obs-studio/libobs/obs-audio-controls.c

946 lines
24 KiB
C

/*
Copyright (C) 2014 by Leonhard Oelke <leonhard@in-verted.de>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include "util/sse-intrin.h"
#include "util/threading.h"
#include "util/bmem.h"
#include "media-io/audio-math.h"
#include "obs.h"
#include "obs-internal.h"
#include "obs-audio-controls.h"
/* These are pointless warnings generated not by our code, but by a standard
* library macro, INFINITY */
#ifdef _MSC_VER
#pragma warning(disable : 4056)
#pragma warning(disable : 4756)
#endif
#define CLAMP(x, min, max) ((x) < min ? min : ((x) > max ? max : (x)))
typedef float (*obs_fader_conversion_t)(const float val);
struct fader_cb {
obs_fader_changed_t callback;
void *param;
};
struct obs_fader {
pthread_mutex_t mutex;
obs_fader_conversion_t def_to_db;
obs_fader_conversion_t db_to_def;
obs_source_t *source;
enum obs_fader_type type;
float max_db;
float min_db;
float cur_db;
bool ignore_next_signal;
pthread_mutex_t callback_mutex;
DARRAY(struct fader_cb) callbacks;
};
struct meter_cb {
obs_volmeter_updated_t callback;
void *param;
};
struct obs_volmeter {
pthread_mutex_t mutex;
obs_source_t *source;
enum obs_fader_type type;
float cur_db;
pthread_mutex_t callback_mutex;
DARRAY(struct meter_cb) callbacks;
enum obs_peak_meter_type peak_meter_type;
unsigned int update_ms;
float prev_samples[MAX_AUDIO_CHANNELS][4];
float magnitude[MAX_AUDIO_CHANNELS];
float peak[MAX_AUDIO_CHANNELS];
};
static float cubic_def_to_db(const float def)
{
if (def == 1.0f)
return 0.0f;
else if (def <= 0.0f)
return -INFINITY;
return mul_to_db(def * def * def);
}
static float cubic_db_to_def(const float db)
{
if (db == 0.0f)
return 1.0f;
else if (db == -INFINITY)
return 0.0f;
return cbrtf(db_to_mul(db));
}
static float iec_def_to_db(const float def)
{
if (def == 1.0f)
return 0.0f;
else if (def <= 0.0f)
return -INFINITY;
float db;
if (def >= 0.75f)
db = (def - 1.0f) / 0.25f * 9.0f;
else if (def >= 0.5f)
db = (def - 0.75f) / 0.25f * 11.0f - 9.0f;
else if (def >= 0.3f)
db = (def - 0.5f) / 0.2f * 10.0f - 20.0f;
else if (def >= 0.15f)
db = (def - 0.3f) / 0.15f * 10.0f - 30.0f;
else if (def >= 0.075f)
db = (def - 0.15f) / 0.075f * 10.0f - 40.0f;
else if (def >= 0.025f)
db = (def - 0.075f) / 0.05f * 10.0f - 50.0f;
else if (def >= 0.001f)
db = (def - 0.025f) / 0.025f * 90.0f - 60.0f;
else
db = -INFINITY;
return db;
}
static float iec_db_to_def(const float db)
{
if (db == 0.0f)
return 1.0f;
else if (db == -INFINITY)
return 0.0f;
float def;
if (db >= -9.0f)
def = (db + 9.0f) / 9.0f * 0.25f + 0.75f;
else if (db >= -20.0f)
def = (db + 20.0f) / 11.0f * 0.25f + 0.5f;
else if (db >= -30.0f)
def = (db + 30.0f) / 10.0f * 0.2f + 0.3f;
else if (db >= -40.0f)
def = (db + 40.0f) / 10.0f * 0.15f + 0.15f;
else if (db >= -50.0f)
def = (db + 50.0f) / 10.0f * 0.075f + 0.075f;
else if (db >= -60.0f)
def = (db + 60.0f) / 10.0f * 0.05f + 0.025f;
else if (db >= -114.0f)
def = (db + 150.0f) / 90.0f * 0.025f;
else
def = 0.0f;
return def;
}
#define LOG_OFFSET_DB 6.0f
#define LOG_RANGE_DB 96.0f
/* equals -log10f(LOG_OFFSET_DB) */
#define LOG_OFFSET_VAL -0.77815125038364363f
/* equals -log10f(-LOG_RANGE_DB + LOG_OFFSET_DB) */
#define LOG_RANGE_VAL -2.00860017176191756f
static float log_def_to_db(const float def)
{
if (def >= 1.0f)
return 0.0f;
else if (def <= 0.0f)
return -INFINITY;
return -(LOG_RANGE_DB + LOG_OFFSET_DB) *
powf((LOG_RANGE_DB + LOG_OFFSET_DB) / LOG_OFFSET_DB,
-def) +
LOG_OFFSET_DB;
}
static float log_db_to_def(const float db)
{
if (db >= 0.0f)
return 1.0f;
else if (db <= -96.0f)
return 0.0f;
return (-log10f(-db + LOG_OFFSET_DB) - LOG_RANGE_VAL) /
(LOG_OFFSET_VAL - LOG_RANGE_VAL);
}
static void signal_volume_changed(struct obs_fader *fader, const float db)
{
pthread_mutex_lock(&fader->callback_mutex);
for (size_t i = fader->callbacks.num; i > 0; i--) {
struct fader_cb cb = fader->callbacks.array[i - 1];
cb.callback(cb.param, db);
}
pthread_mutex_unlock(&fader->callback_mutex);
}
static void signal_levels_updated(struct obs_volmeter *volmeter,
const float magnitude[MAX_AUDIO_CHANNELS],
const float peak[MAX_AUDIO_CHANNELS],
const float input_peak[MAX_AUDIO_CHANNELS])
{
pthread_mutex_lock(&volmeter->callback_mutex);
for (size_t i = volmeter->callbacks.num; i > 0; i--) {
struct meter_cb cb = volmeter->callbacks.array[i - 1];
cb.callback(cb.param, magnitude, peak, input_peak);
}
pthread_mutex_unlock(&volmeter->callback_mutex);
}
static void fader_source_volume_changed(void *vptr, calldata_t *calldata)
{
struct obs_fader *fader = (struct obs_fader *)vptr;
pthread_mutex_lock(&fader->mutex);
if (fader->ignore_next_signal) {
fader->ignore_next_signal = false;
pthread_mutex_unlock(&fader->mutex);
return;
}
const float mul = (float)calldata_float(calldata, "volume");
const float db = mul_to_db(mul);
fader->cur_db = db;
pthread_mutex_unlock(&fader->mutex);
signal_volume_changed(fader, db);
}
static void volmeter_source_volume_changed(void *vptr, calldata_t *calldata)
{
struct obs_volmeter *volmeter = (struct obs_volmeter *)vptr;
pthread_mutex_lock(&volmeter->mutex);
float mul = (float)calldata_float(calldata, "volume");
volmeter->cur_db = mul_to_db(mul);
pthread_mutex_unlock(&volmeter->mutex);
}
static void fader_source_destroyed(void *vptr, calldata_t *calldata)
{
UNUSED_PARAMETER(calldata);
struct obs_fader *fader = (struct obs_fader *)vptr;
obs_fader_detach_source(fader);
}
static void volmeter_source_destroyed(void *vptr, calldata_t *calldata)
{
UNUSED_PARAMETER(calldata);
struct obs_volmeter *volmeter = (struct obs_volmeter *)vptr;
obs_volmeter_detach_source(volmeter);
}
static int get_nr_channels_from_audio_data(const struct audio_data *data)
{
int nr_channels = 0;
for (int i = 0; i < MAX_AV_PLANES; i++) {
if (data->data[i])
nr_channels++;
}
return CLAMP(nr_channels, 0, MAX_AUDIO_CHANNELS);
}
/* msb(h, g, f, e) lsb(d, c, b, a) --> msb(h, h, g, f) lsb(e, d, c, b)
*/
#define SHIFT_RIGHT_2PS(msb, lsb) \
{ \
__m128 tmp = \
_mm_shuffle_ps(lsb, msb, _MM_SHUFFLE(0, 0, 3, 3)); \
lsb = _mm_shuffle_ps(lsb, tmp, _MM_SHUFFLE(2, 1, 2, 1)); \
msb = _mm_shuffle_ps(msb, msb, _MM_SHUFFLE(3, 3, 2, 1)); \
}
/* x(d, c, b, a) --> (|d|, |c|, |b|, |a|)
*/
#define abs_ps(v) _mm_andnot_ps(_mm_set1_ps(-0.f), v)
/* Take cross product of a vector with a matrix resulting in vector.
*/
#define VECTOR_MATRIX_CROSS_PS(out, v, m0, m1, m2, m3) \
{ \
out = _mm_mul_ps(v, m0); \
__m128 mul1 = _mm_mul_ps(v, m1); \
__m128 mul2 = _mm_mul_ps(v, m2); \
__m128 mul3 = _mm_mul_ps(v, m3); \
\
_MM_TRANSPOSE4_PS(out, mul1, mul2, mul3); \
\
out = _mm_add_ps(out, mul1); \
out = _mm_add_ps(out, mul2); \
out = _mm_add_ps(out, mul3); \
}
/* x4(d, c, b, a) --> max(a, b, c, d)
*/
#define hmax_ps(r, x4) \
do { \
float x4_mem[4]; \
_mm_storeu_ps(x4_mem, x4); \
r = x4_mem[0]; \
r = fmaxf(r, x4_mem[1]); \
r = fmaxf(r, x4_mem[2]); \
r = fmaxf(r, x4_mem[3]); \
} while (false)
/* Calculate the true peak over a set of samples.
* The algorithm implements 5x oversampling by using Whittaker-Shannon
* interpolation over four samples.
*
* The four samples have location t=-1.5, -0.5, +0.5, +1.5
* The oversamples are taken at locations t=-0.3, -0.1, +0.1, +0.3
*
* @param previous_samples Last 4 samples from the previous iteration.
* @param samples The samples to find the peak in.
* @param nr_samples Number of sets of 4 samples.
* @returns 5 times oversampled true-peak from the set of samples.
*/
static float get_true_peak(__m128 previous_samples, const float *samples,
size_t nr_samples)
{
/* These are normalized-sinc parameters for interpolating over sample
* points which are located at x-coords: -1.5, -0.5, +0.5, +1.5.
* And oversample points at x-coords: -0.3, -0.1, 0.1, 0.3. */
const __m128 m3 =
_mm_set_ps(-0.155915f, 0.935489f, 0.233872f, -0.103943f);
const __m128 m1 =
_mm_set_ps(-0.216236f, 0.756827f, 0.504551f, -0.189207f);
const __m128 p1 =
_mm_set_ps(-0.189207f, 0.504551f, 0.756827f, -0.216236f);
const __m128 p3 =
_mm_set_ps(-0.103943f, 0.233872f, 0.935489f, -0.155915f);
__m128 work = previous_samples;
__m128 peak = previous_samples;
for (size_t i = 0; (i + 3) < nr_samples; i += 4) {
__m128 new_work = _mm_load_ps(&samples[i]);
__m128 intrp_samples;
/* Include the actual sample values in the peak. */
__m128 abs_new_work = abs_ps(new_work);
peak = _mm_max_ps(peak, abs_new_work);
/* Shift in the next point. */
SHIFT_RIGHT_2PS(new_work, work);
VECTOR_MATRIX_CROSS_PS(intrp_samples, work, m3, m1, p1, p3);
peak = _mm_max_ps(peak, abs_ps(intrp_samples));
SHIFT_RIGHT_2PS(new_work, work);
VECTOR_MATRIX_CROSS_PS(intrp_samples, work, m3, m1, p1, p3);
peak = _mm_max_ps(peak, abs_ps(intrp_samples));
SHIFT_RIGHT_2PS(new_work, work);
VECTOR_MATRIX_CROSS_PS(intrp_samples, work, m3, m1, p1, p3);
peak = _mm_max_ps(peak, abs_ps(intrp_samples));
SHIFT_RIGHT_2PS(new_work, work);
VECTOR_MATRIX_CROSS_PS(intrp_samples, work, m3, m1, p1, p3);
peak = _mm_max_ps(peak, abs_ps(intrp_samples));
}
float r;
hmax_ps(r, peak);
return r;
}
/* points contain the first four samples to calculate the sinc interpolation
* over. They will have come from a previous iteration.
*/
static float get_sample_peak(__m128 previous_samples, const float *samples,
size_t nr_samples)
{
__m128 peak = previous_samples;
for (size_t i = 0; (i + 3) < nr_samples; i += 4) {
__m128 new_work = _mm_load_ps(&samples[i]);
peak = _mm_max_ps(peak, abs_ps(new_work));
}
float r;
hmax_ps(r, peak);
return r;
}
static void volmeter_process_peak_last_samples(obs_volmeter_t *volmeter,
int channel_nr, float *samples,
size_t nr_samples)
{
/* Take the last 4 samples that need to be used for the next peak
* calculation. If there are less than 4 samples in total the new
* samples shift out the old samples. */
switch (nr_samples) {
case 0:
break;
case 1:
volmeter->prev_samples[channel_nr][0] =
volmeter->prev_samples[channel_nr][1];
volmeter->prev_samples[channel_nr][1] =
volmeter->prev_samples[channel_nr][2];
volmeter->prev_samples[channel_nr][2] =
volmeter->prev_samples[channel_nr][3];
volmeter->prev_samples[channel_nr][3] = samples[nr_samples - 1];
break;
case 2:
volmeter->prev_samples[channel_nr][0] =
volmeter->prev_samples[channel_nr][2];
volmeter->prev_samples[channel_nr][1] =
volmeter->prev_samples[channel_nr][3];
volmeter->prev_samples[channel_nr][2] = samples[nr_samples - 2];
volmeter->prev_samples[channel_nr][3] = samples[nr_samples - 1];
break;
case 3:
volmeter->prev_samples[channel_nr][0] =
volmeter->prev_samples[channel_nr][3];
volmeter->prev_samples[channel_nr][1] = samples[nr_samples - 3];
volmeter->prev_samples[channel_nr][2] = samples[nr_samples - 2];
volmeter->prev_samples[channel_nr][3] = samples[nr_samples - 1];
break;
default:
volmeter->prev_samples[channel_nr][0] = samples[nr_samples - 4];
volmeter->prev_samples[channel_nr][1] = samples[nr_samples - 3];
volmeter->prev_samples[channel_nr][2] = samples[nr_samples - 2];
volmeter->prev_samples[channel_nr][3] = samples[nr_samples - 1];
}
}
static void volmeter_process_peak(obs_volmeter_t *volmeter,
const struct audio_data *data,
int nr_channels)
{
int nr_samples = data->frames;
int channel_nr = 0;
for (int plane_nr = 0; channel_nr < nr_channels; plane_nr++) {
float *samples = (float *)data->data[plane_nr];
if (!samples) {
continue;
}
if (((uintptr_t)samples & 0xf) > 0) {
printf("Audio plane %i is not aligned %p skipping "
"peak volume measurement.\n",
plane_nr, samples);
volmeter->peak[channel_nr] = 1.0;
channel_nr++;
continue;
}
/* volmeter->prev_samples may not be aligned to 16 bytes;
* use unaligned load. */
__m128 previous_samples =
_mm_loadu_ps(volmeter->prev_samples[channel_nr]);
float peak;
switch (volmeter->peak_meter_type) {
case TRUE_PEAK_METER:
peak = get_true_peak(previous_samples, samples,
nr_samples);
break;
case SAMPLE_PEAK_METER:
default:
peak = get_sample_peak(previous_samples, samples,
nr_samples);
break;
}
volmeter_process_peak_last_samples(volmeter, channel_nr,
samples, nr_samples);
volmeter->peak[channel_nr] = peak;
channel_nr++;
}
/* Clear the peak of the channels that have not been handled. */
for (; channel_nr < MAX_AUDIO_CHANNELS; channel_nr++) {
volmeter->peak[channel_nr] = 0.0;
}
}
static void volmeter_process_magnitude(obs_volmeter_t *volmeter,
const struct audio_data *data,
int nr_channels)
{
size_t nr_samples = data->frames;
int channel_nr = 0;
for (int plane_nr = 0; channel_nr < nr_channels; plane_nr++) {
float *samples = (float *)data->data[plane_nr];
if (!samples) {
continue;
}
float sum = 0.0;
for (size_t i = 0; i < nr_samples; i++) {
float sample = samples[i];
sum += sample * sample;
}
volmeter->magnitude[channel_nr] = sqrtf(sum / nr_samples);
channel_nr++;
}
}
static void volmeter_process_audio_data(obs_volmeter_t *volmeter,
const struct audio_data *data)
{
int nr_channels = get_nr_channels_from_audio_data(data);
volmeter_process_peak(volmeter, data, nr_channels);
volmeter_process_magnitude(volmeter, data, nr_channels);
}
static void volmeter_source_data_received(void *vptr, obs_source_t *source,
const struct audio_data *data,
bool muted)
{
struct obs_volmeter *volmeter = (struct obs_volmeter *)vptr;
float mul;
float magnitude[MAX_AUDIO_CHANNELS];
float peak[MAX_AUDIO_CHANNELS];
float input_peak[MAX_AUDIO_CHANNELS];
pthread_mutex_lock(&volmeter->mutex);
volmeter_process_audio_data(volmeter, data);
// Adjust magnitude/peak based on the volume level set by the user.
// And convert to dB.
mul = muted && !obs_source_muted(source) ? 0.0f
: db_to_mul(volmeter->cur_db);
for (int channel_nr = 0; channel_nr < MAX_AUDIO_CHANNELS;
channel_nr++) {
magnitude[channel_nr] =
mul_to_db(volmeter->magnitude[channel_nr] * mul);
peak[channel_nr] = mul_to_db(volmeter->peak[channel_nr] * mul);
/* The input-peak is NOT adjusted with volume, so that the user
* can check the input-gain. */
input_peak[channel_nr] = mul_to_db(volmeter->peak[channel_nr]);
}
pthread_mutex_unlock(&volmeter->mutex);
signal_levels_updated(volmeter, magnitude, peak, input_peak);
}
obs_fader_t *obs_fader_create(enum obs_fader_type type)
{
struct obs_fader *fader = bzalloc(sizeof(struct obs_fader));
if (!fader)
return NULL;
pthread_mutex_init_value(&fader->mutex);
pthread_mutex_init_value(&fader->callback_mutex);
if (pthread_mutex_init(&fader->mutex, NULL) != 0)
goto fail;
if (pthread_mutex_init(&fader->callback_mutex, NULL) != 0)
goto fail;
switch (type) {
case OBS_FADER_CUBIC:
fader->def_to_db = cubic_def_to_db;
fader->db_to_def = cubic_db_to_def;
fader->max_db = 0.0f;
fader->min_db = -INFINITY;
break;
case OBS_FADER_IEC:
fader->def_to_db = iec_def_to_db;
fader->db_to_def = iec_db_to_def;
fader->max_db = 0.0f;
fader->min_db = -INFINITY;
break;
case OBS_FADER_LOG:
fader->def_to_db = log_def_to_db;
fader->db_to_def = log_db_to_def;
fader->max_db = 0.0f;
fader->min_db = -96.0f;
break;
default:
goto fail;
break;
}
fader->type = type;
return fader;
fail:
obs_fader_destroy(fader);
return NULL;
}
void obs_fader_destroy(obs_fader_t *fader)
{
if (!fader)
return;
obs_fader_detach_source(fader);
da_free(fader->callbacks);
pthread_mutex_destroy(&fader->callback_mutex);
pthread_mutex_destroy(&fader->mutex);
bfree(fader);
}
bool obs_fader_set_db(obs_fader_t *fader, const float db)
{
if (!fader)
return false;
pthread_mutex_lock(&fader->mutex);
bool clamped = false;
fader->cur_db = db;
if (fader->cur_db > fader->max_db) {
fader->cur_db = fader->max_db;
clamped = true;
}
if (fader->cur_db < fader->min_db) {
fader->cur_db = -INFINITY;
clamped = true;
}
fader->ignore_next_signal = true;
obs_source_t *src = fader->source;
const float mul = db_to_mul(fader->cur_db);
pthread_mutex_unlock(&fader->mutex);
if (src)
obs_source_set_volume(src, mul);
return !clamped;
}
float obs_fader_get_db(obs_fader_t *fader)
{
if (!fader)
return 0.0f;
pthread_mutex_lock(&fader->mutex);
const float db = fader->cur_db;
pthread_mutex_unlock(&fader->mutex);
return db;
}
bool obs_fader_set_deflection(obs_fader_t *fader, const float def)
{
if (!fader)
return false;
return obs_fader_set_db(fader, fader->def_to_db(def));
}
float obs_fader_get_deflection(obs_fader_t *fader)
{
if (!fader)
return 0.0f;
pthread_mutex_lock(&fader->mutex);
const float def = fader->db_to_def(fader->cur_db);
pthread_mutex_unlock(&fader->mutex);
return def;
}
bool obs_fader_set_mul(obs_fader_t *fader, const float mul)
{
if (!fader)
return false;
return obs_fader_set_db(fader, mul_to_db(mul));
}
float obs_fader_get_mul(obs_fader_t *fader)
{
if (!fader)
return 0.0f;
pthread_mutex_lock(&fader->mutex);
const float mul = db_to_mul(fader->cur_db);
pthread_mutex_unlock(&fader->mutex);
return mul;
}
bool obs_fader_attach_source(obs_fader_t *fader, obs_source_t *source)
{
signal_handler_t *sh;
float vol;
if (!fader || !source)
return false;
obs_fader_detach_source(fader);
sh = obs_source_get_signal_handler(source);
signal_handler_connect(sh, "volume", fader_source_volume_changed,
fader);
signal_handler_connect(sh, "destroy", fader_source_destroyed, fader);
vol = obs_source_get_volume(source);
pthread_mutex_lock(&fader->mutex);
fader->source = source;
fader->cur_db = mul_to_db(vol);
pthread_mutex_unlock(&fader->mutex);
return true;
}
void obs_fader_detach_source(obs_fader_t *fader)
{
signal_handler_t *sh;
obs_source_t *source;
if (!fader)
return;
pthread_mutex_lock(&fader->mutex);
source = fader->source;
fader->source = NULL;
pthread_mutex_unlock(&fader->mutex);
if (!source)
return;
sh = obs_source_get_signal_handler(source);
signal_handler_disconnect(sh, "volume", fader_source_volume_changed,
fader);
signal_handler_disconnect(sh, "destroy", fader_source_destroyed, fader);
}
void obs_fader_add_callback(obs_fader_t *fader, obs_fader_changed_t callback,
void *param)
{
struct fader_cb cb = {callback, param};
if (!obs_ptr_valid(fader, "obs_fader_add_callback"))
return;
pthread_mutex_lock(&fader->callback_mutex);
da_push_back(fader->callbacks, &cb);
pthread_mutex_unlock(&fader->callback_mutex);
}
void obs_fader_remove_callback(obs_fader_t *fader, obs_fader_changed_t callback,
void *param)
{
struct fader_cb cb = {callback, param};
if (!obs_ptr_valid(fader, "obs_fader_remove_callback"))
return;
pthread_mutex_lock(&fader->callback_mutex);
da_erase_item(fader->callbacks, &cb);
pthread_mutex_unlock(&fader->callback_mutex);
}
obs_volmeter_t *obs_volmeter_create(enum obs_fader_type type)
{
struct obs_volmeter *volmeter = bzalloc(sizeof(struct obs_volmeter));
if (!volmeter)
return NULL;
pthread_mutex_init_value(&volmeter->mutex);
pthread_mutex_init_value(&volmeter->callback_mutex);
if (pthread_mutex_init(&volmeter->mutex, NULL) != 0)
goto fail;
if (pthread_mutex_init(&volmeter->callback_mutex, NULL) != 0)
goto fail;
volmeter->type = type;
return volmeter;
fail:
obs_volmeter_destroy(volmeter);
return NULL;
}
void obs_volmeter_destroy(obs_volmeter_t *volmeter)
{
if (!volmeter)
return;
obs_volmeter_detach_source(volmeter);
da_free(volmeter->callbacks);
pthread_mutex_destroy(&volmeter->callback_mutex);
pthread_mutex_destroy(&volmeter->mutex);
bfree(volmeter);
}
bool obs_volmeter_attach_source(obs_volmeter_t *volmeter, obs_source_t *source)
{
signal_handler_t *sh;
float vol;
if (!volmeter || !source)
return false;
obs_volmeter_detach_source(volmeter);
sh = obs_source_get_signal_handler(source);
signal_handler_connect(sh, "volume", volmeter_source_volume_changed,
volmeter);
signal_handler_connect(sh, "destroy", volmeter_source_destroyed,
volmeter);
obs_source_add_audio_capture_callback(
source, volmeter_source_data_received, volmeter);
vol = obs_source_get_volume(source);
pthread_mutex_lock(&volmeter->mutex);
volmeter->source = source;
volmeter->cur_db = mul_to_db(vol);
pthread_mutex_unlock(&volmeter->mutex);
return true;
}
void obs_volmeter_detach_source(obs_volmeter_t *volmeter)
{
signal_handler_t *sh;
obs_source_t *source;
if (!volmeter)
return;
pthread_mutex_lock(&volmeter->mutex);
source = volmeter->source;
volmeter->source = NULL;
pthread_mutex_unlock(&volmeter->mutex);
if (!source)
return;
sh = obs_source_get_signal_handler(source);
signal_handler_disconnect(sh, "volume", volmeter_source_volume_changed,
volmeter);
signal_handler_disconnect(sh, "destroy", volmeter_source_destroyed,
volmeter);
obs_source_remove_audio_capture_callback(
source, volmeter_source_data_received, volmeter);
}
void obs_volmeter_set_peak_meter_type(obs_volmeter_t *volmeter,
enum obs_peak_meter_type peak_meter_type)
{
pthread_mutex_lock(&volmeter->mutex);
volmeter->peak_meter_type = peak_meter_type;
pthread_mutex_unlock(&volmeter->mutex);
}
void obs_volmeter_set_update_interval(obs_volmeter_t *volmeter,
const unsigned int ms)
{
if (!volmeter || !ms)
return;
pthread_mutex_lock(&volmeter->mutex);
volmeter->update_ms = ms;
pthread_mutex_unlock(&volmeter->mutex);
}
unsigned int obs_volmeter_get_update_interval(obs_volmeter_t *volmeter)
{
if (!volmeter)
return 0;
pthread_mutex_lock(&volmeter->mutex);
const unsigned int interval = volmeter->update_ms;
pthread_mutex_unlock(&volmeter->mutex);
return interval;
}
int obs_volmeter_get_nr_channels(obs_volmeter_t *volmeter)
{
int source_nr_audio_channels;
int obs_nr_audio_channels;
if (volmeter->source) {
source_nr_audio_channels = get_audio_channels(
volmeter->source->sample_info.speakers);
} else {
source_nr_audio_channels = 0;
}
struct obs_audio_info audio_info;
if (obs_get_audio_info(&audio_info)) {
obs_nr_audio_channels = get_audio_channels(audio_info.speakers);
} else {
obs_nr_audio_channels = 2;
}
return CLAMP(source_nr_audio_channels, 0, obs_nr_audio_channels);
}
void obs_volmeter_add_callback(obs_volmeter_t *volmeter,
obs_volmeter_updated_t callback, void *param)
{
struct meter_cb cb = {callback, param};
if (!obs_ptr_valid(volmeter, "obs_volmeter_add_callback"))
return;
pthread_mutex_lock(&volmeter->callback_mutex);
da_push_back(volmeter->callbacks, &cb);
pthread_mutex_unlock(&volmeter->callback_mutex);
}
void obs_volmeter_remove_callback(obs_volmeter_t *volmeter,
obs_volmeter_updated_t callback, void *param)
{
struct meter_cb cb = {callback, param};
if (!obs_ptr_valid(volmeter, "obs_volmeter_remove_callback"))
return;
pthread_mutex_lock(&volmeter->callback_mutex);
da_erase_item(volmeter->callbacks, &cb);
pthread_mutex_unlock(&volmeter->callback_mutex);
}
float obs_mul_to_db(float mul)
{
return mul_to_db(mul);
}
float obs_db_to_mul(float db)
{
return db_to_mul(db);
}