0x0001)
#endif
#if defined(_MM_EXCEPT_DENORM)
#define SIMDE_MM_EXCEPT_DENORM _MM_EXCEPT_DENORM
#else
#define SIMDE_MM_EXCEPT_DENORM (0x0002)
#endif
#if defined(_MM_EXCEPT_DIV_ZERO)
#define SIMDE_MM_EXCEPT_DIV_ZERO _MM_EXCEPT_DIV_ZERO
#else
#define SIMDE_MM_EXCEPT_DIV_ZERO (0x0004)
#endif
#if defined(_MM_EXCEPT_OVERFLOW)
#define SIMDE_MM_EXCEPT_OVERFLOW _MM_EXCEPT_OVERFLOW
#else
#define SIMDE_MM_EXCEPT_OVERFLOW (0x0008)
#endif
#if defined(_MM_EXCEPT_UNDERFLOW)
#define SIMDE_MM_EXCEPT_UNDERFLOW _MM_EXCEPT_UNDERFLOW
#else
#define SIMDE_MM_EXCEPT_UNDERFLOW (0x0010)
#endif
#if defined(_MM_EXCEPT_INEXACT)
#define SIMDE_MM_EXCEPT_INEXACT _MM_EXCEPT_INEXACT
#else
#define SIMDE_MM_EXCEPT_INEXACT (0x0020)
#endif
#if defined(_MM_EXCEPT_MASK)
#define SIMDE_MM_EXCEPT_MASK _MM_EXCEPT_MASK
#else
#define SIMDE_MM_EXCEPT_MASK \
(SIMDE_MM_EXCEPT_INVALID | SIMDE_MM_EXCEPT_DENORM | \
SIMDE_MM_EXCEPT_DIV_ZERO | SIMDE_MM_EXCEPT_OVERFLOW | \
SIMDE_MM_EXCEPT_UNDERFLOW | SIMDE_MM_EXCEPT_INEXACT)
#endif
#if defined(_MM_MASK_INVALID)
#define SIMDE_MM_MASK_INVALID _MM_MASK_INVALID
#else
#define SIMDE_MM_MASK_INVALID (0x0080)
#endif
#if defined(_MM_MASK_DENORM)
#define SIMDE_MM_MASK_DENORM _MM_MASK_DENORM
#else
#define SIMDE_MM_MASK_DENORM (0x0100)
#endif
#if defined(_MM_MASK_DIV_ZERO)
#define SIMDE_MM_MASK_DIV_ZERO _MM_MASK_DIV_ZERO
#else
#define SIMDE_MM_MASK_DIV_ZERO (0x0200)
#endif
#if defined(_MM_MASK_OVERFLOW)
#define SIMDE_MM_MASK_OVERFLOW _MM_MASK_OVERFLOW
#else
#define SIMDE_MM_MASK_OVERFLOW (0x0400)
#endif
#if defined(_MM_MASK_UNDERFLOW)
#define SIMDE_MM_MASK_UNDERFLOW _MM_MASK_UNDERFLOW
#else
#define SIMDE_MM_MASK_UNDERFLOW (0x0800)
#endif
#if defined(_MM_MASK_INEXACT)
#define SIMDE_MM_MASK_INEXACT _MM_MASK_INEXACT
#else
#define SIMDE_MM_MASK_INEXACT (0x1000)
#endif
#if defined(_MM_MASK_MASK)
#define SIMDE_MM_MASK_MASK _MM_MASK_MASK
#else
#define SIMDE_MM_MASK_MASK \
(SIMDE_MM_MASK_INVALID | SIMDE_MM_MASK_DENORM | \
SIMDE_MM_MASK_DIV_ZERO | SIMDE_MM_MASK_OVERFLOW | \
SIMDE_MM_MASK_UNDERFLOW | SIMDE_MM_MASK_INEXACT)
#endif
#if defined(_MM_FLUSH_ZERO_MASK)
#define SIMDE_MM_FLUSH_ZERO_MASK _MM_FLUSH_ZERO_MASK
#else
#define SIMDE_MM_FLUSH_ZERO_MASK (0x8000)
#endif
#if defined(_MM_FLUSH_ZERO_ON)
#define SIMDE_MM_FLUSH_ZERO_ON _MM_FLUSH_ZERO_ON
#else
#define SIMDE_MM_FLUSH_ZERO_ON (0x8000)
#endif
#if defined(_MM_FLUSH_ZERO_OFF)
#define SIMDE_MM_FLUSH_ZERO_OFF _MM_FLUSH_ZERO_OFF
#else
#define SIMDE_MM_FLUSH_ZERO_OFF (0x0000)
#endif
SIMDE_END_DECLS_
HEDLEY_DIAGNOSTIC_POP
#endif /* !defined(SIMDE_X86_SSE_H) */