obs-studio/libobs-opengl/gl-subsystem.c

1627 lines
37 KiB
C

/******************************************************************************
Copyright (C) 2013 by Hugh Bailey <obs.jim@gmail.com>
Copyright (C) 2014 by Zachary Lund <admin@computerquip.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
******************************************************************************/
#include <graphics/matrix3.h>
#include "gl-subsystem.h"
/* Goofy Windows.h macros need to be removed */
#ifdef near
#undef near
#endif
#ifdef far
#undef far
#endif
/* #define SHOW_ALL_GL_MESSAGES */
#ifdef _DEBUG
static void APIENTRY gl_debug_proc(GLenum source, GLenum type, GLuint id,
GLenum severity, GLsizei length,
const GLchar *message, const GLvoid *data)
{
UNUSED_PARAMETER(id);
UNUSED_PARAMETER(data);
char *source_str, *type_str, *severity_str;
/* frames can get a bit too much spam with irrelevant/insignificant opengl
* debug messages */
#ifndef SHOW_ALL_GL_MESSAGES
if (type > GL_DEBUG_TYPE_PORTABILITY &&
severity != GL_DEBUG_SEVERITY_HIGH) {
return;
}
#endif
switch (source) {
case GL_DEBUG_SOURCE_API:
source_str = "API";
break;
case GL_DEBUG_SOURCE_WINDOW_SYSTEM:
source_str = "Window System";
break;
case GL_DEBUG_SOURCE_SHADER_COMPILER:
source_str = "Shader Compiler";
break;
case GL_DEBUG_SOURCE_THIRD_PARTY:
source_str = "Third Party";
break;
case GL_DEBUG_SOURCE_APPLICATION:
source_str = "Application";
break;
case GL_DEBUG_SOURCE_OTHER:
source_str = "Other";
break;
default:
source_str = "Unknown";
}
switch (type) {
case GL_DEBUG_TYPE_ERROR:
type_str = "Error";
break;
case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR:
type_str = "Deprecated Behavior";
break;
case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR:
type_str = "Undefined Behavior";
break;
case GL_DEBUG_TYPE_PORTABILITY:
type_str = "Portability";
break;
case GL_DEBUG_TYPE_PERFORMANCE:
type_str = "Performance";
break;
case GL_DEBUG_TYPE_OTHER:
type_str = "Other";
break;
default:
type_str = "Unknown";
}
switch (severity) {
case GL_DEBUG_SEVERITY_HIGH:
severity_str = "High";
break;
case GL_DEBUG_SEVERITY_MEDIUM:
severity_str = "Medium";
break;
case GL_DEBUG_SEVERITY_LOW:
severity_str = "Low";
break;
case GL_DEBUG_SEVERITY_NOTIFICATION:
severity_str = "Notification";
break;
default:
severity_str = "Unknown";
}
blog(LOG_DEBUG, "[%s][%s]{%s}: %.*s", source_str, type_str,
severity_str, length, message);
}
static void gl_enable_debug()
{
if (GLAD_GL_VERSION_4_3) {
glDebugMessageCallback(gl_debug_proc, NULL);
gl_enable(GL_DEBUG_OUTPUT);
} else if (GLAD_GL_ARB_debug_output) {
glDebugMessageCallbackARB(gl_debug_proc, NULL);
} else {
blog(LOG_DEBUG, "Failed to set GL debug callback as it is "
"not supported.");
}
}
#else
static void gl_enable_debug() {}
#endif
static bool gl_init_extensions(struct gs_device *device)
{
if (!GLAD_GL_VERSION_3_3) {
blog(LOG_ERROR,
"obs-studio requires OpenGL version 3.3 or higher.");
return false;
}
gl_enable_debug();
if (!GLAD_GL_EXT_texture_sRGB_decode) {
blog(LOG_ERROR, "OpenGL extension EXT_texture_sRGB_decode "
"is required.");
return false;
}
gl_enable(GL_TEXTURE_CUBE_MAP_SEAMLESS);
if (GLAD_GL_VERSION_4_3 || GLAD_GL_ARB_copy_image)
device->copy_type = COPY_TYPE_ARB;
else if (GLAD_GL_NV_copy_image)
device->copy_type = COPY_TYPE_NV;
else
device->copy_type = COPY_TYPE_FBO_BLIT;
return true;
}
static void clear_textures(struct gs_device *device)
{
GLenum i;
for (i = 0; i < GS_MAX_TEXTURES; i++) {
if (device->cur_textures[i]) {
gl_active_texture(GL_TEXTURE0 + i);
gl_bind_texture(device->cur_textures[i]->gl_target, 0);
device->cur_textures[i] = NULL;
}
}
}
void convert_sampler_info(struct gs_sampler_state *sampler,
const struct gs_sampler_info *info)
{
GLint max_anisotropy_max;
convert_filter(info->filter, &sampler->min_filter,
&sampler->mag_filter);
sampler->address_u = convert_address_mode(info->address_u);
sampler->address_v = convert_address_mode(info->address_v);
sampler->address_w = convert_address_mode(info->address_w);
sampler->max_anisotropy = info->max_anisotropy;
max_anisotropy_max = 1;
if (GLAD_GL_EXT_texture_filter_anisotropic) {
glGetIntegerv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT,
&max_anisotropy_max);
gl_success("glGetIntegerv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT)");
}
if (1 <= sampler->max_anisotropy &&
sampler->max_anisotropy <= max_anisotropy_max)
return;
if (sampler->max_anisotropy < 1)
sampler->max_anisotropy = 1;
else if (sampler->max_anisotropy > max_anisotropy_max)
sampler->max_anisotropy = max_anisotropy_max;
vec4_from_rgba(&sampler->border_color, info->border_color);
blog(LOG_DEBUG,
"convert_sampler_info: 1 <= max_anisotropy <= "
"%d violated, selected: %d, set: %d",
max_anisotropy_max, info->max_anisotropy, sampler->max_anisotropy);
}
const char *device_get_name(void)
{
return "OpenGL";
}
int device_get_type(void)
{
return GS_DEVICE_OPENGL;
}
const char *device_preprocessor_name(void)
{
return "_OPENGL";
}
int device_create(gs_device_t **p_device, uint32_t adapter)
{
struct gs_device *device = bzalloc(sizeof(struct gs_device));
int errorcode = GS_ERROR_FAIL;
blog(LOG_INFO, "---------------------------------");
blog(LOG_INFO, "Initializing OpenGL...");
device->plat = gl_platform_create(device, adapter);
if (!device->plat)
goto fail;
const char *glVendor = (const char *)glGetString(GL_VENDOR);
const char *glRenderer = (const char *)glGetString(GL_RENDERER);
blog(LOG_INFO, "Loading up OpenGL on adapter %s %s", glVendor,
glRenderer);
if (!gl_init_extensions(device)) {
errorcode = GS_ERROR_NOT_SUPPORTED;
goto fail;
}
const char *glVersion = (const char *)glGetString(GL_VERSION);
const char *glShadingLanguage =
(const char *)glGetString(GL_SHADING_LANGUAGE_VERSION);
blog(LOG_INFO,
"OpenGL loaded successfully, version %s, shading "
"language %s",
glVersion, glShadingLanguage);
gl_enable(GL_CULL_FACE);
gl_gen_vertex_arrays(1, &device->empty_vao);
struct gs_sampler_info raw_load_info;
raw_load_info.filter = GS_FILTER_POINT;
raw_load_info.address_u = GS_ADDRESS_BORDER;
raw_load_info.address_v = GS_ADDRESS_BORDER;
raw_load_info.address_w = GS_ADDRESS_BORDER;
raw_load_info.max_anisotropy = 1;
raw_load_info.border_color = 0;
device->raw_load_sampler =
device_samplerstate_create(device, &raw_load_info);
gl_clear_context(device);
device->cur_swap = NULL;
#ifdef _WIN32
blog(LOG_INFO, "Warning: The OpenGL renderer is currently in use. "
"On windows, the OpenGL renderer can decrease "
"capture performance due to the lack of specific "
"features used to maximize capture performance. "
"The Direct3D 11 renderer is recommended instead.");
#endif
*p_device = device;
return GS_SUCCESS;
fail:
blog(LOG_ERROR, "device_create (GL) failed");
bfree(device);
*p_device = NULL;
return errorcode;
}
void device_destroy(gs_device_t *device)
{
if (device) {
while (device->first_program)
gs_program_destroy(device->first_program);
samplerstate_release(device->raw_load_sampler);
gl_delete_vertex_arrays(1, &device->empty_vao);
da_free(device->proj_stack);
gl_platform_destroy(device->plat);
bfree(device);
}
}
gs_swapchain_t *device_swapchain_create(gs_device_t *device,
const struct gs_init_data *info)
{
struct gs_swap_chain *swap = bzalloc(sizeof(struct gs_swap_chain));
swap->device = device;
swap->info = *info;
swap->wi = gl_windowinfo_create(info);
if (!swap->wi) {
blog(LOG_ERROR, "device_swapchain_create (GL) failed");
gs_swapchain_destroy(swap);
return NULL;
}
if (!gl_platform_init_swapchain(swap)) {
blog(LOG_ERROR, "gl_platform_init_swapchain failed");
gs_swapchain_destroy(swap);
return NULL;
}
return swap;
}
void device_resize(gs_device_t *device, uint32_t cx, uint32_t cy)
{
/* GL automatically resizes the device, so it doesn't do much */
if (device->cur_swap) {
device->cur_swap->info.cx = cx;
device->cur_swap->info.cy = cy;
} else {
blog(LOG_WARNING, "device_resize (GL): No active swap");
}
gl_update(device);
}
enum gs_color_space device_get_color_space(gs_device_t *device)
{
return device->cur_color_space;
}
void device_update_color_space(gs_device_t *device)
{
if (!device->cur_swap)
blog(LOG_WARNING, "device_display_change (GL): No active swap");
}
void device_get_size(const gs_device_t *device, uint32_t *cx, uint32_t *cy)
{
if (device->cur_swap) {
*cx = device->cur_swap->info.cx;
*cy = device->cur_swap->info.cy;
} else {
blog(LOG_WARNING, "device_get_size (GL): No active swap");
*cx = 0;
*cy = 0;
}
}
uint32_t device_get_width(const gs_device_t *device)
{
if (device->cur_swap) {
return device->cur_swap->info.cx;
} else {
blog(LOG_WARNING, "device_get_width (GL): No active swap");
return 0;
}
}
uint32_t device_get_height(const gs_device_t *device)
{
if (device->cur_swap) {
return device->cur_swap->info.cy;
} else {
blog(LOG_WARNING, "device_get_height (GL): No active swap");
return 0;
}
}
gs_samplerstate_t *
device_samplerstate_create(gs_device_t *device,
const struct gs_sampler_info *info)
{
struct gs_sampler_state *sampler;
sampler = bzalloc(sizeof(struct gs_sampler_state));
sampler->device = device;
sampler->ref = 1;
convert_sampler_info(sampler, info);
return sampler;
}
gs_timer_t *device_timer_create(gs_device_t *device)
{
UNUSED_PARAMETER(device);
struct gs_timer *timer;
GLuint queries[2];
glGenQueries(2, queries);
if (!gl_success("glGenQueries"))
return NULL;
timer = bzalloc(sizeof(struct gs_timer));
timer->queries[0] = queries[0];
timer->queries[1] = queries[1];
return timer;
}
gs_timer_range_t *device_timer_range_create(gs_device_t *device)
{
UNUSED_PARAMETER(device);
return NULL;
}
enum gs_texture_type device_get_texture_type(const gs_texture_t *texture)
{
return texture->type;
}
static void strip_mipmap_filter(GLint *filter)
{
switch (*filter) {
case GL_NEAREST:
case GL_LINEAR:
return;
case GL_NEAREST_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
*filter = GL_NEAREST;
return;
case GL_LINEAR_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_LINEAR:
*filter = GL_LINEAR;
return;
}
*filter = GL_NEAREST;
}
static inline void apply_swizzle(struct gs_texture *tex)
{
if (tex->format == GS_A8) {
gl_tex_param_i(tex->gl_target, GL_TEXTURE_SWIZZLE_R, GL_ONE);
gl_tex_param_i(tex->gl_target, GL_TEXTURE_SWIZZLE_G, GL_ONE);
gl_tex_param_i(tex->gl_target, GL_TEXTURE_SWIZZLE_B, GL_ONE);
gl_tex_param_i(tex->gl_target, GL_TEXTURE_SWIZZLE_A, GL_RED);
}
}
static bool load_texture_sampler(gs_texture_t *tex, gs_samplerstate_t *ss)
{
bool success = true;
GLint min_filter;
if (tex->cur_sampler == ss)
return true;
if (tex->cur_sampler)
samplerstate_release(tex->cur_sampler);
tex->cur_sampler = ss;
if (!ss)
return true;
samplerstate_addref(ss);
min_filter = ss->min_filter;
if (gs_texture_is_rect(tex))
strip_mipmap_filter(&min_filter);
if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_MIN_FILTER, min_filter))
success = false;
if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_MAG_FILTER,
ss->mag_filter))
success = false;
if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_WRAP_S, ss->address_u))
success = false;
if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_WRAP_T, ss->address_v))
success = false;
if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_WRAP_R, ss->address_w))
success = false;
if (ss->address_u == GL_CLAMP_TO_BORDER ||
ss->address_v == GL_CLAMP_TO_BORDER ||
ss->address_w == GL_CLAMP_TO_BORDER) {
if (!gl_tex_param_fv(tex->gl_target, GL_TEXTURE_BORDER_COLOR,
ss->border_color.ptr))
success = false;
}
if (GLAD_GL_EXT_texture_filter_anisotropic) {
if (!gl_tex_param_i(tex->gl_target,
GL_TEXTURE_MAX_ANISOTROPY_EXT,
ss->max_anisotropy))
success = false;
}
apply_swizzle(tex);
return success;
}
static inline struct gs_shader_param *get_texture_param(gs_device_t *device,
int unit)
{
struct gs_shader *shader = device->cur_pixel_shader;
size_t i;
for (i = 0; i < shader->params.num; i++) {
struct gs_shader_param *param = shader->params.array + i;
if (param->type == GS_SHADER_PARAM_TEXTURE) {
if (param->texture_id == unit)
return param;
}
}
return NULL;
}
static void device_load_texture_internal(gs_device_t *device, gs_texture_t *tex,
int unit, GLint decode)
{
struct gs_shader_param *param;
struct gs_sampler_state *sampler;
struct gs_texture *cur_tex = device->cur_textures[unit];
/* need a pixel shader to properly bind textures */
if (!device->cur_pixel_shader)
goto fail;
if (cur_tex == tex)
return;
if (!gl_active_texture(GL_TEXTURE0 + unit))
goto fail;
/* the target for the previous text may not be the same as the
* next texture, so unbind the previous texture first to be safe */
if (cur_tex && (!tex || cur_tex->gl_target != tex->gl_target))
gl_bind_texture(cur_tex->gl_target, 0);
device->cur_textures[unit] = tex;
param = get_texture_param(device, unit);
if (!param)
return;
param->texture = tex;
if (!tex)
return;
if (param->sampler_id != (size_t)-1)
sampler = device->cur_samplers[param->sampler_id];
else
sampler = device->raw_load_sampler;
if (!gl_bind_texture(tex->gl_target, tex->texture))
goto fail;
if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_SRGB_DECODE_EXT, decode))
goto fail;
if (sampler && !load_texture_sampler(tex, sampler))
goto fail;
return;
fail:
blog(LOG_ERROR, "device_load_texture (GL) failed");
}
void device_load_texture(gs_device_t *device, gs_texture_t *tex, int unit)
{
device_load_texture_internal(device, tex, unit, GL_SKIP_DECODE_EXT);
}
void device_load_texture_srgb(gs_device_t *device, gs_texture_t *tex, int unit)
{
device_load_texture_internal(device, tex, unit, GL_DECODE_EXT);
}
static bool load_sampler_on_textures(gs_device_t *device, gs_samplerstate_t *ss,
int sampler_unit)
{
struct gs_shader *shader = device->cur_pixel_shader;
size_t i;
for (i = 0; i < shader->params.num; i++) {
struct gs_shader_param *param = shader->params.array + i;
if (param->type == GS_SHADER_PARAM_TEXTURE &&
param->sampler_id == (uint32_t)sampler_unit &&
param->texture) {
if (!gl_active_texture(GL_TEXTURE0 + param->texture_id))
return false;
if (!load_texture_sampler(param->texture, ss))
return false;
}
}
return true;
}
void device_load_samplerstate(gs_device_t *device, gs_samplerstate_t *ss,
int unit)
{
/* need a pixel shader to properly bind samplers */
if (!device->cur_pixel_shader)
ss = NULL;
if (device->cur_samplers[unit] == ss)
return;
device->cur_samplers[unit] = ss;
if (!ss)
return;
if (!load_sampler_on_textures(device, ss, unit))
blog(LOG_ERROR, "device_load_samplerstate (GL) failed");
return;
}
void device_load_vertexshader(gs_device_t *device, gs_shader_t *vertshader)
{
if (device->cur_vertex_shader == vertshader)
return;
if (vertshader && vertshader->type != GS_SHADER_VERTEX) {
blog(LOG_ERROR, "Specified shader is not a vertex shader");
blog(LOG_ERROR, "device_load_vertexshader (GL) failed");
return;
}
device->cur_vertex_shader = vertshader;
}
static void load_default_pixelshader_samplers(struct gs_device *device,
struct gs_shader *ps)
{
size_t i;
if (!ps)
return;
for (i = 0; i < ps->samplers.num; i++) {
struct gs_sampler_state *ss = ps->samplers.array[i];
device->cur_samplers[i] = ss;
}
for (; i < GS_MAX_TEXTURES; i++)
device->cur_samplers[i] = NULL;
}
void device_load_pixelshader(gs_device_t *device, gs_shader_t *pixelshader)
{
if (device->cur_pixel_shader == pixelshader)
return;
if (pixelshader && pixelshader->type != GS_SHADER_PIXEL) {
blog(LOG_ERROR, "Specified shader is not a pixel shader");
goto fail;
}
device->cur_pixel_shader = pixelshader;
clear_textures(device);
if (pixelshader)
load_default_pixelshader_samplers(device, pixelshader);
return;
fail:
blog(LOG_ERROR, "device_load_pixelshader (GL) failed");
}
void device_load_default_samplerstate(gs_device_t *device, bool b_3d, int unit)
{
/* TODO */
UNUSED_PARAMETER(device);
UNUSED_PARAMETER(b_3d);
UNUSED_PARAMETER(unit);
}
gs_shader_t *device_get_vertex_shader(const gs_device_t *device)
{
return device->cur_vertex_shader;
}
gs_shader_t *device_get_pixel_shader(const gs_device_t *device)
{
return device->cur_pixel_shader;
}
gs_texture_t *device_get_render_target(const gs_device_t *device)
{
return device->cur_render_target;
}
gs_zstencil_t *device_get_zstencil_target(const gs_device_t *device)
{
return device->cur_zstencil_buffer;
}
static bool get_tex_dimensions(gs_texture_t *tex, uint32_t *width,
uint32_t *height)
{
if (tex->type == GS_TEXTURE_2D) {
struct gs_texture_2d *tex2d = (struct gs_texture_2d *)tex;
*width = tex2d->width;
*height = tex2d->height;
return true;
} else if (tex->type == GS_TEXTURE_CUBE) {
struct gs_texture_cube *cube = (struct gs_texture_cube *)tex;
*width = cube->size;
*height = cube->size;
return true;
}
blog(LOG_ERROR, "Texture must be 2D or cubemap");
return false;
}
/*
* This automatically manages FBOs so that render targets are always given
* an FBO that matches their width/height/format to maximize optimization
*/
struct fbo_info *get_fbo(gs_texture_t *tex, uint32_t width, uint32_t height)
{
if (tex->fbo && tex->fbo->width == width &&
tex->fbo->height == height && tex->fbo->format == tex->format)
return tex->fbo;
GLuint fbo;
glGenFramebuffers(1, &fbo);
if (!gl_success("glGenFramebuffers"))
return NULL;
tex->fbo = bmalloc(sizeof(struct fbo_info));
tex->fbo->fbo = fbo;
tex->fbo->width = width;
tex->fbo->height = height;
tex->fbo->format = tex->format;
tex->fbo->cur_render_target = NULL;
tex->fbo->cur_render_side = 0;
tex->fbo->cur_zstencil_buffer = NULL;
return tex->fbo;
}
static inline struct fbo_info *get_fbo_by_tex(gs_texture_t *tex)
{
uint32_t width, height;
if (!get_tex_dimensions(tex, &width, &height))
return NULL;
return get_fbo(tex, width, height);
}
static bool set_current_fbo(gs_device_t *device, struct fbo_info *fbo)
{
if (device->cur_fbo != fbo) {
GLuint fbo_obj = fbo ? fbo->fbo : 0;
if (!gl_bind_framebuffer(GL_DRAW_FRAMEBUFFER, fbo_obj))
return false;
if (device->cur_fbo) {
device->cur_fbo->cur_render_target = NULL;
device->cur_fbo->cur_zstencil_buffer = NULL;
}
}
device->cur_fbo = fbo;
return true;
}
static bool attach_rendertarget(struct fbo_info *fbo, gs_texture_t *tex,
int side)
{
if (fbo->cur_render_target == tex)
return true;
fbo->cur_render_target = tex;
if (tex->type == GS_TEXTURE_2D) {
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
tex->texture, 0);
} else if (tex->type == GS_TEXTURE_CUBE) {
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
GL_TEXTURE_CUBE_MAP_POSITIVE_X + side,
tex->texture, 0);
} else {
return false;
}
return gl_success("glFramebufferTexture2D");
}
static bool attach_zstencil(struct fbo_info *fbo, gs_zstencil_t *zs)
{
GLuint zsbuffer = 0;
GLenum zs_attachment = GL_DEPTH_STENCIL_ATTACHMENT;
if (fbo->cur_zstencil_buffer == zs)
return true;
fbo->cur_zstencil_buffer = zs;
if (zs) {
zsbuffer = zs->buffer;
zs_attachment = zs->attachment;
}
glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, zs_attachment,
GL_RENDERBUFFER, zsbuffer);
if (!gl_success("glFramebufferRenderbuffer"))
return false;
return true;
}
static bool set_target(gs_device_t *device, gs_texture_t *tex, int side,
gs_zstencil_t *zs, enum gs_color_space space)
{
device->cur_color_space = space;
if (device->cur_render_target == tex &&
device->cur_zstencil_buffer == zs &&
device->cur_render_side == side)
return true;
device->cur_render_target = tex;
device->cur_render_side = side;
device->cur_zstencil_buffer = zs;
if (!tex)
return set_current_fbo(device, NULL);
struct fbo_info *const fbo = get_fbo_by_tex(tex);
if (!fbo)
return false;
set_current_fbo(device, fbo);
if (!attach_rendertarget(fbo, tex, side))
return false;
if (!attach_zstencil(fbo, zs))
return false;
return true;
}
void device_set_render_target(gs_device_t *device, gs_texture_t *tex,
gs_zstencil_t *zstencil)
{
if (tex) {
if (tex->type != GS_TEXTURE_2D) {
blog(LOG_ERROR, "Texture is not a 2D texture");
goto fail;
}
if (!tex->is_render_target) {
blog(LOG_ERROR, "Texture is not a render target");
goto fail;
}
}
if (!set_target(device, tex, 0, zstencil, GS_CS_SRGB))
goto fail;
return;
fail:
blog(LOG_ERROR, "device_set_render_target (GL) failed");
}
void device_set_render_target_with_color_space(gs_device_t *device,
gs_texture_t *tex,
gs_zstencil_t *zstencil,
enum gs_color_space space)
{
if (tex) {
if (tex->type != GS_TEXTURE_2D) {
blog(LOG_ERROR, "Texture is not a 2D texture");
goto fail;
}
if (!tex->is_render_target) {
blog(LOG_ERROR, "Texture is not a render target");
goto fail;
}
}
if (!set_target(device, tex, 0, zstencil, space))
goto fail;
return;
fail:
blog(LOG_ERROR,
"device_set_render_target_with_color_space (GL) failed");
}
void device_set_cube_render_target(gs_device_t *device, gs_texture_t *cubetex,
int side, gs_zstencil_t *zstencil)
{
if (cubetex) {
if (cubetex->type != GS_TEXTURE_CUBE) {
blog(LOG_ERROR, "Texture is not a cube texture");
goto fail;
}
if (!cubetex->is_render_target) {
blog(LOG_ERROR, "Texture is not a render target");
goto fail;
}
}
if (!set_target(device, cubetex, side, zstencil, GS_CS_SRGB))
goto fail;
return;
fail:
blog(LOG_ERROR, "device_set_cube_render_target (GL) failed");
}
void device_enable_framebuffer_srgb(gs_device_t *device, bool enable)
{
UNUSED_PARAMETER(device);
if (enable)
gl_enable(GL_FRAMEBUFFER_SRGB);
else
gl_disable(GL_FRAMEBUFFER_SRGB);
}
bool device_framebuffer_srgb_enabled(gs_device_t *device)
{
UNUSED_PARAMETER(device);
const GLboolean enabled = glIsEnabled(GL_FRAMEBUFFER_SRGB);
gl_success("glIsEnabled");
return enabled == GL_TRUE;
}
void device_copy_texture_region(gs_device_t *device, gs_texture_t *dst,
uint32_t dst_x, uint32_t dst_y,
gs_texture_t *src, uint32_t src_x,
uint32_t src_y, uint32_t src_w, uint32_t src_h)
{
struct gs_texture_2d *src2d = (struct gs_texture_2d *)src;
struct gs_texture_2d *dst2d = (struct gs_texture_2d *)dst;
if (!src) {
blog(LOG_ERROR, "Source texture is NULL");
goto fail;
}
if (!dst) {
blog(LOG_ERROR, "Destination texture is NULL");
goto fail;
}
if (dst->type != GS_TEXTURE_2D || src->type != GS_TEXTURE_2D) {
blog(LOG_ERROR, "Source and destination textures must be 2D "
"textures");
goto fail;
}
if (dst->format != src->format) {
blog(LOG_ERROR, "Source and destination formats do not match");
goto fail;
}
uint32_t nw = (uint32_t)src_w ? (uint32_t)src_w
: (src2d->width - src_x);
uint32_t nh = (uint32_t)src_h ? (uint32_t)src_h
: (src2d->height - src_y);
if (dst2d->width - dst_x < nw || dst2d->height - dst_y < nh) {
blog(LOG_ERROR, "Destination texture region is not big "
"enough to hold the source region");
goto fail;
}
if (!gl_copy_texture(device, dst, dst_x, dst_y, src, src_x, src_y, nw,
nh))
goto fail;
return;
fail:
blog(LOG_ERROR, "device_copy_texture (GL) failed");
}
void device_copy_texture(gs_device_t *device, gs_texture_t *dst,
gs_texture_t *src)
{
device_copy_texture_region(device, dst, 0, 0, src, 0, 0, 0, 0);
}
void device_begin_frame(gs_device_t *device)
{
/* does nothing */
UNUSED_PARAMETER(device);
}
void device_begin_scene(gs_device_t *device)
{
clear_textures(device);
}
static inline bool can_render(const gs_device_t *device, uint32_t num_verts)
{
if (!device->cur_vertex_shader) {
blog(LOG_ERROR, "No vertex shader specified");
return false;
}
if (!device->cur_pixel_shader) {
blog(LOG_ERROR, "No pixel shader specified");
return false;
}
if (!device->cur_vertex_buffer && (num_verts == 0)) {
blog(LOG_ERROR, "No vertex buffer specified");
return false;
}
if (!device->cur_swap && !device->cur_render_target) {
blog(LOG_ERROR, "No active swap chain or render target");
return false;
}
return true;
}
static void update_viewproj_matrix(struct gs_device *device)
{
struct gs_shader *vs = device->cur_vertex_shader;
struct matrix4 cur_proj;
gs_matrix_get(&device->cur_view);
matrix4_copy(&cur_proj, &device->cur_proj);
if (device->cur_fbo) {
cur_proj.x.y = -cur_proj.x.y;
cur_proj.y.y = -cur_proj.y.y;
cur_proj.z.y = -cur_proj.z.y;
cur_proj.t.y = -cur_proj.t.y;
glFrontFace(GL_CW);
} else {
glFrontFace(GL_CCW);
}
gl_success("glFrontFace");
matrix4_mul(&device->cur_viewproj, &device->cur_view, &cur_proj);
matrix4_transpose(&device->cur_viewproj, &device->cur_viewproj);
if (vs->viewproj)
gs_shader_set_matrix4(vs->viewproj, &device->cur_viewproj);
}
static inline struct gs_program *find_program(const struct gs_device *device)
{
struct gs_program *program = device->first_program;
while (program) {
if (program->vertex_shader == device->cur_vertex_shader &&
program->pixel_shader == device->cur_pixel_shader)
return program;
program = program->next;
}
return NULL;
}
static inline struct gs_program *get_shader_program(struct gs_device *device)
{
struct gs_program *program = find_program(device);
if (!program)
program = gs_program_create(device);
return program;
}
void device_draw(gs_device_t *device, enum gs_draw_mode draw_mode,
uint32_t start_vert, uint32_t num_verts)
{
struct gs_vertex_buffer *vb = device->cur_vertex_buffer;
struct gs_index_buffer *ib = device->cur_index_buffer;
GLenum topology = convert_gs_topology(draw_mode);
gs_effect_t *effect = gs_get_effect();
struct gs_program *program;
if (!can_render(device, num_verts))
goto fail;
if (effect)
gs_effect_update_params(effect);
program = get_shader_program(device);
if (!program)
goto fail;
if (vb)
load_vb_buffers(program, vb, ib);
else
gl_bind_vertex_array(device->empty_vao);
if (program != device->cur_program && device->cur_program) {
glUseProgram(0);
gl_success("glUseProgram (zero)");
}
if (program != device->cur_program) {
device->cur_program = program;
glUseProgram(program->obj);
if (!gl_success("glUseProgram"))
goto fail;
}
update_viewproj_matrix(device);
program_update_params(program);
if (ib) {
if (num_verts == 0)
num_verts = (uint32_t)device->cur_index_buffer->num;
glDrawElements(topology, num_verts, ib->gl_type,
(const GLvoid *)(start_vert * ib->width));
if (!gl_success("glDrawElements"))
goto fail;
} else {
if (num_verts == 0)
num_verts = (uint32_t)device->cur_vertex_buffer->num;
glDrawArrays(topology, start_vert, num_verts);
if (!gl_success("glDrawArrays"))
goto fail;
}
return;
fail:
blog(LOG_ERROR, "device_draw (GL) failed");
}
void device_end_scene(gs_device_t *device)
{
/* does nothing */
UNUSED_PARAMETER(device);
}
void device_clear(gs_device_t *device, uint32_t clear_flags,
const struct vec4 *color, float depth, uint8_t stencil)
{
GLbitfield gl_flags = 0;
if (clear_flags & GS_CLEAR_COLOR) {
glClearColor(color->x, color->y, color->z, color->w);
gl_flags |= GL_COLOR_BUFFER_BIT;
}
if (clear_flags & GS_CLEAR_DEPTH) {
glClearDepth(depth);
gl_flags |= GL_DEPTH_BUFFER_BIT;
}
if (clear_flags & GS_CLEAR_STENCIL) {
glClearStencil(stencil);
gl_flags |= GL_STENCIL_BUFFER_BIT;
}
glClear(gl_flags);
if (!gl_success("glClear"))
blog(LOG_ERROR, "device_clear (GL) failed");
UNUSED_PARAMETER(device);
}
void device_flush(gs_device_t *device)
{
#ifdef __APPLE__
if (!device->cur_swap)
glFlush();
#else
glFlush();
UNUSED_PARAMETER(device);
#endif
}
void device_set_cull_mode(gs_device_t *device, enum gs_cull_mode mode)
{
if (device->cur_cull_mode == mode)
return;
if (device->cur_cull_mode == GS_NEITHER)
gl_enable(GL_CULL_FACE);
device->cur_cull_mode = mode;
if (mode == GS_BACK)
gl_cull_face(GL_BACK);
else if (mode == GS_FRONT)
gl_cull_face(GL_FRONT);
else
gl_disable(GL_CULL_FACE);
}
enum gs_cull_mode device_get_cull_mode(const gs_device_t *device)
{
return device->cur_cull_mode;
}
void device_enable_blending(gs_device_t *device, bool enable)
{
if (enable)
gl_enable(GL_BLEND);
else
gl_disable(GL_BLEND);
UNUSED_PARAMETER(device);
}
void device_enable_depth_test(gs_device_t *device, bool enable)
{
if (enable)
gl_enable(GL_DEPTH_TEST);
else
gl_disable(GL_DEPTH_TEST);
UNUSED_PARAMETER(device);
}
void device_enable_stencil_test(gs_device_t *device, bool enable)
{
if (enable)
gl_enable(GL_STENCIL_TEST);
else
gl_disable(GL_STENCIL_TEST);
UNUSED_PARAMETER(device);
}
void device_enable_stencil_write(gs_device_t *device, bool enable)
{
if (enable)
glStencilMask(0xFFFFFFFF);
else
glStencilMask(0);
UNUSED_PARAMETER(device);
}
void device_enable_color(gs_device_t *device, bool red, bool green, bool blue,
bool alpha)
{
glColorMask(red, green, blue, alpha);
UNUSED_PARAMETER(device);
}
void device_blend_function(gs_device_t *device, enum gs_blend_type src,
enum gs_blend_type dest)
{
GLenum gl_src = convert_gs_blend_type(src);
GLenum gl_dst = convert_gs_blend_type(dest);
glBlendFunc(gl_src, gl_dst);
if (!gl_success("glBlendFunc"))
blog(LOG_ERROR, "device_blend_function (GL) failed");
UNUSED_PARAMETER(device);
}
void device_blend_function_separate(gs_device_t *device,
enum gs_blend_type src_c,
enum gs_blend_type dest_c,
enum gs_blend_type src_a,
enum gs_blend_type dest_a)
{
GLenum gl_src_c = convert_gs_blend_type(src_c);
GLenum gl_dst_c = convert_gs_blend_type(dest_c);
GLenum gl_src_a = convert_gs_blend_type(src_a);
GLenum gl_dst_a = convert_gs_blend_type(dest_a);
glBlendFuncSeparate(gl_src_c, gl_dst_c, gl_src_a, gl_dst_a);
if (!gl_success("glBlendFuncSeparate"))
blog(LOG_ERROR, "device_blend_function_separate (GL) failed");
UNUSED_PARAMETER(device);
}
void device_blend_op(gs_device_t *device, enum gs_blend_op_type op)
{
GLenum gl_blend_op = convert_gs_blend_op_type(op);
glBlendEquation(gl_blend_op);
if (!gl_success("glBlendEquation"))
blog(LOG_ERROR, "device_blend_op (GL) failed");
UNUSED_PARAMETER(device);
}
void device_depth_function(gs_device_t *device, enum gs_depth_test test)
{
GLenum gl_test = convert_gs_depth_test(test);
glDepthFunc(gl_test);
if (!gl_success("glDepthFunc"))
blog(LOG_ERROR, "device_depth_function (GL) failed");
UNUSED_PARAMETER(device);
}
void device_stencil_function(gs_device_t *device, enum gs_stencil_side side,
enum gs_depth_test test)
{
GLenum gl_side = convert_gs_stencil_side(side);
GLenum gl_test = convert_gs_depth_test(test);
glStencilFuncSeparate(gl_side, gl_test, 0, 0xFFFFFFFF);
if (!gl_success("glStencilFuncSeparate"))
blog(LOG_ERROR, "device_stencil_function (GL) failed");
UNUSED_PARAMETER(device);
}
void device_stencil_op(gs_device_t *device, enum gs_stencil_side side,
enum gs_stencil_op_type fail,
enum gs_stencil_op_type zfail,
enum gs_stencil_op_type zpass)
{
GLenum gl_side = convert_gs_stencil_side(side);
GLenum gl_fail = convert_gs_stencil_op(fail);
GLenum gl_zfail = convert_gs_stencil_op(zfail);
GLenum gl_zpass = convert_gs_stencil_op(zpass);
glStencilOpSeparate(gl_side, gl_fail, gl_zfail, gl_zpass);
if (!gl_success("glStencilOpSeparate"))
blog(LOG_ERROR, "device_stencil_op (GL) failed");
UNUSED_PARAMETER(device);
}
static inline uint32_t get_target_height(const struct gs_device *device)
{
if (!device->cur_render_target)
return device_get_height(device);
if (device->cur_render_target->type == GS_TEXTURE_2D)
return gs_texture_get_height(device->cur_render_target);
else /* cube map */
return gs_cubetexture_get_size(device->cur_render_target);
}
void device_set_viewport(gs_device_t *device, int x, int y, int width,
int height)
{
uint32_t base_height = 0;
/* GL uses bottom-up coordinates for viewports. We want top-down */
if (device->cur_render_target) {
base_height = get_target_height(device);
} else if (device->cur_swap) {
uint32_t dw;
gl_getclientsize(device->cur_swap, &dw, &base_height);
}
GLint gl_y = y;
if (base_height && !device->cur_fbo)
gl_y = base_height - y - height;
glViewport(x, gl_y, width, height);
if (!gl_success("glViewport"))
blog(LOG_ERROR, "device_set_viewport (GL) failed");
device->cur_viewport.x = x;
device->cur_viewport.y = y;
device->cur_viewport.cx = width;
device->cur_viewport.cy = height;
}
void device_get_viewport(const gs_device_t *device, struct gs_rect *rect)
{
*rect = device->cur_viewport;
}
void device_set_scissor_rect(gs_device_t *device, const struct gs_rect *rect)
{
UNUSED_PARAMETER(device);
if (rect != NULL) {
glScissor(rect->x, rect->y, rect->cx, rect->cy);
if (gl_success("glScissor") && gl_enable(GL_SCISSOR_TEST))
return;
} else if (gl_disable(GL_SCISSOR_TEST)) {
return;
}
blog(LOG_ERROR, "device_set_scissor_rect (GL) failed");
}
void device_ortho(gs_device_t *device, float left, float right, float top,
float bottom, float near, float far)
{
struct matrix4 *dst = &device->cur_proj;
float rml = right - left;
float bmt = bottom - top;
float fmn = far - near;
vec4_zero(&dst->x);
vec4_zero(&dst->y);
vec4_zero(&dst->z);
vec4_zero(&dst->t);
dst->x.x = 2.0f / rml;
dst->t.x = (left + right) / -rml;
dst->y.y = 2.0f / -bmt;
dst->t.y = (bottom + top) / bmt;
dst->z.z = -2.0f / fmn;
dst->t.z = (far + near) / -fmn;
dst->t.w = 1.0f;
}
void device_frustum(gs_device_t *device, float left, float right, float top,
float bottom, float near, float far)
{
struct matrix4 *dst = &device->cur_proj;
float rml = right - left;
float tmb = top - bottom;
float nmf = near - far;
float nearx2 = 2.0f * near;
vec4_zero(&dst->x);
vec4_zero(&dst->y);
vec4_zero(&dst->z);
vec4_zero(&dst->t);
dst->x.x = nearx2 / rml;
dst->z.x = (left + right) / rml;
dst->y.y = nearx2 / tmb;
dst->z.y = (bottom + top) / tmb;
dst->z.z = (far + near) / nmf;
dst->t.z = 2.0f * (near * far) / nmf;
dst->z.w = -1.0f;
}
void device_projection_push(gs_device_t *device)
{
da_push_back(device->proj_stack, &device->cur_proj);
}
void device_projection_pop(gs_device_t *device)
{
struct matrix4 *end;
if (!device->proj_stack.num)
return;
end = da_end(device->proj_stack);
device->cur_proj = *end;
da_pop_back(device->proj_stack);
}
void device_debug_marker_begin(gs_device_t *device, const char *markername,
const float color[4])
{
UNUSED_PARAMETER(device);
UNUSED_PARAMETER(color);
glPushDebugGroupKHR(GL_DEBUG_SOURCE_APPLICATION, 0, -1, markername);
}
void device_debug_marker_end(gs_device_t *device)
{
UNUSED_PARAMETER(device);
glPopDebugGroupKHR();
}
void gs_swapchain_destroy(gs_swapchain_t *swapchain)
{
if (!swapchain)
return;
if (swapchain->device->cur_swap == swapchain)
device_load_swapchain(swapchain->device, NULL);
gl_platform_cleanup_swapchain(swapchain);
gl_windowinfo_destroy(swapchain->wi);
bfree(swapchain);
}
uint32_t gs_voltexture_get_width(const gs_texture_t *voltex)
{
/* TODO */
UNUSED_PARAMETER(voltex);
return 0;
}
uint32_t gs_voltexture_get_height(const gs_texture_t *voltex)
{
/* TODO */
UNUSED_PARAMETER(voltex);
return 0;
}
uint32_t gs_voltexture_get_depth(const gs_texture_t *voltex)
{
/* TODO */
UNUSED_PARAMETER(voltex);
return 0;
}
enum gs_color_format gs_voltexture_get_color_format(const gs_texture_t *voltex)
{
/* TODO */
UNUSED_PARAMETER(voltex);
return GS_UNKNOWN;
}
void gs_samplerstate_destroy(gs_samplerstate_t *samplerstate)
{
if (!samplerstate)
return;
if (samplerstate->device)
for (int i = 0; i < GS_MAX_TEXTURES; i++)
if (samplerstate->device->cur_samplers[i] ==
samplerstate)
samplerstate->device->cur_samplers[i] = NULL;
samplerstate_release(samplerstate);
}
void gs_timer_destroy(gs_timer_t *timer)
{
if (!timer)
return;
glDeleteQueries(2, timer->queries);
gl_success("glDeleteQueries");
bfree(timer);
}
void gs_timer_begin(gs_timer_t *timer)
{
glQueryCounter(timer->queries[0], GL_TIMESTAMP);
gl_success("glQueryCounter");
}
void gs_timer_end(gs_timer_t *timer)
{
glQueryCounter(timer->queries[1], GL_TIMESTAMP);
gl_success("glQueryCounter");
}
bool gs_timer_get_data(gs_timer_t *timer, uint64_t *ticks)
{
GLint available = 0;
glGetQueryObjectiv(timer->queries[1], GL_QUERY_RESULT_AVAILABLE,
&available);
GLuint64 begin, end;
glGetQueryObjectui64v(timer->queries[0], GL_QUERY_RESULT, &begin);
gl_success("glGetQueryObjectui64v");
glGetQueryObjectui64v(timer->queries[1], GL_QUERY_RESULT, &end);
gl_success("glGetQueryObjectui64v");
*ticks = end - begin;
return true;
}
void gs_timer_range_destroy(gs_timer_range_t *range)
{
UNUSED_PARAMETER(range);
}
void gs_timer_range_begin(gs_timer_range_t *range)
{
UNUSED_PARAMETER(range);
}
void gs_timer_range_end(gs_timer_range_t *range)
{
UNUSED_PARAMETER(range);
}
bool gs_timer_range_get_data(gs_timer_range_t *range, bool *disjoint,
uint64_t *frequency)
{
UNUSED_PARAMETER(range);
*disjoint = false;
*frequency = 1000000000;
return true;
}