Code submissions have continually suffered from formatting
inconsistencies that constantly have to be addressed. Using
clang-format simplifies this by making code formatting more consistent,
and allows automation of the code formatting so that maintainers can
focus more on the code itself instead of code formatting.
"Life is Feudal: Your Own" will use Direct3D to render the game, then
OpenGL to render its in-game menus, which causes a conflict with itself.
This specifically blacklists the game from capturing OpenGL to prevent
that from happening.
This prevents issues with using standard C functions, where microsoft
would otherwise spit out pointless warnings to encourage using
microsoft-specific functions instead.
This reverts commit 4c505e7030f2f0b7dab9c51125ac45cf3c28adb1.
Reverting this for the time being due to issues with quakelive. This
will be more thoroughly tested and hopefully added again.
Tested using FTL (steam): SwapBuffers ultimately calls wgl_swap_buffers
causing an additional copy which just isn't necessary
This also causes game capture to sometimes capture overlays even when
not intended
Darkest dungeon uses an unusual technique for drawing its frames: a
fixed 1920x1080 frame buffer used in place of the backbuffer, which is
then stretched to fit the size of the screen (whether the screen is
bigger or smaller than the actual texture).
The custom frame would cause glReadBuffer to initially fail with an
error. When this happens, their custom frame buffer is in use, so all
that needs to be done is simply reset the capture and force the current
output size to 1920x1080 while that custom frame is in use.
They presumably did this in order to ensure the game looks the same at
any resolution. Instead of having to use power-of-two sprites and
mipmaps for every single game sprite and stretch/skew each of them
(which would risk the final output "not looking quite right" at
different resolutions), they simply use non-pow-2 sprites with no
mipmaps and render them all on to one texture of a fixed size and then
stretch that final output texture. That ensures that the actual
composite of the game still looks the same at any resolution, while
reducing texture memory by not requiring each sprite to use a
power-of-two texture and mipmaps.
Some games don't catch GL errors via glGetError, so there's a
possibility that an error will pass through to the capture calls,
causing a false failure.
The most simple solution is to just clear the error flag on each capture
call.
If the GL capture part of the game capture hook fails to initialized for
whatever reason, it will go in to an infinite reacquire loop. If it
fails to initialize shared texture capture, try shared memory capture
instead.
This library is a completely refactored and rewritten version of the
original graphics hook. The code is more clean, readable, and has a
variety of new features, such as scaling and forcing memory capture.
Currently, only D3D9, 10, and 11 are implemented. (This commit may be
updated on this branch)