obs-studio/libobs/media-io/audio-resampler-ffmpeg.c

206 lines
5.5 KiB
C

/******************************************************************************
Copyright (C) 2013 by Hugh Bailey <obs.jim@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
******************************************************************************/
#include "../util/bmem.h"
#include "audio-resampler.h"
#include "audio-io.h"
#include <libavutil/avutil.h>
#include <libavformat/avformat.h>
#include <libswresample/swresample.h>
struct audio_resampler {
struct SwrContext *context;
bool opened;
uint32_t input_freq;
uint64_t input_layout;
enum AVSampleFormat input_format;
uint8_t *output_buffer[MAX_AV_PLANES];
uint64_t output_layout;
enum AVSampleFormat output_format;
int output_size;
uint32_t output_ch;
uint32_t output_freq;
uint32_t output_planes;
};
static inline enum AVSampleFormat convert_audio_format(enum audio_format format)
{
switch (format) {
case AUDIO_FORMAT_UNKNOWN:
return AV_SAMPLE_FMT_S16;
case AUDIO_FORMAT_U8BIT:
return AV_SAMPLE_FMT_U8;
case AUDIO_FORMAT_16BIT:
return AV_SAMPLE_FMT_S16;
case AUDIO_FORMAT_32BIT:
return AV_SAMPLE_FMT_S32;
case AUDIO_FORMAT_FLOAT:
return AV_SAMPLE_FMT_FLT;
case AUDIO_FORMAT_U8BIT_PLANAR:
return AV_SAMPLE_FMT_U8P;
case AUDIO_FORMAT_16BIT_PLANAR:
return AV_SAMPLE_FMT_S16P;
case AUDIO_FORMAT_32BIT_PLANAR:
return AV_SAMPLE_FMT_S32P;
case AUDIO_FORMAT_FLOAT_PLANAR:
return AV_SAMPLE_FMT_FLTP;
}
/* shouldn't get here */
return AV_SAMPLE_FMT_S16;
}
static inline uint64_t convert_speaker_layout(enum speaker_layout layout)
{
switch (layout) {
case SPEAKERS_UNKNOWN:
return 0;
case SPEAKERS_MONO:
return AV_CH_LAYOUT_MONO;
case SPEAKERS_STEREO:
return AV_CH_LAYOUT_STEREO;
case SPEAKERS_2POINT1:
return AV_CH_LAYOUT_SURROUND;
case SPEAKERS_4POINT0:
return AV_CH_LAYOUT_4POINT0;
case SPEAKERS_4POINT1:
return AV_CH_LAYOUT_4POINT1;
case SPEAKERS_5POINT1:
return AV_CH_LAYOUT_5POINT1_BACK;
case SPEAKERS_7POINT1:
return AV_CH_LAYOUT_7POINT1;
}
/* shouldn't get here */
return 0;
}
audio_resampler_t *audio_resampler_create(const struct resample_info *dst,
const struct resample_info *src)
{
struct audio_resampler *rs = bzalloc(sizeof(struct audio_resampler));
int errcode;
rs->opened = false;
rs->input_freq = src->samples_per_sec;
rs->input_layout = convert_speaker_layout(src->speakers);
rs->input_format = convert_audio_format(src->format);
rs->output_size = 0;
rs->output_ch = get_audio_channels(dst->speakers);
rs->output_freq = dst->samples_per_sec;
rs->output_layout = convert_speaker_layout(dst->speakers);
rs->output_format = convert_audio_format(dst->format);
rs->output_planes = is_audio_planar(dst->format) ? rs->output_ch : 1;
rs->context = swr_alloc_set_opts(NULL, rs->output_layout,
rs->output_format,
dst->samples_per_sec, rs->input_layout,
rs->input_format, src->samples_per_sec,
0, NULL);
if (!rs->context) {
blog(LOG_ERROR, "swr_alloc_set_opts failed");
audio_resampler_destroy(rs);
return NULL;
}
if (rs->input_layout == AV_CH_LAYOUT_MONO && rs->output_ch > 1) {
const double matrix[MAX_AUDIO_CHANNELS][MAX_AUDIO_CHANNELS] = {
{1},
{1, 1},
{1, 1, 0},
{1, 1, 1, 1},
{1, 1, 1, 0, 1},
{1, 1, 1, 1, 1, 1},
{1, 1, 1, 0, 1, 1, 1},
{1, 1, 1, 0, 1, 1, 1, 1},
};
if (swr_set_matrix(rs->context, matrix[rs->output_ch - 1], 1) <
0)
blog(LOG_DEBUG,
"swr_set_matrix failed for mono upmix\n");
}
errcode = swr_init(rs->context);
if (errcode != 0) {
blog(LOG_ERROR, "avresample_open failed: error code %d",
errcode);
audio_resampler_destroy(rs);
return NULL;
}
return rs;
}
void audio_resampler_destroy(audio_resampler_t *rs)
{
if (rs) {
if (rs->context)
swr_free(&rs->context);
if (rs->output_buffer[0])
av_freep(&rs->output_buffer[0]);
bfree(rs);
}
}
bool audio_resampler_resample(audio_resampler_t *rs, uint8_t *output[],
uint32_t *out_frames, uint64_t *ts_offset,
const uint8_t *const input[], uint32_t in_frames)
{
if (!rs)
return false;
struct SwrContext *context = rs->context;
int ret;
int64_t delay = swr_get_delay(context, rs->input_freq);
int estimated = (int)av_rescale_rnd(delay + (int64_t)in_frames,
(int64_t)rs->output_freq,
(int64_t)rs->input_freq,
AV_ROUND_UP);
*ts_offset = (uint64_t)swr_get_delay(context, 1000000000);
/* resize the buffer if bigger */
if (estimated > rs->output_size) {
if (rs->output_buffer[0])
av_freep(&rs->output_buffer[0]);
av_samples_alloc(rs->output_buffer, NULL, rs->output_ch,
estimated, rs->output_format, 0);
rs->output_size = estimated;
}
ret = swr_convert(context, rs->output_buffer, rs->output_size,
(const uint8_t **)input, in_frames);
if (ret < 0) {
blog(LOG_ERROR, "swr_convert failed: %d", ret);
return false;
}
for (uint32_t i = 0; i < rs->output_planes; i++)
output[i] = rs->output_buffer[i];
*out_frames = (uint32_t)ret;
return true;
}