The "main" windows detected for UWP programs are basically to help
sandbox the programs -- they run in the ApplicationFrameHost process and
help reduce the possibility of other programs trying to access the
actual process window, which is a child window.
To bypass this, go through the list of child windows for the
ApplicationFrameHost window, and then find the one that's attached to
a different process; that different process will always be the target,
and will allows us to open the actual process of the UWP program.
Prevents the common problem of injecting in to certain processes and
getting the hook DLL "stuck":
- windows explorer
- steam
- battle.net
- gog galaxy
- skype
- uplay
- origin
- microsoft visual studio
- task manager
- league of legends lobby window
- windows 10 system settings window
This reverts commit 8d520b970d3552417005f6dab4f0892485cd14ce.
This can actually cause a hard lock due to the windows API when
destroying window capture. When the graphics thread locks the source
list for doing tick or render, and then the UI thread tries to destroy a
source, the UI thread will wait for the graphics thread to complete
rendering/ticking of sources. The video_tick of window capture would
then check windows in the same process and try to query the window's
name via GetWindowText. However, GetWindowText is synchronous, and will
not return until the window event has been processed by the UI thread,
so it will perpetually lock because the two threads are waiting for each
other to finish.
Because other capture methods may end up needing to share this code,
separate the window finding source code to window-helpers.c and
window-helpers.h.
This include a function to fill out a property list with windows, a
function to find a window based upon priority/title/class/exe, and a
function to decode the window title/class/exe strings from a window
setting string.