Character conversion functions did not previously ask for a maximum
buffer size for their 'dst' parameter, it's unsafe to assume some given
destination buffer may have enough size to accommodate a conversion.
This doesn't add FLV file output to the user interface yet, but we'll
get around to that eventually. This just adds an FLV output type.
Also, removed ftello/fseeko because off_t is a really annoying data
type, and I'd rather have a firm int64_t for large sizes, so I named it
to os_fseeki64 and os_ftelli64 instead, and changed the file size
function to return an int64_t.
This patch adds support for multi-screen setups by using xinerama
information if available to determine the screen size and position.
In case xinerama is not available or not active it uses the information
provided for the x screen.
To clean up the code some generic helper functions were moved to a
separate source file.
- Add volume control
These volume controls are basically nothing more than sliders. They
look terrible and hopefully will be as temporary as they are
terrible.
- Allow saving of specific non-user sources via obs_load_source and
obs_save_source functions.
- Save data of desktop/mic audio sources (sync data, volume data, etc),
and load the data on startup.
- Make it so that a scene is created by default if first time using the
application. On certain operating systems where supported, a default
capture will be created. Desktop capture on mac, particularly. Not
sure what to do about windows because monitor capture on windows 7 is
completely terrible and is bad to start users off with.
If a source with async video wasn't currently active, it would endlessly
buffer the video data, which would cause memory to grow endlessly until
available memory was extinguished.
This really needs to be replaced with a proper caching mechanism at some
point.
With this option enabled the plugin will generate timestamps
based on the system time instead of using the ones provided by
pulse audio. This might fix problems with audio desync and may
become the default/only option in the future.
The defaults functions will now return the default device for the
input/output as provided by pulseaudio.
The default output device is the monitor of the default sink.
The wrapping library uses a global mainloop and context which
allows operations to share the connection. The global mainloop
is created and destroyed based on internal reference counting.
The capture code won't spawn a new thread for each input anymore
but instead just create the recording stream and rely on the
threaded mainloop to execute the read callback when data is available.
- Updated the services API so that it links up with an output and
the output gets data from that service rather than via settings.
This allows the service context to have control over how an output is
used, and makes it so that the URL/key/etc isn't necessarily some
static setting.
Also, if the service is attached to an output, it will stick around
until the output is destroyed.
- The settings interface has been updated so that it can allow the
usage of service plugins. What this means is that now you can create
a service plugin that can control aspects of the stream, and it
allows each service to create their own user interface if they create
a service plugin module.
- Testing out saving of current service information. Saves/loads from
JSON in to obs_data_t, seems to be working quite nicely, and the
service object information is saved/preserved on exit, and loaded
again on startup.
- I agonized over the settings user interface for days, and eventually
I just decided that the only way that users weren't going to be
fumbling over options was to split up the settings in to simple/basic
output, pre-configured, and then advanced for advanced use (such as
multiple outputs or services, which I'll implement later).
This was particularly painful to really design right, I wanted more
features and wanted to include everything in one interface but
ultimately just realized from experience that users are just not
technically knowledgable about it and will end up fumbling with the
settings rather than getting things done.
Basically, what this means is that casual users only have to enter in
about 3 things to configure their stream: Stream key, audio bitrate,
and video bitrate. I am really happy with this interface for those
types of users, but it definitely won't be sufficient for advanced
usage or for custom outputs, so that stuff will have to be separated.
- Improved the JSON usage for the 'common streaming services' context,
I realized that JSON arrays are there to ensure sorting, while
forgetting that general items are optimized for hashing. So
basically I'm just using arrays now to sort items in it.
This plugin is just a generic service plugin for basic RTMP streaming
service stuff.
This just has a 'common' service that has a list of common/simple
streaming services that don't have their own custom service modules, and
then a 'custom' service that allows you to enter in the stream URL and
key manually, without a service/server list.
Also, copy the jansson VS projects file (don't modify the old one) so
that it's located in the vs/2013 directory, so that other libraries can
properly link with it without having to enter in extra information just
to include jansson
A little bit of history about frame dropping:
I did a large number of experiments with frame dropping in old versions
of OBS1, and it's not an easy thing to deal with. I tried just about
everything from standard i-frame delay, to large buffers, to dumping
packets, to super-unnecessarily-complex things that just ended up
causing more problems than they was worth.
When I did my experiments, I found that the most ideal frame drop system
(in terms of reducing the amount of total data that needed to be
dropped) was in the 0.4xx days where I had a 3 second frame-drop buffer
where I could calculate the actual buffer size in bytes, and then
intellgently choose packets in that buffer to trim it down to a specific
size while minimizing the number of p-frames and i-frames dropped, and
preventing the actual impact of dropped frames on the stream. The
downside of it was that it required too much extra latency, and far too
many people complained about it, so it was removed in favor of the
current system.
The current system I just refer to just as 'packet dumping', which when
combined with low keyframe intervals (like most services use these
days), is the next-best method from my experience. Just dump the buffer
when you reach a threshold of buffering (which I prefer to measure with
time rather than in size), then wait for a new i-frame. Simple,
effective, and reduces the risk of consecutive buffering, while still
having fairly low impact on the stream output due to the low keyframe
interval of services.
By the way, audio will not (and should not ever) be dropped, lest you
end up with syncing issues (among other nasty things) specific to server
implementation.
- Fix an issue that could occur when using more than one video encoder.
Audio/video would not sync up correctly because they were expected to
be paired with a particular encoder. This simply adds a little
helper variable to encoder packets that specifies the system time in
microseconds. We then use that system time to sync
- Fix an issue with x264 with fractional FPS rates (29.97 and 59.94
particularly) where it would create ridiculously large stream
outputs. The problem was that you shouldn't set the timebase_*
variables in the x264 params manually, let x264 handle the default
values for it and leave them at 0.
- Make x264 use CFR output, because there's no reason to ever use VFR
in this case.
- Implement the RTMP output module. This time around, we just use a
simple FLV muxer, then just write to the stream with RTMP_Write.
Easy and effective.
- Fix the FLV muxer, the muxer now outputs proper FLV packets.
- Output API:
* When using encoders, automatically interleave encoded packets
before sending it to the output.
* Pair encoders and have them automatically wait for the other to
start to ensure sync.
* Change 'obs_output_signal_start_fail' to 'obs_output_signal_stop'
because it was a bit confusing, and doing this makes a lot more
sense for outputs that need to stop suddenly (disconnections/etc).
- Encoder API:
* Remove some unnecessary encoder functions from the actual API and
make them internal. Most of the encoder functions are handled
automatically by outputs anyway, so there's no real need to expose
them and end up inadvertently confusing plugin writers.
* Have audio encoders wait for the video encoder to get a frame, then
start at the exact data point that the first video frame starts to
ensure the most accrate sync of video/audio possible.
* Add a required 'frame_size' callback for audio encoders that
returns the expected number of frames desired to encode with. This
way, the libobs encoder API can handle the circular buffering
internally automatically for the encoder modules, so encoder
writers don't have to do it themselves.
- Fix a few bugs in the serializer interface. It was passing the wrong
variable for the data in a few cases.
- If a source has video, make obs_source_update defer the actual update
callback until the tick function is called to prevent threading
issues.