1615 lines
40 KiB
C

/******************************************************************************
Copyright (C) 2013 by Hugh Bailey <obs.jim@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
******************************************************************************/
#include <assert.h>
#include "../util/base.h"
#include "../util/bmem.h"
#include "../util/platform.h"
#include "graphics-internal.h"
#include "vec2.h"
#include "vec3.h"
#include "quat.h"
#include "axisang.h"
#include "effect-parser.h"
#include "effect.h"
#ifdef _MSC_VER
static __declspec(thread) graphics_t thread_graphics = NULL;
#else /* assume GCC or that other compiler we dare not mention */
static __thread graphics_t thread_graphics = NULL;
#endif
#define IMMEDIATE_COUNT 512
bool load_graphics_imports(struct gs_exports *exports, void *module,
const char *module_name);
static bool graphics_init_immediate_vb(struct graphics_subsystem *graphics)
{
struct vb_data *vbd;
vbd = vbdata_create();
vbd->num = IMMEDIATE_COUNT;
vbd->points = bmalloc(sizeof(struct vec3)*IMMEDIATE_COUNT);
vbd->normals = bmalloc(sizeof(struct vec3)*IMMEDIATE_COUNT);
vbd->colors = bmalloc(sizeof(uint32_t) *IMMEDIATE_COUNT);
vbd->num_tex = 1;
vbd->tvarray = bmalloc(sizeof(struct tvertarray));
vbd->tvarray[0].width = 2;
vbd->tvarray[0].array =
bmalloc(sizeof(struct vec2) * IMMEDIATE_COUNT);
graphics->immediate_vertbuffer = graphics->exports.
device_create_vertexbuffer(graphics->device, vbd, GS_DYNAMIC);
if (!graphics->immediate_vertbuffer)
return false;
return true;
}
static bool graphics_init_sprite_vb(struct graphics_subsystem *graphics)
{
struct vb_data *vbd;
vbd = vbdata_create();
vbd->num = 4;
vbd->points = bmalloc(sizeof(struct vec3) * 4);
vbd->num_tex = 1;
vbd->tvarray = bmalloc(sizeof(struct tvertarray));
vbd->tvarray[0].width = 2;
vbd->tvarray[0].array = bmalloc(sizeof(struct vec2) * 4);
memset(vbd->points, 0, sizeof(struct vec3) * 4);
memset(vbd->tvarray[0].array, 0, sizeof(struct vec2) * 4);
graphics->sprite_buffer = graphics->exports.
device_create_vertexbuffer(graphics->device, vbd, GS_DYNAMIC);
if (!graphics->sprite_buffer)
return false;
return true;
}
static bool graphics_init(struct graphics_subsystem *graphics)
{
struct matrix3 top_mat;
matrix3_identity(&top_mat);
da_push_back(graphics->matrix_stack, &top_mat);
graphics->exports.device_entercontext(graphics->device);
if (!graphics_init_immediate_vb(graphics))
return false;
if (!graphics_init_sprite_vb(graphics))
return false;
if (pthread_mutex_init(&graphics->mutex, NULL) != 0)
return false;
graphics->exports.device_leavecontext(graphics->device);
return true;
}
int gs_create(graphics_t *pgraphics, const char *module,
struct gs_init_data *data)
{
int errcode = GS_ERROR_FAIL;
graphics_t graphics = bmalloc(sizeof(struct graphics_subsystem));
memset(graphics, 0, sizeof(struct graphics_subsystem));
pthread_mutex_init_value(&graphics->mutex);
graphics->module = os_dlopen(module);
if (!graphics->module) {
errcode = GS_ERROR_MODULENOTFOUND;
goto error;
}
if (!load_graphics_imports(&graphics->exports, graphics->module,
module))
goto error;
graphics->device = graphics->exports.device_create(data);
if (!graphics->device)
goto error;
if (!graphics_init(graphics))
goto error;
*pgraphics = graphics;
return GS_SUCCESS;
error:
gs_destroy(graphics);
return errcode;
}
void gs_destroy(graphics_t graphics)
{
if (!graphics)
return;
while (thread_graphics)
gs_leavecontext();
if (graphics->device) {
graphics->exports.device_entercontext(graphics->device);
graphics->exports.vertexbuffer_destroy(graphics->sprite_buffer);
graphics->exports.vertexbuffer_destroy(
graphics->immediate_vertbuffer);
graphics->exports.device_destroy(graphics->device);
}
pthread_mutex_destroy(&graphics->mutex);
da_free(graphics->matrix_stack);
da_free(graphics->viewport_stack);
if (graphics->module)
os_dlclose(graphics->module);
bfree(graphics);
}
void gs_entercontext(graphics_t graphics)
{
bool is_current = thread_graphics == graphics;
if (thread_graphics && !is_current) {
while (thread_graphics)
gs_leavecontext();
}
if (!is_current) {
pthread_mutex_lock(&graphics->mutex);
graphics->exports.device_entercontext(graphics->device);
thread_graphics = graphics;
}
graphics->ref++;
}
void gs_leavecontext(void)
{
if (thread_graphics) {
if (!--thread_graphics->ref) {
graphics_t graphics = thread_graphics;
graphics->exports.device_leavecontext(graphics->device);
pthread_mutex_unlock(&graphics->mutex);
thread_graphics = NULL;
}
}
}
graphics_t gs_getcontext(void)
{
return thread_graphics;
}
static inline struct matrix3 *top_matrix(graphics_t graphics)
{
return graphics->matrix_stack.array + graphics->cur_matrix;
}
void gs_matrix_push(void)
{
graphics_t graphics = thread_graphics;
struct matrix3 mat, *top_mat = top_matrix(graphics);
memcpy(&mat, top_mat, sizeof(struct matrix3));
da_push_back(graphics->matrix_stack, &mat);
graphics->cur_matrix++;
}
void gs_matrix_pop(void)
{
graphics_t graphics = thread_graphics;
if (graphics->cur_matrix == 0) {
blog(LOG_ERROR, "Tried to pop last matrix on stack");
return;
}
da_erase(graphics->matrix_stack, graphics->cur_matrix);
graphics->cur_matrix--;
}
void gs_matrix_identity(void)
{
struct matrix3 *top_mat = top_matrix(thread_graphics);
matrix3_identity(top_mat);
}
void gs_matrix_transpose(void)
{
struct matrix3 *top_mat = top_matrix(thread_graphics);
matrix3_transpose(top_mat, top_mat);
}
void gs_matrix_set(const struct matrix3 *matrix)
{
struct matrix3 *top_mat = top_matrix(thread_graphics);
matrix3_copy(top_mat, matrix);
}
void gs_matrix_get(struct matrix3 *dst)
{
struct matrix3 *top_mat = top_matrix(thread_graphics);
matrix3_copy(dst, top_mat);
}
void gs_matrix_mul(const struct matrix3 *matrix)
{
struct matrix3 *top_mat = top_matrix(thread_graphics);
matrix3_mul(top_mat, top_mat, matrix);
}
void gs_matrix_rotquat(const struct quat *rot)
{
struct matrix3 *top_mat = top_matrix(thread_graphics);
matrix3_rotate(top_mat, top_mat, rot);
}
void gs_matrix_rotaa(const struct axisang *rot)
{
struct matrix3 *top_mat = top_matrix(thread_graphics);
matrix3_rotate_aa(top_mat, top_mat, rot);
}
void gs_matrix_translate(const struct vec3 *pos)
{
struct matrix3 *top_mat = top_matrix(thread_graphics);
matrix3_translate(top_mat, top_mat, pos);
}
void gs_matrix_scale(const struct vec3 *scale)
{
struct matrix3 *top_mat = top_matrix(thread_graphics);
matrix3_scale(top_mat, top_mat, scale);
}
void gs_matrix_rotaa4f(float x, float y, float z, float angle)
{
struct matrix3 *top_mat = top_matrix(thread_graphics);
struct axisang aa;
axisang_set(&aa, x, y, z, angle);
matrix3_rotate_aa(top_mat, top_mat, &aa);
}
void gs_matrix_translate3f(float x, float y, float z)
{
struct matrix3 *top_mat = top_matrix(thread_graphics);
struct vec3 p;
vec3_set(&p, x, y, z);
matrix3_translate(top_mat, top_mat, &p);
}
void gs_matrix_scale3f(float x, float y, float z)
{
struct matrix3 *top_mat = top_matrix(thread_graphics);
struct vec3 p;
vec3_set(&p, x, y, z);
matrix3_scale(top_mat, top_mat, &p);
}
static inline void reset_immediate_arrays(graphics_t graphics)
{
size_t i;
da_init(graphics->verts);
da_init(graphics->norms);
da_init(graphics->colors);
for (i = 0; i < 16; i++)
da_init(graphics->texverts[i]);
}
void gs_renderstart(bool b_new)
{
graphics_t graphics = thread_graphics;
graphics->using_immediate = !b_new;
reset_immediate_arrays(graphics);
if (b_new) {
graphics->vbd = vbdata_create();
} else {
graphics->vbd = vertexbuffer_getdata(
graphics->immediate_vertbuffer);
memset(graphics->vbd->colors, 0xFF,
sizeof(uint32_t) * IMMEDIATE_COUNT);
graphics->verts.array = graphics->vbd->points;
graphics->norms.array = graphics->vbd->normals;
graphics->colors.array = graphics->vbd->colors;
graphics->texverts[0].array = graphics->vbd->tvarray[0].array;
graphics->verts.capacity = IMMEDIATE_COUNT;
graphics->norms.capacity = IMMEDIATE_COUNT;
graphics->colors.capacity = IMMEDIATE_COUNT;
graphics->texverts[0].capacity = IMMEDIATE_COUNT;
}
}
static inline size_t min_size(const size_t a, const size_t b)
{
return (a < b) ? a : b;
}
void gs_renderstop(enum gs_draw_mode mode)
{
graphics_t graphics = thread_graphics;
size_t i, num = graphics->verts.num;
if (!num) {
if (!graphics->using_immediate) {
da_free(graphics->verts);
da_free(graphics->norms);
da_free(graphics->colors);
for (i = 0; i < 16; i++)
da_free(graphics->texverts[i]);
vbdata_destroy(graphics->vbd);
}
return;
}
if (graphics->norms.num &&
(graphics->norms.num != graphics->verts.num)) {
blog(LOG_WARNING, "gs_renderstop: normal count does "
"not match vertex count");
num = min_size(num, graphics->norms.num);
}
if (graphics->colors.num &&
(graphics->colors.num != graphics->verts.num)) {
blog(LOG_WARNING, "gs_renderstop: color count does "
"not match vertex count");
num = min_size(num, graphics->colors.num);
}
if (graphics->texverts[0].num &&
(graphics->texverts[0].num != graphics->verts.num)) {
blog(LOG_WARNING, "gs_renderstop: texture vertex count does "
"not match vertex count");
num = min_size(num, graphics->texverts[0].num);
}
if (graphics->using_immediate) {
vertexbuffer_flush(graphics->immediate_vertbuffer, false);
gs_load_vertexbuffer(graphics->immediate_vertbuffer);
gs_load_indexbuffer(NULL);
gs_draw(mode, 0, (uint32_t)num);
reset_immediate_arrays(graphics);
} else {
vertbuffer_t vb = gs_rendersave();
gs_load_vertexbuffer(vb);
gs_load_indexbuffer(NULL);
gs_draw(mode, 0, 0);
vertexbuffer_destroy(vb);
}
graphics->vbd = NULL;
}
vertbuffer_t gs_rendersave(void)
{
graphics_t graphics = thread_graphics;
size_t num_tex, i;
if (graphics->using_immediate)
return NULL;
if (!graphics->vbd->num) {
vbdata_destroy(graphics->vbd);
return NULL;
}
for (num_tex = 0; num_tex < 16; num_tex++) {
if (!graphics->texverts[num_tex].num)
break;
}
graphics->vbd->points = graphics->verts.array;
graphics->vbd->normals = graphics->norms.array;
graphics->vbd->colors = graphics->colors.array;
graphics->vbd->num = graphics->verts.num;
graphics->vbd->num_tex = num_tex;
graphics->vbd->tvarray = bmalloc(sizeof(struct tvertarray) * num_tex);
for (i = 0; i < num_tex; i++) {
graphics->vbd->tvarray[i].width = 2;
graphics->vbd->tvarray[i].array = graphics->texverts[i].array;
}
reset_immediate_arrays(graphics);
return gs_create_vertexbuffer(graphics->vbd, 0);
}
void gs_vertex2f(float x, float y)
{
struct vec3 v3;
vec3_set(&v3, x, y, 0.0f);
gs_vertex3v(&v3);
}
void gs_vertex3f(float x, float y, float z)
{
struct vec3 v3;
vec3_set(&v3, x, y, z);
gs_vertex3v(&v3);
}
void gs_normal3f(float x, float y, float z)
{
struct vec3 v3;
vec3_set(&v3, x, y, z);
gs_normal3v(&v3);
}
static inline bool validvertsize(graphics_t graphics, size_t num,
const char *name)
{
if (graphics->using_immediate && num == IMMEDIATE_COUNT) {
blog(LOG_WARNING, "%s: tried to use over %u "
"for immediate rendering",
name, IMMEDIATE_COUNT);
return false;
}
return true;
}
void gs_color(uint32_t color)
{
graphics_t graphics = thread_graphics;
if (!validvertsize(graphics, graphics->colors.num, "gs_color"))
return;
da_push_back(graphics->colors, &color);
}
void gs_texcoord(float x, float y, int unit)
{
struct vec2 v2;
vec2_set(&v2, x, y);
gs_texcoord2v(&v2, unit);
}
void gs_vertex2v(const struct vec2 *v)
{
struct vec3 v3;
vec3_set(&v3, v->x, v->y, 0.0f);
gs_vertex3v(&v3);
}
void gs_vertex3v(const struct vec3 *v)
{
graphics_t graphics = thread_graphics;
if (!validvertsize(graphics, graphics->verts.num, "gs_vertex"))
return;
da_push_back(graphics->verts, v);
}
void gs_normal3v(const struct vec3 *v)
{
graphics_t graphics = thread_graphics;
if (!validvertsize(graphics, graphics->norms.num, "gs_normal"))
return;
da_push_back(graphics->norms, v);
}
void gs_color4v(const struct vec4 *v)
{
/* TODO */
}
void gs_texcoord2v(const struct vec2 *v, int unit)
{
graphics_t graphics = thread_graphics;
if (!validvertsize(graphics, graphics->texverts[unit].num,
"gs_texcoord"))
return;
da_push_back(graphics->texverts[unit], v);
}
input_t gs_getinput(void)
{
/* TODO */
return NULL;
}
effect_t gs_geteffect(void)
{
return thread_graphics->cur_effect;
}
effect_t gs_create_effect_from_file(const char *file, char **error_string)
{
char *file_string;
effect_t effect = NULL;
file_string = os_quick_read_utf8_file(file);
if (!file_string) {
blog(LOG_WARNING, "Could not load effect file '%s'", file);
return NULL;
}
effect = gs_create_effect(file_string, file, error_string);
bfree(file_string);
return effect;
}
effect_t gs_create_effect(const char *effect_string, const char *filename,
char **error_string)
{
struct gs_effect *effect = bmalloc(sizeof(struct gs_effect));
struct effect_parser parser;
bool success;
memset(effect, 0, sizeof(struct gs_effect));
effect->graphics = thread_graphics;
ep_init(&parser);
success = ep_parse(&parser, effect, effect_string, filename);
if (!success) {
*error_string = error_data_buildstring(
&parser.cfp.error_list);
effect_destroy(effect);
effect = NULL;
}
ep_free(&parser);
return effect;
}
shader_t gs_create_vertexshader_from_file(const char *file, char **error_string)
{
char *file_string;
shader_t shader = NULL;
file_string = os_quick_read_utf8_file(file);
if (!file_string) {
blog(LOG_WARNING, "Could not load vertex shader file '%s'",
file);
return NULL;
}
shader = gs_create_vertexshader(file_string, file, error_string);
bfree(file_string);
return shader;
}
shader_t gs_create_pixelshader_from_file(const char *file, char **error_string)
{
char *file_string;
shader_t shader = NULL;
file_string = os_quick_read_utf8_file(file);
if (!file_string) {
blog(LOG_WARNING, "Could not load pixel shader file '%s'",
file);
return NULL;
}
shader = gs_create_pixelshader(file_string, file, error_string);
bfree(file_string);
return shader;
}
texture_t gs_create_texture_from_file(const char *file, uint32_t flags)
{
/* TODO */
return NULL;
}
texture_t gs_create_cubetexture_from_file(const char *file, uint32_t flags)
{
/* TODO */
return NULL;
}
texture_t gs_create_volumetexture_from_file(const char *file, uint32_t flags)
{
/* TODO */
return NULL;
}
static inline void assign_sprite_rect(float *start, float *end, float size,
bool flip)
{
if (!flip) {
*start = 0.0f;
*end = size;
} else {
*start = size;
*end = 0.0f;
}
}
static inline void assign_sprite_uv(float *start, float *end, bool flip)
{
if (!flip) {
*start = 0.0f;
*end = 1.0f;
} else {
*start = 1.0f;
*end = 0.0f;
}
}
static void build_sprite(struct vb_data *data, float fcx, float fcy,
float start_u, float end_u, float start_v, float end_v,
uint32_t flip)
{
struct vec2 *tvarray = data->tvarray[0].array;
vec3_zero(data->points);
vec3_set(data->points+1, fcx, 0.0f, 0.0f);
vec3_set(data->points+2, 0.0f, fcy, 0.0f);
vec3_set(data->points+3, fcx, fcy, 0.0f);
vec2_set(tvarray, start_u, start_v);
vec2_set(tvarray+1, end_u, start_v);
vec2_set(tvarray+2, start_u, end_v);
vec2_set(tvarray+3, end_u, end_v);
}
static inline void build_sprite_norm(struct vb_data *data, float fcx, float fcy,
uint32_t flip)
{
float start_u, end_u;
float start_v, end_v;
assign_sprite_uv(&start_u, &end_u, (flip & GS_FLIP_U) != 0);
assign_sprite_uv(&start_v, &end_v, (flip & GS_FLIP_V) != 0);
build_sprite(data, fcx, fcy, start_u, end_u, start_v, end_v, flip);
}
static inline void build_sprite_rect(struct vb_data *data, texture_t tex,
float fcx, float fcy, uint32_t flip)
{
float start_u, end_u;
float start_v, end_v;
float width = (float)texture_getwidth(tex);
float height = (float)texture_getheight(tex);
assign_sprite_rect(&start_u, &end_u, width, (flip & GS_FLIP_U) != 0);
assign_sprite_rect(&start_v, &end_v, height, (flip & GS_FLIP_V) != 0);
build_sprite(data, fcx, fcy, start_u, end_u, start_v, end_v, flip);
}
void gs_draw_sprite(texture_t tex, uint32_t flip, uint32_t width,
uint32_t height)
{
graphics_t graphics = thread_graphics;
float fcx, fcy;
struct vb_data *data;
assert(tex);
if (gs_gettexturetype(tex) != GS_TEXTURE_2D) {
blog(LOG_ERROR, "A sprite must be a 2D texture");
return;
}
fcx = width ? (float)width : (float)texture_getwidth(tex);
fcy = height ? (float)height : (float)texture_getheight(tex);
data = vertexbuffer_getdata(graphics->sprite_buffer);
if (texture_isrect(tex))
build_sprite_rect(data, tex, fcx, fcy, flip);
else
build_sprite_norm(data, fcx, fcy, flip);
vertexbuffer_flush(graphics->sprite_buffer, false);
gs_load_vertexbuffer(graphics->sprite_buffer);
gs_load_indexbuffer(NULL);
gs_draw(GS_TRISTRIP, 0, 0);
}
void gs_draw_cube_backdrop(texture_t cubetex, const struct quat *rot,
float left, float right, float top, float bottom, float znear)
{
/* TODO */
}
void gs_resetviewport(void)
{
uint32_t cx, cy;
gs_getsize(&cx, &cy);
gs_setviewport(0, 0, (int)cx, (int)cy);
}
void gs_set2dmode(void)
{
uint32_t cx, cy;
gs_getsize(&cx, &cy);
gs_ortho(0.0f, (float)cx, 0.0f, (float)cy, -1.0, -1024.0f);
}
void gs_set3dmode(double fovy, double znear, double zvar)
{
/* TODO */
}
void gs_viewport_push(void)
{
struct gs_rect *rect = da_push_back_new(
thread_graphics->viewport_stack);
gs_getviewport(rect);
}
void gs_viewport_pop(void)
{
struct gs_rect *rect;
if (!thread_graphics->viewport_stack.num)
return;
rect = da_end(thread_graphics->viewport_stack);
gs_setviewport(rect->x, rect->y, rect->cx, rect->cy);
da_pop_back(thread_graphics->viewport_stack);
}
void texture_setimage(texture_t tex, const void *data, uint32_t row_bytes,
bool flip)
{
void *ptr;
uint32_t row_bytes_out;
uint32_t row_copy;
int32_t height = (int32_t)texture_getheight(tex);
int32_t y;
if (!texture_map(tex, &ptr, &row_bytes_out))
return;
row_copy = (row_bytes < row_bytes_out) ? row_bytes : row_bytes_out;
if (flip) {
for (y = height-1; y >= 0; y--)
memcpy((uint8_t*)ptr + (uint32_t)y * row_bytes_out,
(uint8_t*)data + (uint32_t)y * row_bytes,
row_copy);
} else if (row_bytes == row_bytes_out) {
memcpy(ptr, data, row_copy * height);
} else {
for (y = 0; y < height; y++)
memcpy((uint8_t*)ptr + (uint32_t)y * row_bytes_out,
(uint8_t*)data + (uint32_t)y * row_bytes,
row_copy);
}
}
void cubetexture_setimage(texture_t cubetex, uint32_t side, const void *data,
uint32_t row_bytes, bool invert)
{
/* TODO */
}
void gs_perspective(float angle, float aspect, float near, float far)
{
graphics_t graphics = thread_graphics;
float xmin, xmax, ymin, ymax;
ymax = near * tanf(RAD(angle)*0.5f);
ymin = -ymax;
xmin = ymin * aspect;
xmax = ymax * aspect;
graphics->exports.device_frustum(graphics->device, xmin, xmax,
ymin, ymax, near, far);
}
/* ------------------------------------------------------------------------- */
swapchain_t gs_create_swapchain(struct gs_init_data *data)
{
graphics_t graphics = thread_graphics;
return graphics->exports.device_create_swapchain(graphics->device,
data);
}
void gs_resize(uint32_t x, uint32_t y)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_resize(graphics->device, x, y);
}
void gs_getsize(uint32_t *x, uint32_t *y)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_getsize(graphics->device, x, y);
}
uint32_t gs_getwidth(void)
{
graphics_t graphics = thread_graphics;
return graphics->exports.device_getwidth(graphics->device);
}
uint32_t gs_getheight(void)
{
graphics_t graphics = thread_graphics;
return graphics->exports.device_getheight(graphics->device);
}
static inline bool is_pow2(uint32_t size)
{
return size >= 2 && (size & (size-1)) == 0;
}
texture_t gs_create_texture(uint32_t width, uint32_t height,
enum gs_color_format color_format, uint32_t levels,
const void **data, uint32_t flags)
{
graphics_t graphics = thread_graphics;
bool pow2tex = is_pow2(width) && is_pow2(height);
bool uses_mipmaps = (flags & GS_BUILDMIPMAPS || levels != 1);
if (uses_mipmaps && !pow2tex) {
blog(LOG_WARNING, "Cannot use mipmaps with a "
"non-power-of-two texture. Disabling "
"mipmaps for this texture.");
uses_mipmaps = false;
flags &= ~GS_BUILDMIPMAPS;
levels = 1;
}
if (uses_mipmaps && flags & GS_RENDERTARGET) {
blog(LOG_WARNING, "Cannot use mipmaps with render targets. "
"Disabling mipmaps for this texture.");
flags &= ~GS_BUILDMIPMAPS;
levels = 1;
}
return graphics->exports.device_create_texture(graphics->device,
width, height, color_format, levels, data, flags);
}
texture_t gs_create_cubetexture(uint32_t size,
enum gs_color_format color_format, uint32_t levels,
const void **data, uint32_t flags)
{
graphics_t graphics = thread_graphics;
bool pow2tex = is_pow2(size);
bool uses_mipmaps = (flags & GS_BUILDMIPMAPS || levels != 1);
if (uses_mipmaps && !pow2tex) {
blog(LOG_WARNING, "Cannot use mipmaps with a "
"non-power-of-two texture. Disabling "
"mipmaps for this texture.");
uses_mipmaps = false;
flags &= ~GS_BUILDMIPMAPS;
levels = 1;
}
if (uses_mipmaps && flags & GS_RENDERTARGET) {
blog(LOG_WARNING, "Cannot use mipmaps with render targets. "
"Disabling mipmaps for this texture.");
flags &= ~GS_BUILDMIPMAPS;
levels = 1;
data = NULL;
}
return graphics->exports.device_create_cubetexture(graphics->device,
size, color_format, levels, data, flags);
}
texture_t gs_create_volumetexture(uint32_t width, uint32_t height,
uint32_t depth, enum gs_color_format color_format,
uint32_t levels, const void **data, uint32_t flags)
{
graphics_t graphics = thread_graphics;
return graphics->exports.device_create_volumetexture(graphics->device,
width, height, depth, color_format, levels, data,
flags);
}
zstencil_t gs_create_zstencil(uint32_t width, uint32_t height,
enum gs_zstencil_format format)
{
graphics_t graphics = thread_graphics;
return graphics->exports.device_create_zstencil(graphics->device,
width, height, format);
}
stagesurf_t gs_create_stagesurface(uint32_t width, uint32_t height,
enum gs_color_format color_format)
{
graphics_t graphics = thread_graphics;
return graphics->exports.device_create_stagesurface(graphics->device,
width, height, color_format);
}
samplerstate_t gs_create_samplerstate(struct gs_sampler_info *info)
{
graphics_t graphics = thread_graphics;
return graphics->exports.device_create_samplerstate(graphics->device,
info);
}
shader_t gs_create_vertexshader(const char *shader, const char *file,
char **error_string)
{
graphics_t graphics = thread_graphics;
return graphics->exports.device_create_vertexshader(graphics->device,
shader, file, error_string);
}
shader_t gs_create_pixelshader(const char *shader,
const char *file, char **error_string)
{
graphics_t graphics = thread_graphics;
return graphics->exports.device_create_pixelshader(graphics->device,
shader, file, error_string);
}
vertbuffer_t gs_create_vertexbuffer(struct vb_data *data,
uint32_t flags)
{
graphics_t graphics = thread_graphics;
return graphics->exports.device_create_vertexbuffer(graphics->device,
data, flags);
}
indexbuffer_t gs_create_indexbuffer(enum gs_index_type type,
void *indices, size_t num, uint32_t flags)
{
graphics_t graphics = thread_graphics;
return graphics->exports.device_create_indexbuffer(graphics->device,
type, indices, num, flags);
}
enum gs_texture_type gs_gettexturetype(texture_t texture)
{
graphics_t graphics = thread_graphics;
return graphics->exports.device_gettexturetype(graphics->device,
texture);
}
void gs_load_vertexbuffer(vertbuffer_t vertbuffer)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_load_vertexbuffer(graphics->device,
vertbuffer);
}
void gs_load_indexbuffer(indexbuffer_t indexbuffer)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_load_indexbuffer(graphics->device,
indexbuffer);
}
void gs_load_texture(texture_t tex, int unit)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_load_texture(graphics->device, tex, unit);
}
void gs_load_samplerstate(samplerstate_t samplerstate, int unit)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_load_samplerstate(graphics->device,
samplerstate, unit);
}
void gs_load_vertexshader(shader_t vertshader)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_load_vertexshader(graphics->device,
vertshader);
}
void gs_load_pixelshader(shader_t pixelshader)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_load_pixelshader(graphics->device,
pixelshader);
}
void gs_load_defaultsamplerstate(bool b_3d, int unit)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_load_defaultsamplerstate(graphics->device,
b_3d, unit);
}
shader_t gs_getvertexshader(void)
{
graphics_t graphics = thread_graphics;
return graphics->exports.device_getvertexshader(graphics->device);
}
shader_t gs_getpixelshader(void)
{
graphics_t graphics = thread_graphics;
return graphics->exports.device_getpixelshader(graphics->device);
}
texture_t gs_getrendertarget(void)
{
graphics_t graphics = thread_graphics;
return graphics->exports.device_getrendertarget(graphics->device);
}
zstencil_t gs_getzstenciltarget(void)
{
graphics_t graphics = thread_graphics;
return graphics->exports.device_getzstenciltarget(graphics->device);
}
void gs_setrendertarget(texture_t tex, zstencil_t zstencil)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_setrendertarget(graphics->device, tex,
zstencil);
}
void gs_setcuberendertarget(texture_t cubetex, int side, zstencil_t zstencil)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_setcuberendertarget(graphics->device, cubetex,
side, zstencil);
}
void gs_copy_texture(texture_t dst, texture_t src)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_copy_texture(graphics->device, dst, src);
}
void gs_stage_texture(stagesurf_t dst, texture_t src)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_stage_texture(graphics->device, dst, src);
}
void gs_beginscene(void)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_beginscene(graphics->device);
}
void gs_draw(enum gs_draw_mode draw_mode, uint32_t start_vert,
uint32_t num_verts)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_draw(graphics->device, draw_mode,
start_vert, num_verts);
}
void gs_endscene(void)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_endscene(graphics->device);
}
void gs_load_swapchain(swapchain_t swapchain)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_load_swapchain(graphics->device, swapchain);
}
void gs_clear(uint32_t clear_flags, struct vec4 *color, float depth,
uint8_t stencil)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_clear(graphics->device, clear_flags, color,
depth, stencil);
}
void gs_present(void)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_present(graphics->device);
}
void gs_setcullmode(enum gs_cull_mode mode)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_setcullmode(graphics->device, mode);
}
enum gs_cull_mode gs_getcullmode(void)
{
graphics_t graphics = thread_graphics;
return graphics->exports.device_getcullmode(graphics->device);
}
void gs_enable_blending(bool enable)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_enable_blending(graphics->device, enable);
}
void gs_enable_depthtest(bool enable)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_enable_depthtest(graphics->device, enable);
}
void gs_enable_stenciltest(bool enable)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_enable_stenciltest(graphics->device, enable);
}
void gs_enable_stencilwrite(bool enable)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_enable_stencilwrite(graphics->device, enable);
}
void gs_enable_color(bool red, bool green, bool blue, bool alpha)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_enable_color(graphics->device, red, green,
blue, alpha);
}
void gs_blendfunction(enum gs_blend_type src, enum gs_blend_type dest)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_blendfunction(graphics->device, src, dest);
}
void gs_depthfunction(enum gs_depth_test test)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_depthfunction(graphics->device, test);
}
void gs_stencilfunction(enum gs_stencil_side side, enum gs_depth_test test)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_stencilfunction(graphics->device, side, test);
}
void gs_stencilop(enum gs_stencil_side side, enum gs_stencil_op fail,
enum gs_stencil_op zfail, enum gs_stencil_op zpass)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_stencilop(graphics->device, side, fail, zfail,
zpass);
}
void gs_enable_fullscreen(bool enable)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_enable_fullscreen(graphics->device, enable);
}
int gs_fullscreen_enabled(void)
{
graphics_t graphics = thread_graphics;
return graphics->exports.device_fullscreen_enabled(graphics->device);
}
void gs_setdisplaymode(const struct gs_display_mode *mode)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_setdisplaymode(graphics->device, mode);
}
void gs_getdisplaymode(struct gs_display_mode *mode)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_getdisplaymode(graphics->device, mode);
}
void gs_setcolorramp(float gamma, float brightness, float contrast)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_setcolorramp(graphics->device, gamma,
brightness, contrast);
}
void gs_setviewport(int x, int y, int width, int height)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_setviewport(graphics->device, x, y, width,
height);
}
void gs_getviewport(struct gs_rect *rect)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_getviewport(graphics->device, rect);
}
void gs_setscissorrect(struct gs_rect *rect)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_setscissorrect(graphics->device, rect);
}
void gs_ortho(float left, float right, float top, float bottom, float znear,
float zfar)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_ortho(graphics->device, left, right, top,
bottom, znear, zfar);
}
void gs_frustum(float left, float right, float top, float bottom, float znear,
float zfar)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_frustum(graphics->device, left, right, top,
bottom, znear, zfar);
}
void gs_projection_push(void)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_projection_push(graphics->device);
}
void gs_projection_pop(void)
{
graphics_t graphics = thread_graphics;
graphics->exports.device_projection_pop(graphics->device);
}
void swapchain_destroy(swapchain_t swapchain)
{
graphics_t graphics = thread_graphics;
graphics->exports.swapchain_destroy(swapchain);
}
void shader_destroy(shader_t shader)
{
graphics_t graphics = thread_graphics;
graphics->exports.shader_destroy(shader);
}
int shader_numparams(shader_t shader)
{
graphics_t graphics = thread_graphics;
return graphics->exports.shader_numparams(shader);
}
sparam_t shader_getparambyidx(shader_t shader, uint32_t param)
{
graphics_t graphics = thread_graphics;
return graphics->exports.shader_getparambyidx(shader, param);
}
sparam_t shader_getparambyname(shader_t shader, const char *name)
{
graphics_t graphics = thread_graphics;
return graphics->exports.shader_getparambyname(shader, name);
}
void shader_getparaminfo(shader_t shader, sparam_t param,
struct shader_param_info *info)
{
graphics_t graphics = thread_graphics;
graphics->exports.shader_getparaminfo(shader, param, info);
}
sparam_t shader_getviewprojmatrix(shader_t shader)
{
graphics_t graphics = thread_graphics;
return graphics->exports.shader_getviewprojmatrix(shader);
}
sparam_t shader_getworldmatrix(shader_t shader)
{
graphics_t graphics = thread_graphics;
return graphics->exports.shader_getworldmatrix(shader);
}
void shader_setbool(shader_t shader, sparam_t param, bool val)
{
graphics_t graphics = thread_graphics;
graphics->exports.shader_setbool(shader, param, val);
}
void shader_setfloat(shader_t shader, sparam_t param, float val)
{
graphics_t graphics = thread_graphics;
graphics->exports.shader_setfloat(shader, param, val);
}
void shader_setint(shader_t shader, sparam_t param, int val)
{
graphics_t graphics = thread_graphics;
graphics->exports.shader_setint(shader, param, val);
}
void shader_setmatrix3(shader_t shader, sparam_t param,
const struct matrix3 *val)
{
graphics_t graphics = thread_graphics;
graphics->exports.shader_setmatrix3(shader, param, val);
}
void shader_setmatrix4(shader_t shader, sparam_t param,
const struct matrix4 *val)
{
graphics_t graphics = thread_graphics;
graphics->exports.shader_setmatrix4(shader, param, val);
}
void shader_setvec2(shader_t shader, sparam_t param,
const struct vec2 *val)
{
graphics_t graphics = thread_graphics;
graphics->exports.shader_setvec2(shader, param, val);
}
void shader_setvec3(shader_t shader, sparam_t param,
const struct vec3 *val)
{
graphics_t graphics = thread_graphics;
graphics->exports.shader_setvec3(shader, param, val);
}
void shader_setvec4(shader_t shader, sparam_t param,
const struct vec4 *val)
{
graphics_t graphics = thread_graphics;
graphics->exports.shader_setvec4(shader, param, val);
}
void shader_settexture(shader_t shader, sparam_t param, texture_t val)
{
graphics_t graphics = thread_graphics;
graphics->exports.shader_settexture(shader, param, val);
}
void shader_setval(shader_t shader, sparam_t param, const void *val,
size_t size)
{
graphics_t graphics = thread_graphics;
graphics->exports.shader_setval(shader, param, val, size);
}
void shader_setdefault(shader_t shader, sparam_t param)
{
graphics_t graphics = thread_graphics;
graphics->exports.shader_setdefault(shader, param);
}
void texture_destroy(texture_t tex)
{
graphics_t graphics = thread_graphics;
graphics->exports.texture_destroy(tex);
}
uint32_t texture_getwidth(texture_t tex)
{
graphics_t graphics = thread_graphics;
return graphics->exports.texture_getwidth(tex);
}
uint32_t texture_getheight(texture_t tex)
{
graphics_t graphics = thread_graphics;
return graphics->exports.texture_getheight(tex);
}
enum gs_color_format texture_getcolorformat(texture_t tex)
{
graphics_t graphics = thread_graphics;
return graphics->exports.texture_getcolorformat(tex);
}
bool texture_map(texture_t tex, void **ptr, uint32_t *row_bytes)
{
graphics_t graphics = thread_graphics;
return graphics->exports.texture_map(tex, ptr, row_bytes);
}
void texture_unmap(texture_t tex)
{
graphics_t graphics = thread_graphics;
graphics->exports.texture_unmap(tex);
}
bool texture_isrect(texture_t tex)
{
graphics_t graphics = thread_graphics;
if (graphics->exports.texture_isrect)
return graphics->exports.texture_isrect(tex);
else
return false;
}
void cubetexture_destroy(texture_t cubetex)
{
graphics_t graphics = thread_graphics;
graphics->exports.cubetexture_destroy(cubetex);
}
uint32_t cubetexture_getsize(texture_t cubetex)
{
graphics_t graphics = thread_graphics;
return graphics->exports.cubetexture_getsize(cubetex);
}
enum gs_color_format cubetexture_getcolorformat(texture_t cubetex)
{
graphics_t graphics = thread_graphics;
return graphics->exports.cubetexture_getcolorformat(cubetex);
}
void volumetexture_destroy(texture_t voltex)
{
graphics_t graphics = thread_graphics;
graphics->exports.volumetexture_destroy(voltex);
}
uint32_t volumetexture_getwidth(texture_t voltex)
{
graphics_t graphics = thread_graphics;
return graphics->exports.volumetexture_getwidth(voltex);
}
uint32_t volumetexture_getheight(texture_t voltex)
{
graphics_t graphics = thread_graphics;
return graphics->exports.volumetexture_getheight(voltex);
}
uint32_t volumetexture_getdepth(texture_t voltex)
{
graphics_t graphics = thread_graphics;
return graphics->exports.volumetexture_getdepth(voltex);
}
enum gs_color_format volumetexture_getcolorformat(texture_t voltex)
{
graphics_t graphics = thread_graphics;
return graphics->exports.volumetexture_getcolorformat(voltex);
}
void stagesurface_destroy(stagesurf_t stagesurf)
{
graphics_t graphics = thread_graphics;
graphics->exports.stagesurface_destroy(stagesurf);
}
uint32_t stagesurface_getwidth(stagesurf_t stagesurf)
{
graphics_t graphics = thread_graphics;
return graphics->exports.stagesurface_getwidth(stagesurf);
}
uint32_t stagesurface_getheight(stagesurf_t stagesurf)
{
graphics_t graphics = thread_graphics;
return graphics->exports.stagesurface_getheight(stagesurf);
}
enum gs_color_format stagesurface_getcolorformat(stagesurf_t stagesurf)
{
graphics_t graphics = thread_graphics;
return graphics->exports.stagesurface_getcolorformat(stagesurf);
}
bool stagesurface_map(stagesurf_t stagesurf, const void **data,
uint32_t *row_bytes)
{
graphics_t graphics = thread_graphics;
return graphics->exports.stagesurface_map(stagesurf, data, row_bytes);
}
void stagesurface_unmap(stagesurf_t stagesurf)
{
graphics_t graphics = thread_graphics;
graphics->exports.stagesurface_unmap(stagesurf);
}
void zstencil_destroy(zstencil_t zstencil)
{
thread_graphics->exports.zstencil_destroy(zstencil);
}
void samplerstate_destroy(samplerstate_t samplerstate)
{
thread_graphics->exports.samplerstate_destroy(samplerstate);
}
void vertexbuffer_destroy(vertbuffer_t vertbuffer)
{
graphics_t graphics = thread_graphics;
graphics->exports.vertexbuffer_destroy(vertbuffer);
}
void vertexbuffer_flush(vertbuffer_t vertbuffer, bool rebuild)
{
thread_graphics->exports.vertexbuffer_flush(vertbuffer, rebuild);
}
struct vb_data *vertexbuffer_getdata(vertbuffer_t vertbuffer)
{
return thread_graphics->exports.vertexbuffer_getdata(vertbuffer);
}
void indexbuffer_destroy(indexbuffer_t indexbuffer)
{
graphics_t graphics = thread_graphics;
graphics->exports.indexbuffer_destroy(indexbuffer);
}
void indexbuffer_flush(indexbuffer_t indexbuffer)
{
thread_graphics->exports.indexbuffer_flush(indexbuffer);
}
void *indexbuffer_getdata(indexbuffer_t indexbuffer)
{
return thread_graphics->exports.indexbuffer_getdata(indexbuffer);
}
size_t indexbuffer_numindices(indexbuffer_t indexbuffer)
{
return thread_graphics->exports.indexbuffer_numindices(indexbuffer);
}
enum gs_index_type indexbuffer_gettype(indexbuffer_t indexbuffer)
{
return thread_graphics->exports.indexbuffer_gettype(indexbuffer);
}
/** Platform specific functions */
texture_t gs_create_texture_from_iosurface(void *iosurf)
{
graphics_t graphics = thread_graphics;
if (!graphics->exports.texture_create_from_iosurface)
return NULL;
return graphics->exports.texture_create_from_iosurface(
graphics->device, iosurf);
}
bool texture_rebind_iosurface(texture_t texture, void *iosurf)
{
graphics_t graphics = thread_graphics;
if (!graphics->exports.texture_rebind_iosurface)
return false;
return graphics->exports.texture_rebind_iosurface(texture, iosurf);
}