obs-studio/libobs/obs-module.c

760 lines
21 KiB
C
Raw Normal View History

2013-09-30 19:37:13 -07:00
/******************************************************************************
Copyright (C) 2013-2014 by Hugh Bailey <obs.jim@gmail.com>
2013-09-30 19:37:13 -07:00
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
2013-09-30 19:37:13 -07:00
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
******************************************************************************/
#include "util/platform.h"
#include "util/dstr.h"
#include "obs-defs.h"
#include "obs-internal.h"
2013-09-30 19:37:13 -07:00
#include "obs-module.h"
extern const char *get_module_extension(void);
2013-09-30 19:37:13 -07:00
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
static inline int req_func_not_found(const char *name, const char *path)
{
blog(LOG_ERROR, "Required module function '%s' in module '%s' not "
"found, loading of module failed",
name, path);
return MODULE_MISSING_EXPORTS;
}
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
static int load_module_exports(struct obs_module *mod, const char *path)
{
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
mod->load = os_dlsym(mod->module, "obs_module_load");
if (!mod->load)
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
return req_func_not_found("obs_module_load", path);
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
mod->set_pointer = os_dlsym(mod->module, "obs_module_set_pointer");
if (!mod->set_pointer)
return req_func_not_found("obs_module_set_pointer", path);
mod->ver = os_dlsym(mod->module, "obs_module_ver");
if (!mod->ver)
return req_func_not_found("obs_module_ver", path);
/* optional exports */
mod->unload = os_dlsym(mod->module, "obs_module_unload");
mod->post_load = os_dlsym(mod->module, "obs_module_post_load");
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
mod->set_locale = os_dlsym(mod->module, "obs_module_set_locale");
mod->free_locale = os_dlsym(mod->module, "obs_module_free_locale");
mod->name = os_dlsym(mod->module, "obs_module_name");
mod->description = os_dlsym(mod->module, "obs_module_description");
mod->author = os_dlsym(mod->module, "obs_module_author");
return MODULE_SUCCESS;
}
static inline char *get_module_name(const char *file)
{
static size_t ext_len = 0;
struct dstr name = {0};
if (ext_len == 0) {
const char *ext = get_module_extension();
ext_len = strlen(ext);
}
dstr_copy(&name, file);
dstr_resize(&name, name.len - ext_len);
return name.array;
}
#ifdef _WIN32
extern void reset_win32_symbol_paths(void);
#endif
int obs_open_module(obs_module_t **module, const char *path,
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
const char *data_path)
2013-09-30 19:37:13 -07:00
{
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
struct obs_module mod = {0};
int errorcode;
2013-09-30 19:37:13 -07:00
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
if (!module || !path || !obs)
return MODULE_ERROR;
blog(LOG_DEBUG, "---------------------------------");
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
mod.module = os_dlopen(path);
if (!mod.module) {
obs-studio UI: Implement stream settings UI - Updated the services API so that it links up with an output and the output gets data from that service rather than via settings. This allows the service context to have control over how an output is used, and makes it so that the URL/key/etc isn't necessarily some static setting. Also, if the service is attached to an output, it will stick around until the output is destroyed. - The settings interface has been updated so that it can allow the usage of service plugins. What this means is that now you can create a service plugin that can control aspects of the stream, and it allows each service to create their own user interface if they create a service plugin module. - Testing out saving of current service information. Saves/loads from JSON in to obs_data_t, seems to be working quite nicely, and the service object information is saved/preserved on exit, and loaded again on startup. - I agonized over the settings user interface for days, and eventually I just decided that the only way that users weren't going to be fumbling over options was to split up the settings in to simple/basic output, pre-configured, and then advanced for advanced use (such as multiple outputs or services, which I'll implement later). This was particularly painful to really design right, I wanted more features and wanted to include everything in one interface but ultimately just realized from experience that users are just not technically knowledgable about it and will end up fumbling with the settings rather than getting things done. Basically, what this means is that casual users only have to enter in about 3 things to configure their stream: Stream key, audio bitrate, and video bitrate. I am really happy with this interface for those types of users, but it definitely won't be sufficient for advanced usage or for custom outputs, so that stuff will have to be separated. - Improved the JSON usage for the 'common streaming services' context, I realized that JSON arrays are there to ensure sorting, while forgetting that general items are optimized for hashing. So basically I'm just using arrays now to sort items in it.
2014-04-24 01:49:07 -07:00
blog(LOG_WARNING, "Module '%s' not found", path);
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
return MODULE_FILE_NOT_FOUND;
}
2013-09-30 19:37:13 -07:00
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
errorcode = load_module_exports(&mod, path);
if (errorcode != MODULE_SUCCESS)
return errorcode;
2013-09-30 19:37:13 -07:00
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
mod.bin_path = bstrdup(path);
mod.file = strrchr(mod.bin_path, '/');
mod.file = (!mod.file) ? mod.bin_path : (mod.file + 1);
mod.mod_name = get_module_name(mod.file);
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
mod.data_path = bstrdup(data_path);
mod.next = obs->first_module;
2015-07-05 23:49:33 -07:00
if (mod.file) {
blog(LOG_DEBUG, "Loading module: %s", mod.file);
2015-07-05 23:49:33 -07:00
}
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
*module = bmemdup(&mod, sizeof(mod));
obs->first_module = (*module);
mod.set_pointer(*module);
if (mod.set_locale)
mod.set_locale(obs->locale);
2013-09-30 19:37:13 -07:00
return MODULE_SUCCESS;
}
bool obs_init_module(obs_module_t *module)
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
{
if (!module || !obs)
return false;
if (module->loaded)
return true;
2015-07-11 08:04:46 +02:00
const char *profile_name =
profile_store_name(obs_get_profiler_name_store(),
"obs_init_module(%s)", module->file);
profile_start(profile_name);
module->loaded = module->load();
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
if (!module->loaded)
blog(LOG_WARNING, "Failed to initialize module '%s'",
module->file);
2015-07-11 08:04:46 +02:00
profile_end(profile_name);
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
return module->loaded;
}
void obs_log_loaded_modules(void)
{
blog(LOG_INFO, " Loaded Modules:");
for (obs_module_t *mod = obs->first_module; !!mod; mod = mod->next)
blog(LOG_INFO, " %s", mod->file);
}
const char *obs_get_module_file_name(obs_module_t *module)
{
return module ? module->file : NULL;
}
const char *obs_get_module_name(obs_module_t *module)
{
return (module && module->name) ? module->name() : NULL;
}
const char *obs_get_module_author(obs_module_t *module)
{
return (module && module->author) ? module->author() : NULL;
}
const char *obs_get_module_description(obs_module_t *module)
{
return (module && module->description) ? module->description() : NULL;
}
const char *obs_get_module_binary_path(obs_module_t *module)
{
return module ? module->bin_path : NULL;
}
const char *obs_get_module_data_path(obs_module_t *module)
{
return module ? module->data_path : NULL;
}
char *obs_find_module_file(obs_module_t *module, const char *file)
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
{
struct dstr output = {0};
if (!file)
file = "";
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
if (!module)
return NULL;
dstr_copy(&output, module->data_path);
if (!dstr_is_empty(&output) && dstr_end(&output) != '/' && *file)
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
dstr_cat_ch(&output, '/');
dstr_cat(&output, file);
if (!os_file_exists(output.array))
dstr_free(&output);
return output.array;
}
char *obs_module_get_config_path(obs_module_t *module, const char *file)
{
struct dstr output = {0};
dstr_copy(&output, obs->module_config_path);
if (!dstr_is_empty(&output) && dstr_end(&output) != '/')
dstr_cat_ch(&output, '/');
dstr_cat(&output, module->mod_name);
dstr_cat_ch(&output, '/');
dstr_cat(&output, file);
return output.array;
}
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
void obs_add_module_path(const char *bin, const char *data)
{
struct obs_module_path omp;
if (!obs || !bin || !data) return;
omp.bin = bstrdup(bin);
omp.data = bstrdup(data);
da_push_back(obs->module_paths, &omp);
}
static void load_all_callback(void *param, const struct obs_module_info *info)
{
obs_module_t *module;
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
int code = obs_open_module(&module, info->bin_path, info->data_path);
if (code != MODULE_SUCCESS) {
blog(LOG_DEBUG, "Failed to load module file '%s': %d",
info->bin_path, code);
return;
}
obs_init_module(module);
UNUSED_PARAMETER(param);
}
2015-07-11 08:04:46 +02:00
static const char *obs_load_all_modules_name = "obs_load_all_modules";
#ifdef _WIN32
static const char *reset_win32_symbol_paths_name = "reset_win32_symbol_paths";
#endif
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
void obs_load_all_modules(void)
{
2015-07-11 08:04:46 +02:00
profile_start(obs_load_all_modules_name);
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
obs_find_modules(load_all_callback, NULL);
#ifdef _WIN32
profile_start(reset_win32_symbol_paths_name);
reset_win32_symbol_paths();
profile_end(reset_win32_symbol_paths_name);
#endif
2015-07-11 08:04:46 +02:00
profile_end(obs_load_all_modules_name);
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
}
void obs_post_load_modules(void)
{
for (obs_module_t *mod = obs->first_module; !!mod; mod = mod->next)
if (mod->post_load)
mod->post_load();
}
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
static inline void make_data_dir(struct dstr *parsed_data_dir,
const char *data_dir, const char *name)
{
dstr_copy(parsed_data_dir, data_dir);
dstr_replace(parsed_data_dir, "%module%", name);
if (dstr_end(parsed_data_dir) == '/')
dstr_resize(parsed_data_dir, parsed_data_dir->len - 1);
}
static char *make_data_directory(const char *module_name, const char *data_dir)
{
struct dstr parsed_data_dir = {0};
bool found = false;
make_data_dir(&parsed_data_dir, data_dir, module_name);
found = os_file_exists(parsed_data_dir.array);
if (!found && astrcmpi_n(module_name, "lib", 3) == 0)
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
make_data_dir(&parsed_data_dir, data_dir, module_name + 3);
return parsed_data_dir.array;
}
static bool parse_binary_from_directory(struct dstr *parsed_bin_path,
const char *bin_path, const char *file)
{
struct dstr directory = {0};
bool found = true;
dstr_copy(&directory, bin_path);
dstr_replace(&directory, "%module%", file);
if (dstr_end(&directory) != '/')
dstr_cat_ch(&directory, '/');
dstr_copy_dstr(parsed_bin_path, &directory);
dstr_cat(parsed_bin_path, file);
dstr_cat(parsed_bin_path, get_module_extension());
if (!os_file_exists(parsed_bin_path->array)) {
/* if the file doesn't exist, check with 'lib' prefix */
dstr_copy_dstr(parsed_bin_path, &directory);
dstr_cat(parsed_bin_path, "lib");
dstr_cat(parsed_bin_path, file);
dstr_cat(parsed_bin_path, get_module_extension());
/* if neither exist, don't include this as a library */
if (!os_file_exists(parsed_bin_path->array)) {
dstr_free(parsed_bin_path);
found = false;
}
}
dstr_free(&directory);
return found;
}
static void process_found_module(struct obs_module_path *omp,
const char *path, bool directory,
obs_find_module_callback_t callback, void *param)
{
struct obs_module_info info;
struct dstr name = {0};
struct dstr parsed_bin_path = {0};
const char *file;
char *parsed_data_dir;
bool bin_found = true;
file = strrchr(path, '/');
file = file ? (file + 1) : path;
if (strcmp(file, ".") == 0 || strcmp(file, "..") == 0)
return;
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
dstr_copy(&name, file);
if (!directory) {
char *ext = strrchr(name.array, '.');
if (ext)
dstr_resize(&name, ext - name.array);
dstr_copy(&parsed_bin_path, path);
} else {
bin_found = parse_binary_from_directory(&parsed_bin_path,
omp->bin, file);
}
parsed_data_dir = make_data_directory(name.array, omp->data);
if (parsed_data_dir && bin_found) {
info.bin_path = parsed_bin_path.array;
info.data_path = parsed_data_dir;
callback(param, &info);
}
bfree(parsed_data_dir);
dstr_free(&name);
dstr_free(&parsed_bin_path);
}
static void find_modules_in_path(struct obs_module_path *omp,
obs_find_module_callback_t callback, void *param)
{
struct dstr search_path = {0};
char *module_start;
bool search_directories = false;
os_glob_t *gi;
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
dstr_copy(&search_path, omp->bin);
module_start = strstr(search_path.array, "%module%");
if (module_start) {
dstr_resize(&search_path, module_start - search_path.array);
search_directories = true;
}
if (!dstr_is_empty(&search_path) && dstr_end(&search_path) != '/')
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
dstr_cat_ch(&search_path, '/');
dstr_cat_ch(&search_path, '*');
if (!search_directories)
dstr_cat(&search_path, get_module_extension());
if (os_glob(search_path.array, 0, &gi) == 0) {
for (size_t i = 0; i < gi->gl_pathc; i++) {
if (search_directories == gi->gl_pathv[i].directory)
process_found_module(omp,
gi->gl_pathv[i].path,
search_directories,
callback, param);
}
os_globfree(gi);
}
dstr_free(&search_path);
}
void obs_find_modules(obs_find_module_callback_t callback, void *param)
{
if (!obs)
return;
for (size_t i = 0; i < obs->module_paths.num; i++) {
struct obs_module_path *omp = obs->module_paths.array + i;
find_modules_in_path(omp, callback, param);
}
}
void obs_enum_modules(obs_enum_module_callback_t callback, void *param)
{
struct obs_module *module;
if (!obs)
return;
module = obs->first_module;
while (module) {
callback(param, module);
module = module->next;
}
}
2013-09-30 19:37:13 -07:00
void free_module(struct obs_module *mod)
{
if (!mod)
return;
if (mod->module) {
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
if (mod->free_locale)
mod->free_locale();
2013-09-30 19:37:13 -07:00
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
if (mod->loaded && mod->unload)
mod->unload();
2013-09-30 19:37:13 -07:00
/* there is no real reason to close the dynamic libraries,
* and sometimes this can cause issues. */
/* os_dlclose(mod->module); */
2013-09-30 19:37:13 -07:00
}
bfree(mod->mod_name);
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
bfree(mod->bin_path);
bfree(mod->data_path);
bfree(mod);
2013-09-30 19:37:13 -07:00
}
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
lookup_t *obs_module_load_locale(obs_module_t *module,
const char *default_locale, const char *locale)
{
struct dstr str = {0};
lookup_t *lookup = NULL;
if (!module || !default_locale || !locale) {
blog(LOG_WARNING, "obs_module_load_locale: Invalid parameters");
return NULL;
}
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
dstr_copy(&str, "locale/");
dstr_cat(&str, default_locale);
dstr_cat(&str, ".ini");
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
char *file = obs_find_module_file(module, str.array);
if (file)
lookup = text_lookup_create(file);
bfree(file);
if (!lookup) {
blog(LOG_WARNING, "Failed to load '%s' text for module: '%s'",
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
default_locale, module->file);
goto cleanup;
}
if (astrcmpi(locale, default_locale) == 0)
goto cleanup;
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
dstr_copy(&str, "/locale/");
dstr_cat(&str, locale);
dstr_cat(&str, ".ini");
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
file = obs_find_module_file(module, str.array);
if (!text_lookup_add(lookup, file))
blog(LOG_WARNING, "Failed to load '%s' text for module: '%s'",
(API Change) Refactor module handling Changed API: - char *obs_find_plugin_file(const char *sub_path); Changed to: char *obs_module_file(const char *file); Cahnge it so you no longer need to specify a sub-path such as: obs_find_plugin_file("module_name/file.ext") Instead, now automatically handle the module data path so all you need to do is: obs_module_file("file.ext") - int obs_load_module(const char *name); Changed to: int obs_open_module(obs_module_t *module, const char *path, const char *data_path); bool obs_init_module(obs_module_t module); Change the module loading API so that if the front-end chooses, it can load modules directly from a specified path, and associate a data directory with it on the spot. The module will not be initialized immediately; obs_init_module must be called on the module pointer in order to fully initialize the module. This is done so a module can be disabled by the front-end if the it so chooses. New API: - void obs_add_module_path(const char *bin, const char *data); These functions allow you to specify new module search paths to add, and allow you to search through them, or optionally just load all modules from them. If the string %module% is included, it will replace it with the module's name when that string is used as a lookup. Data paths are now directly added to the module's internal storage structure, and when obs_find_module_file is used, it will look up the pointer to the obs_module structure and get its data directory that way. Example: obs_add_module_path("/opt/obs/my-modules/%module%/bin", "/opt/obs/my-modules/%module%/data"); This would cause it to additionally look for the binary of a hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so (or libfoo.so), and then look for the data in /opt/obs/my-modules/foo/data. This gives the front-end more flexibility for handling third-party plugin modules, or handling all plugin modules in a custom way. - void obs_find_modules(obs_find_module_callback_t callback, void *param); This searches the existing paths for modules and calls the callback function when any are found. Useful for plugin management and custom handling of the paths by the front-end if desired. - void obs_load_all_modules(void); Search through the paths and both loads and initializes all modules automatically without custom handling. - void obs_enum_modules(obs_enum_module_callback_t callback, void *param); Enumerates currently opened modules.
2014-07-27 12:00:11 -07:00
locale, module->file);
bfree(file);
cleanup:
dstr_free(&str);
return lookup;
}
Add source properties window (very preliminary) - Add a properties window for sources so that you can now actually edit the settings for sources. Also, display the source by itself in the window (Note: not working on mac, and possibly not working on linux). When changing the settings for a source, it will call obs_source_update on that source when you have modified any values automatically. - Add a properties 'widget', eventually I want to turn this in to a regular nice properties view like you'd see in the designer, but right now it just uses a form layout in a QScrollArea with regular controls to display the properties. It's clunky but works for the time being. - Make it so that swap chains and the main graphics subsystem will automatically use at least one backbuffer if none was specified - Fix bug where displays weren't added to the main display array - Make it so that you can get the properties of a source via the actual pointer of a source/encoder/output in addition to being able to look up properties via identifier. - When registering source types, check for required functions (wasn't doing it before). getheight/getwidth should not be optional if it's a video source as well. - Add an RAII OBSObj wrapper to obs.hpp for non-reference-counted libobs pointers - Add an RAII OBSSignal wrapper to obs.hpp for libobs signals to automatically disconnect them on destruction - Move the "scale and center" calculation in window-basic-main.cpp to its own function and in its own source file - Add an 'update' callback to WASAPI audio sources
2014-03-23 01:07:54 -07:00
#define REGISTER_OBS_DEF(size_var, structure, dest, info) \
do { \
struct structure data = {0}; \
if (!size_var) { \
blog(LOG_ERROR, "Tried to register " #structure \
" outside of obs_module_load"); \
return; \
} \
\
if (size_var > sizeof(data)) { \
blog(LOG_ERROR, "Tried to register " #structure \
" with size %llu which is more " \
"than libobs currently supports " \
"(%llu)", \
(long long unsigned)size_var, \
(long long unsigned)sizeof(data));\
goto error; \
} \
\
Add source properties window (very preliminary) - Add a properties window for sources so that you can now actually edit the settings for sources. Also, display the source by itself in the window (Note: not working on mac, and possibly not working on linux). When changing the settings for a source, it will call obs_source_update on that source when you have modified any values automatically. - Add a properties 'widget', eventually I want to turn this in to a regular nice properties view like you'd see in the designer, but right now it just uses a form layout in a QScrollArea with regular controls to display the properties. It's clunky but works for the time being. - Make it so that swap chains and the main graphics subsystem will automatically use at least one backbuffer if none was specified - Fix bug where displays weren't added to the main display array - Make it so that you can get the properties of a source via the actual pointer of a source/encoder/output in addition to being able to look up properties via identifier. - When registering source types, check for required functions (wasn't doing it before). getheight/getwidth should not be optional if it's a video source as well. - Add an RAII OBSObj wrapper to obs.hpp for non-reference-counted libobs pointers - Add an RAII OBSSignal wrapper to obs.hpp for libobs signals to automatically disconnect them on destruction - Move the "scale and center" calculation in window-basic-main.cpp to its own function and in its own source file - Add an 'update' callback to WASAPI audio sources
2014-03-23 01:07:54 -07:00
memcpy(&data, info, size_var); \
da_push_back(dest, &data); \
} while (false)
#define CHECK_REQUIRED_VAL(type, info, val, func) \
Add source properties window (very preliminary) - Add a properties window for sources so that you can now actually edit the settings for sources. Also, display the source by itself in the window (Note: not working on mac, and possibly not working on linux). When changing the settings for a source, it will call obs_source_update on that source when you have modified any values automatically. - Add a properties 'widget', eventually I want to turn this in to a regular nice properties view like you'd see in the designer, but right now it just uses a form layout in a QScrollArea with regular controls to display the properties. It's clunky but works for the time being. - Make it so that swap chains and the main graphics subsystem will automatically use at least one backbuffer if none was specified - Fix bug where displays weren't added to the main display array - Make it so that you can get the properties of a source via the actual pointer of a source/encoder/output in addition to being able to look up properties via identifier. - When registering source types, check for required functions (wasn't doing it before). getheight/getwidth should not be optional if it's a video source as well. - Add an RAII OBSObj wrapper to obs.hpp for non-reference-counted libobs pointers - Add an RAII OBSSignal wrapper to obs.hpp for libobs signals to automatically disconnect them on destruction - Move the "scale and center" calculation in window-basic-main.cpp to its own function and in its own source file - Add an 'update' callback to WASAPI audio sources
2014-03-23 01:07:54 -07:00
do { \
if ((offsetof(type, val) + sizeof(info->val) > size) || \
!info->val) { \
blog(LOG_ERROR, "Required value '" #val "' for " \
Add source properties window (very preliminary) - Add a properties window for sources so that you can now actually edit the settings for sources. Also, display the source by itself in the window (Note: not working on mac, and possibly not working on linux). When changing the settings for a source, it will call obs_source_update on that source when you have modified any values automatically. - Add a properties 'widget', eventually I want to turn this in to a regular nice properties view like you'd see in the designer, but right now it just uses a form layout in a QScrollArea with regular controls to display the properties. It's clunky but works for the time being. - Make it so that swap chains and the main graphics subsystem will automatically use at least one backbuffer if none was specified - Fix bug where displays weren't added to the main display array - Make it so that you can get the properties of a source via the actual pointer of a source/encoder/output in addition to being able to look up properties via identifier. - When registering source types, check for required functions (wasn't doing it before). getheight/getwidth should not be optional if it's a video source as well. - Add an RAII OBSObj wrapper to obs.hpp for non-reference-counted libobs pointers - Add an RAII OBSSignal wrapper to obs.hpp for libobs signals to automatically disconnect them on destruction - Move the "scale and center" calculation in window-basic-main.cpp to its own function and in its own source file - Add an 'update' callback to WASAPI audio sources
2014-03-23 01:07:54 -07:00
"'%s' not found. " #func \
" failed.", info->id); \
goto error; \
Add source properties window (very preliminary) - Add a properties window for sources so that you can now actually edit the settings for sources. Also, display the source by itself in the window (Note: not working on mac, and possibly not working on linux). When changing the settings for a source, it will call obs_source_update on that source when you have modified any values automatically. - Add a properties 'widget', eventually I want to turn this in to a regular nice properties view like you'd see in the designer, but right now it just uses a form layout in a QScrollArea with regular controls to display the properties. It's clunky but works for the time being. - Make it so that swap chains and the main graphics subsystem will automatically use at least one backbuffer if none was specified - Fix bug where displays weren't added to the main display array - Make it so that you can get the properties of a source via the actual pointer of a source/encoder/output in addition to being able to look up properties via identifier. - When registering source types, check for required functions (wasn't doing it before). getheight/getwidth should not be optional if it's a video source as well. - Add an RAII OBSObj wrapper to obs.hpp for non-reference-counted libobs pointers - Add an RAII OBSSignal wrapper to obs.hpp for libobs signals to automatically disconnect them on destruction - Move the "scale and center" calculation in window-basic-main.cpp to its own function and in its own source file - Add an 'update' callback to WASAPI audio sources
2014-03-23 01:07:54 -07:00
} \
} while (false)
#define HANDLE_ERROR(size_var, structure, info) \
do { \
struct structure data = {0}; \
if (!size_var) \
return; \
\
memcpy(&data, info, sizeof(data) < size_var ? \
sizeof(data) : size_var); \
\
if (info->type_data && info->free_type_data) \
info->free_type_data(info->type_data); \
} while (false)
#define source_warn(format, ...) \
blog(LOG_WARNING, "obs_register_source: " format, ##__VA_ARGS__)
#define output_warn(format, ...) \
blog(LOG_WARNING, "obs_register_output: " format, ##__VA_ARGS__)
#define encoder_warn(format, ...) \
blog(LOG_WARNING, "obs_register_encoder: " format, ##__VA_ARGS__)
#define service_warn(format, ...) \
blog(LOG_WARNING, "obs_register_service: " format, ##__VA_ARGS__)
void obs_register_source_s(const struct obs_source_info *info, size_t size)
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
{
struct obs_source_info data = {0};
struct darray *array = NULL;
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
if (info->type == OBS_SOURCE_TYPE_INPUT) {
array = &obs->input_types.da;
} else if (info->type == OBS_SOURCE_TYPE_FILTER) {
array = &obs->filter_types.da;
} else if (info->type == OBS_SOURCE_TYPE_TRANSITION) {
array = &obs->transition_types.da;
} else if (info->type != OBS_SOURCE_TYPE_SCENE) {
source_warn("Tried to register unknown source type: %u",
info->type);
goto error;
}
if (get_source_info(info->id)) {
source_warn("Source '%s' already exists! "
"Duplicate library?", info->id);
goto error;
}
memcpy(&data, info, size);
/* mark audio-only filters as an async filter categorically */
if (data.type == OBS_SOURCE_TYPE_FILTER) {
if ((data.output_flags & OBS_SOURCE_VIDEO) == 0)
data.output_flags |= OBS_SOURCE_ASYNC;
}
if (data.type == OBS_SOURCE_TYPE_TRANSITION) {
if (data.get_width)
source_warn("get_width ignored registering "
"transition '%s'",
data.id);
if (data.get_height)
source_warn("get_height ignored registering "
"transition '%s'",
data.id);
data.output_flags |= OBS_SOURCE_COMPOSITE | OBS_SOURCE_VIDEO |
OBS_SOURCE_CUSTOM_DRAW;
}
if ((data.output_flags & OBS_SOURCE_COMPOSITE) != 0) {
if ((data.output_flags & OBS_SOURCE_AUDIO) != 0) {
source_warn("Source '%s': Composite sources "
"cannot be audio sources", info->id);
goto error;
}
if ((data.output_flags & OBS_SOURCE_ASYNC) != 0) {
source_warn("Source '%s': Composite sources "
"cannot be async sources", info->id);
goto error;
}
}
#define CHECK_REQUIRED_VAL_(info, val, func) \
CHECK_REQUIRED_VAL(struct obs_source_info, info, val, func)
CHECK_REQUIRED_VAL_(info, get_name, obs_register_source);
CHECK_REQUIRED_VAL_(info, create, obs_register_source);
CHECK_REQUIRED_VAL_(info, destroy, obs_register_source);
Add source properties window (very preliminary) - Add a properties window for sources so that you can now actually edit the settings for sources. Also, display the source by itself in the window (Note: not working on mac, and possibly not working on linux). When changing the settings for a source, it will call obs_source_update on that source when you have modified any values automatically. - Add a properties 'widget', eventually I want to turn this in to a regular nice properties view like you'd see in the designer, but right now it just uses a form layout in a QScrollArea with regular controls to display the properties. It's clunky but works for the time being. - Make it so that swap chains and the main graphics subsystem will automatically use at least one backbuffer if none was specified - Fix bug where displays weren't added to the main display array - Make it so that you can get the properties of a source via the actual pointer of a source/encoder/output in addition to being able to look up properties via identifier. - When registering source types, check for required functions (wasn't doing it before). getheight/getwidth should not be optional if it's a video source as well. - Add an RAII OBSObj wrapper to obs.hpp for non-reference-counted libobs pointers - Add an RAII OBSSignal wrapper to obs.hpp for libobs signals to automatically disconnect them on destruction - Move the "scale and center" calculation in window-basic-main.cpp to its own function and in its own source file - Add an 'update' callback to WASAPI audio sources
2014-03-23 01:07:54 -07:00
if (info->type != OBS_SOURCE_TYPE_FILTER &&
info->type != OBS_SOURCE_TYPE_TRANSITION &&
(info->output_flags & OBS_SOURCE_VIDEO) != 0 &&
(info->output_flags & OBS_SOURCE_ASYNC) == 0) {
CHECK_REQUIRED_VAL_(info, get_width, obs_register_source);
CHECK_REQUIRED_VAL_(info, get_height, obs_register_source);
2014-02-23 22:39:33 -07:00
}
if ((data.output_flags & OBS_SOURCE_COMPOSITE) != 0) {
CHECK_REQUIRED_VAL_(info, audio_render, obs_register_source);
}
#undef CHECK_REQUIRED_VAL_
2014-02-23 22:39:33 -07:00
if (size > sizeof(data)) {
source_warn("Tried to register obs_source_info with size "
"%llu which is more than libobs currently "
"supports (%llu)", (long long unsigned)size,
(long long unsigned)sizeof(data));
goto error;
}
if (array)
darray_push_back(sizeof(struct obs_source_info), array, &data);
da_push_back(obs->source_types, &data);
return;
error:
HANDLE_ERROR(size, obs_source_info, info);
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
}
void obs_register_output_s(const struct obs_output_info *info, size_t size)
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
{
if (find_output(info->id)) {
output_warn("Output id '%s' already exists! "
"Duplicate library?", info->id);
goto error;
}
#define CHECK_REQUIRED_VAL_(info, val, func) \
CHECK_REQUIRED_VAL(struct obs_output_info, info, val, func)
CHECK_REQUIRED_VAL_(info, get_name, obs_register_output);
CHECK_REQUIRED_VAL_(info, create, obs_register_output);
CHECK_REQUIRED_VAL_(info, destroy, obs_register_output);
CHECK_REQUIRED_VAL_(info, start, obs_register_output);
CHECK_REQUIRED_VAL_(info, stop, obs_register_output);
Implement encoder usage with outputs - Make it so that encoders can be assigned to outputs. If an encoder is destroyed, it will automatically remove itself from that output. I specifically didn't want to do reference counting because it leaves too much potential for unchecked references and it just felt like it would be more trouble than it's worth. - Add a 'flags' value to the output definition structure. This lets the output specify if it uses video/audio, and whether the output is meant to be used with OBS encoders or not. - Remove boilerplate code for outputs. This makes it easier to program outputs. The boilerplate code involved before was mostly just involving connecting to the audio/video data streams directly in each output plugin. Instead of doing that, simply add plugin callback functions for receiving video/audio (either encoded or non-encoded, whichever it's set to use), and then call obs_output_begin_data_capture and obs_output_end_data_capture to automatically handle setting up connections to raw or encoded video/audio streams for the plugin. - Remove 'active' function from output callbacks, as it's no longer really needed now that the libobs output context automatically knows when the output is active or not. - Make it so that an encoder cannot be destroyed until all data connections to the encoder have been removed. - Change the 'start' and 'stop' functions in the encoder interface to just an 'initialize' callback, which initializes the encoder. - Make it so that the encoder must be initialized first before the data stream can be started. The reason why initialization was separated from starting the encoder stream was because we need to be able to check that the settings used with the encoder *can* be used first. This problem was especially annoying if you had both video/audio encoding. Before, you'd have to check the return value from obs_encoder_start, and if that second encoder fails, then you basically had to stop the first encoder again, making for unnecessary boilerplate code whenever starting up two encoders.
2014-03-27 21:50:15 -07:00
if (info->flags & OBS_OUTPUT_ENCODED) {
CHECK_REQUIRED_VAL_(info, encoded_packet, obs_register_output);
Implement encoder usage with outputs - Make it so that encoders can be assigned to outputs. If an encoder is destroyed, it will automatically remove itself from that output. I specifically didn't want to do reference counting because it leaves too much potential for unchecked references and it just felt like it would be more trouble than it's worth. - Add a 'flags' value to the output definition structure. This lets the output specify if it uses video/audio, and whether the output is meant to be used with OBS encoders or not. - Remove boilerplate code for outputs. This makes it easier to program outputs. The boilerplate code involved before was mostly just involving connecting to the audio/video data streams directly in each output plugin. Instead of doing that, simply add plugin callback functions for receiving video/audio (either encoded or non-encoded, whichever it's set to use), and then call obs_output_begin_data_capture and obs_output_end_data_capture to automatically handle setting up connections to raw or encoded video/audio streams for the plugin. - Remove 'active' function from output callbacks, as it's no longer really needed now that the libobs output context automatically knows when the output is active or not. - Make it so that an encoder cannot be destroyed until all data connections to the encoder have been removed. - Change the 'start' and 'stop' functions in the encoder interface to just an 'initialize' callback, which initializes the encoder. - Make it so that the encoder must be initialized first before the data stream can be started. The reason why initialization was separated from starting the encoder stream was because we need to be able to check that the settings used with the encoder *can* be used first. This problem was especially annoying if you had both video/audio encoding. Before, you'd have to check the return value from obs_encoder_start, and if that second encoder fails, then you basically had to stop the first encoder again, making for unnecessary boilerplate code whenever starting up two encoders.
2014-03-27 21:50:15 -07:00
} else {
if (info->flags & OBS_OUTPUT_VIDEO)
CHECK_REQUIRED_VAL_(info, raw_video,
Implement encoder usage with outputs - Make it so that encoders can be assigned to outputs. If an encoder is destroyed, it will automatically remove itself from that output. I specifically didn't want to do reference counting because it leaves too much potential for unchecked references and it just felt like it would be more trouble than it's worth. - Add a 'flags' value to the output definition structure. This lets the output specify if it uses video/audio, and whether the output is meant to be used with OBS encoders or not. - Remove boilerplate code for outputs. This makes it easier to program outputs. The boilerplate code involved before was mostly just involving connecting to the audio/video data streams directly in each output plugin. Instead of doing that, simply add plugin callback functions for receiving video/audio (either encoded or non-encoded, whichever it's set to use), and then call obs_output_begin_data_capture and obs_output_end_data_capture to automatically handle setting up connections to raw or encoded video/audio streams for the plugin. - Remove 'active' function from output callbacks, as it's no longer really needed now that the libobs output context automatically knows when the output is active or not. - Make it so that an encoder cannot be destroyed until all data connections to the encoder have been removed. - Change the 'start' and 'stop' functions in the encoder interface to just an 'initialize' callback, which initializes the encoder. - Make it so that the encoder must be initialized first before the data stream can be started. The reason why initialization was separated from starting the encoder stream was because we need to be able to check that the settings used with the encoder *can* be used first. This problem was especially annoying if you had both video/audio encoding. Before, you'd have to check the return value from obs_encoder_start, and if that second encoder fails, then you basically had to stop the first encoder again, making for unnecessary boilerplate code whenever starting up two encoders.
2014-03-27 21:50:15 -07:00
obs_register_output);
if (info->flags & OBS_OUTPUT_AUDIO)
CHECK_REQUIRED_VAL_(info, raw_audio,
Implement encoder usage with outputs - Make it so that encoders can be assigned to outputs. If an encoder is destroyed, it will automatically remove itself from that output. I specifically didn't want to do reference counting because it leaves too much potential for unchecked references and it just felt like it would be more trouble than it's worth. - Add a 'flags' value to the output definition structure. This lets the output specify if it uses video/audio, and whether the output is meant to be used with OBS encoders or not. - Remove boilerplate code for outputs. This makes it easier to program outputs. The boilerplate code involved before was mostly just involving connecting to the audio/video data streams directly in each output plugin. Instead of doing that, simply add plugin callback functions for receiving video/audio (either encoded or non-encoded, whichever it's set to use), and then call obs_output_begin_data_capture and obs_output_end_data_capture to automatically handle setting up connections to raw or encoded video/audio streams for the plugin. - Remove 'active' function from output callbacks, as it's no longer really needed now that the libobs output context automatically knows when the output is active or not. - Make it so that an encoder cannot be destroyed until all data connections to the encoder have been removed. - Change the 'start' and 'stop' functions in the encoder interface to just an 'initialize' callback, which initializes the encoder. - Make it so that the encoder must be initialized first before the data stream can be started. The reason why initialization was separated from starting the encoder stream was because we need to be able to check that the settings used with the encoder *can* be used first. This problem was especially annoying if you had both video/audio encoding. Before, you'd have to check the return value from obs_encoder_start, and if that second encoder fails, then you basically had to stop the first encoder again, making for unnecessary boilerplate code whenever starting up two encoders.
2014-03-27 21:50:15 -07:00
obs_register_output);
}
#undef CHECK_REQUIRED_VAL_
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
REGISTER_OBS_DEF(size, obs_output_info, obs->output_types, info);
return;
error:
HANDLE_ERROR(size, obs_output_info, info);
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
}
void obs_register_encoder_s(const struct obs_encoder_info *info, size_t size)
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
{
if (find_encoder(info->id)) {
encoder_warn("Encoder id '%s' already exists! "
"Duplicate library?", info->id);
goto error;
}
#define CHECK_REQUIRED_VAL_(info, val, func) \
CHECK_REQUIRED_VAL(struct obs_encoder_info, info, val, func)
CHECK_REQUIRED_VAL_(info, get_name, obs_register_encoder);
CHECK_REQUIRED_VAL_(info, create, obs_register_encoder);
CHECK_REQUIRED_VAL_(info, destroy, obs_register_encoder);
CHECK_REQUIRED_VAL_(info, encode, obs_register_encoder);
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
Implement RTMP module (still needs drop code) - Implement the RTMP output module. This time around, we just use a simple FLV muxer, then just write to the stream with RTMP_Write. Easy and effective. - Fix the FLV muxer, the muxer now outputs proper FLV packets. - Output API: * When using encoders, automatically interleave encoded packets before sending it to the output. * Pair encoders and have them automatically wait for the other to start to ensure sync. * Change 'obs_output_signal_start_fail' to 'obs_output_signal_stop' because it was a bit confusing, and doing this makes a lot more sense for outputs that need to stop suddenly (disconnections/etc). - Encoder API: * Remove some unnecessary encoder functions from the actual API and make them internal. Most of the encoder functions are handled automatically by outputs anyway, so there's no real need to expose them and end up inadvertently confusing plugin writers. * Have audio encoders wait for the video encoder to get a frame, then start at the exact data point that the first video frame starts to ensure the most accrate sync of video/audio possible. * Add a required 'frame_size' callback for audio encoders that returns the expected number of frames desired to encode with. This way, the libobs encoder API can handle the circular buffering internally automatically for the encoder modules, so encoder writers don't have to do it themselves. - Fix a few bugs in the serializer interface. It was passing the wrong variable for the data in a few cases. - If a source has video, make obs_source_update defer the actual update callback until the tick function is called to prevent threading issues.
2014-04-07 22:00:10 -07:00
if (info->type == OBS_ENCODER_AUDIO)
CHECK_REQUIRED_VAL_(info, get_frame_size, obs_register_encoder);
#undef CHECK_REQUIRED_VAL_
Implement RTMP module (still needs drop code) - Implement the RTMP output module. This time around, we just use a simple FLV muxer, then just write to the stream with RTMP_Write. Easy and effective. - Fix the FLV muxer, the muxer now outputs proper FLV packets. - Output API: * When using encoders, automatically interleave encoded packets before sending it to the output. * Pair encoders and have them automatically wait for the other to start to ensure sync. * Change 'obs_output_signal_start_fail' to 'obs_output_signal_stop' because it was a bit confusing, and doing this makes a lot more sense for outputs that need to stop suddenly (disconnections/etc). - Encoder API: * Remove some unnecessary encoder functions from the actual API and make them internal. Most of the encoder functions are handled automatically by outputs anyway, so there's no real need to expose them and end up inadvertently confusing plugin writers. * Have audio encoders wait for the video encoder to get a frame, then start at the exact data point that the first video frame starts to ensure the most accrate sync of video/audio possible. * Add a required 'frame_size' callback for audio encoders that returns the expected number of frames desired to encode with. This way, the libobs encoder API can handle the circular buffering internally automatically for the encoder modules, so encoder writers don't have to do it themselves. - Fix a few bugs in the serializer interface. It was passing the wrong variable for the data in a few cases. - If a source has video, make obs_source_update defer the actual update callback until the tick function is called to prevent threading issues.
2014-04-07 22:00:10 -07:00
REGISTER_OBS_DEF(size, obs_encoder_info, obs->encoder_types, info);
return;
error:
HANDLE_ERROR(size, obs_encoder_info, info);
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
}
void obs_register_service_s(const struct obs_service_info *info, size_t size)
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
{
if (find_service(info->id)) {
service_warn("Service id '%s' already exists! "
"Duplicate library?", info->id);
goto error;
}
#define CHECK_REQUIRED_VAL_(info, val, func) \
CHECK_REQUIRED_VAL(struct obs_service_info, info, val, func)
CHECK_REQUIRED_VAL_(info, get_name, obs_register_service);
CHECK_REQUIRED_VAL_(info, create, obs_register_service);
CHECK_REQUIRED_VAL_(info, destroy, obs_register_service);
#undef CHECK_REQUIRED_VAL_
REGISTER_OBS_DEF(size, obs_service_info, obs->service_types, info);
return;
error:
HANDLE_ERROR(size, obs_service_info, info);
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
}
void obs_regsiter_modal_ui_s(const struct obs_modal_ui *info, size_t size)
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
{
#define CHECK_REQUIRED_VAL_(info, val, func) \
CHECK_REQUIRED_VAL(struct obs_modal_ui, info, val, func)
CHECK_REQUIRED_VAL_(info, task, obs_regsiter_modal_ui);
CHECK_REQUIRED_VAL_(info, target, obs_regsiter_modal_ui);
CHECK_REQUIRED_VAL_(info, exec, obs_regsiter_modal_ui);
#undef CHECK_REQUIRED_VAL_
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
REGISTER_OBS_DEF(size, obs_modal_ui, obs->modal_ui_callbacks, info);
return;
error:
HANDLE_ERROR(size, obs_modal_ui, info);
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
}
void obs_regsiter_modeless_ui_s(const struct obs_modeless_ui *info, size_t size)
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
{
#define CHECK_REQUIRED_VAL_(info, val, func) \
CHECK_REQUIRED_VAL(struct obs_modeless_ui, info, val, func)
CHECK_REQUIRED_VAL_(info, task, obs_regsiter_modeless_ui);
CHECK_REQUIRED_VAL_(info, target, obs_regsiter_modeless_ui);
CHECK_REQUIRED_VAL_(info, create, obs_regsiter_modeless_ui);
#undef CHECK_REQUIRED_VAL_
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
REGISTER_OBS_DEF(size, obs_modeless_ui, obs->modeless_ui_callbacks,
info);
return;
error:
HANDLE_ERROR(size, obs_modeless_ui, info);
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 08:04:50 -07:00
}