Code submissions have continually suffered from formatting
inconsistencies that constantly have to be addressed. Using
clang-format simplifies this by making code formatting more consistent,
and allows automation of the code formatting so that maintainers can
focus more on the code itself instead of code formatting.
The previous model stored a new FBO per texture width/height/format on
a array in the device struct. This allocated memory was only released
on gs_device_destroy (obs exit).
The new approach stores a FBO on gs_texture and the its info is
destroyed once the texture is deleted.
This Fixes a minor flaw with the API where data had to always be mutable
to be usable by the API.
Functions that do not modify the fundamental underlying data of a
structure should be marked as constant, both for safety and to signify
that the parameter is input only and will not be modified by the
function using it.
Typedef pointers are unsafe. If you do:
typedef struct bla *bla_t;
then you cannot use it as a constant, such as: const bla_t, because
that constant will be to the pointer itself rather than to the
underlying data. I admit this was a fundamental mistake that must
be corrected.
All typedefs that were pointer types will now have their pointers
removed from the type itself, and the pointers will be used when they
are actually used as variables/parameters/returns instead.
This does not break ABI though, which is pretty nice.
- Implement OBS encoder interface. It was previously incomplete, but
now is reaching some level of completion, though probably should
still be considered preliminary.
I had originally implemented it so that encoders only have a 'reset'
function to reset their parameters, but I felt that having both a
'start' and 'stop' function would be useful.
Encoders are now assigned to a specific video/audio media output each
rather than implicitely assigned to the main obs video/audio
contexts. This allows separate encoder contexts that aren't
necessarily assigned to the main video/audio context (which is useful
for things such as recording specific sources). Will probably have
to do this for regular obs outputs as well.
When creating an encoder, you must now explicitely state whether that
encoder is an audio or video encoder.
Audio and video can optionally be automatically converted depending
on what the encoder specifies.
When something 'attaches' to an encoder, the first attachment starts
the encoder, and the encoder automatically attaches to the media
output context associated with it. Subsequent attachments won't have
the same effect, they will just start receiving the same encoder data
when the next keyframe plays (along with SEI if any). When detaching
from the encoder, the last detachment will fully stop the encoder and
detach the encoder from the media output context associated with the
encoder.
SEI must actually be exported separately; because new encoder
attachments may not always be at the beginning of the stream, the
first keyframe they get must have that SEI data in it. If the
encoder has SEI data, it needs only add one small function to simply
query that SEI data, and then that data will be handled automatically
by libobs for all subsequent encoder attachments.
- Implement x264 encoder plugin, move x264 files to separate plugin to
separate necessary dependencies.
- Change video/audio frame output structures to not use const
qualifiers to prevent issues with non-const function usage elsewhere.
This was an issue when writing the x264 encoder, as the x264 encoder
expects non-const frame data.
Change stagesurf_map to return a non-const data type to prevent this
as well.
- Change full range parameter of video scaler to be an enum rather than
boolean
Staging surfaces with GL originally copied to a texture and then
downloaded that copied texture, but I realized that there was really no
real need to do that. Now instead they'll copy directly from the
texture that's given to them rather than copying to a buffer first.
Secondly, hopefully fix the mac issue where the only way to perform an
asynchronous texture download is via FBOs and glReadPixels. It's a
really dumb issue with macs and the amount of "gotchas" and non-standard
internal GL functionaly on mac is really annoying.
There were a *lot* of warnings, managed to remove most of them.
Also, put warning flags before C_FLAGS and CXX_FLAGS, rather than after,
as -Wall -Wextra was overwriting flags that came before it.
- Fill in the rest of the FFmpeg test output code for testing so it
actually properly outputs data.
- Improve the main video subsystem to be a bit more optimal and
automatically output I420 or NV12 if needed.
- Fix audio subsystem insertation and byte calculation. Now it will
seamlessly insert new audio data in to the audio stream based upon
its timestamp value. (Be extremely cautious when using floating
point calculations for important things like this, and always round
your values and check your values)
- Use 32 byte alignment in case of future optimizations and export a
function to get the current alignment.
- Make os_sleepto_ns return true if slept, false if the time has
already been passed before the call.
- Fix sinewave output so that it actually properly calculates a middle
C sinewave.
- Change the use of row_bytes to linesize (also makes it a bit more
consistent with FFmpeg's naming as well)
- Implement texture scaling/conversion/downloading for the main view so
we can finally start getting data to output.
Also, redesign how it works a bit, it will now properly wait one full
frame for each step in the process: rendering the main texture,
scaling the main texture to an output texture, staging/downloading the
ouput texture, and then outputting that staged data. This way, the
GPU will have more than enough time to fully complete each step.
- Fix a bug with OpenGL plugin's texture staging function. Was using
glBindBuffer instead of what should have been used: glBindTexture.
- Change the naming scheme of the variables in default.effect. It's now
named with the idea of just "color matrix" in mind instead of "yuv
matrix", and instead of DrawRGBToYUV, it's now just DrawMatrix.