obs-studio/plugins/win-mf/mf-h264-encoder.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

775 lines
16 KiB
C++
Raw Normal View History

#include <obs-module.h>
#include <util/profiler.hpp>
#include "mf-common.hpp"
#include "mf-h264-encoder.hpp"
#include <codecapi.h>
#include <mferror.h>
using namespace MF;
static eAVEncH264VProfile MapProfile(H264Profile profile)
{
switch (profile) {
case H264ProfileBaseline: return eAVEncH264VProfile_Base;
case H264ProfileMain: return eAVEncH264VProfile_Main;
case H264ProfileHigh: return eAVEncH264VProfile_High;
default: return eAVEncH264VProfile_Base;
}
}
static eAVEncCommonRateControlMode MapRateControl(H264RateControl rc)
{
switch (rc) {
case H264RateControlCBR:
return eAVEncCommonRateControlMode_CBR;
case H264RateControlConstrainedVBR:
return eAVEncCommonRateControlMode_PeakConstrainedVBR;
case H264RateControlVBR:
return eAVEncCommonRateControlMode_UnconstrainedVBR;
case H264RateControlCQP:
return eAVEncCommonRateControlMode_Quality;
default:
return eAVEncCommonRateControlMode_CBR;
}
}
static UINT32 MapQpToQuality(H264QP &qp)
{
return 100 - (UINT32)floor(100.0 / 51.0 * qp.defaultQp + 0.5f);
}
static bool ProcessNV12(std::function<void(UINT32 height, INT32 plane)> func,
UINT32 height)
{
INT32 plane = 0;
func(height, plane++);
func(height / 2, plane);
return true;
}
H264Encoder::H264Encoder(const obs_encoder_t *encoder,
std::shared_ptr<EncoderDescriptor> descriptor,
UINT32 width,
UINT32 height,
UINT32 framerateNum,
UINT32 framerateDen,
H264Profile profile,
UINT32 bitrate)
: encoder(encoder),
descriptor(descriptor),
width(width),
height(height),
framerateNum(framerateNum),
framerateDen(framerateDen),
initialBitrate(bitrate),
2018-12-06 10:14:54 +03:00
profile(profile),
createOutputSample(false)
{}
H264Encoder::~H264Encoder()
{
HRESULT hr;
if (!descriptor->Async() || !eventGenerator || !pendingRequests)
return;
// Make sure all events have finished before releasing, and drain
// all output requests until it makes an input request.
// If you do not do this, you risk it releasing while there's still
// encoder activity, which can cause a crash with certain interfaces.
while (inputRequests == 0) {
hr = ProcessOutput();
if (hr != MF_E_TRANSFORM_NEED_MORE_INPUT && FAILED(hr)) {
MF_LOG_COM(LOG_ERROR, "H264Encoder::~H264Encoder: "
"ProcessOutput()", hr);
break;
}
if (inputRequests == 0)
Sleep(1);
}
}
HRESULT H264Encoder::CreateMediaTypes(ComPtr<IMFMediaType> &i,
ComPtr<IMFMediaType> &o)
{
HRESULT hr;
HRC(MFCreateMediaType(&i));
HRC(MFCreateMediaType(&o));
HRC(i->SetGUID(MF_MT_MAJOR_TYPE, MFMediaType_Video));
HRC(i->SetGUID(MF_MT_SUBTYPE, MFVideoFormat_NV12));
HRC(MFSetAttributeSize(i, MF_MT_FRAME_SIZE, width, height));
HRC(MFSetAttributeRatio(i, MF_MT_FRAME_RATE, framerateNum,
framerateDen));
HRC(i->SetUINT32(MF_MT_INTERLACE_MODE,
MFVideoInterlaceMode::MFVideoInterlace_Progressive));
HRC(MFSetAttributeRatio(i, MF_MT_PIXEL_ASPECT_RATIO, 1, 1));
HRC(o->SetGUID(MF_MT_MAJOR_TYPE, MFMediaType_Video));
HRC(o->SetGUID(MF_MT_SUBTYPE, MFVideoFormat_H264));
HRC(MFSetAttributeSize(o, MF_MT_FRAME_SIZE, width, height));
HRC(MFSetAttributeRatio(o, MF_MT_FRAME_RATE, framerateNum,
framerateDen));
HRC(o->SetUINT32(MF_MT_AVG_BITRATE, initialBitrate * 1000));
HRC(o->SetUINT32(MF_MT_INTERLACE_MODE,
MFVideoInterlaceMode::MFVideoInterlace_Progressive));
HRC(MFSetAttributeRatio(o, MF_MT_PIXEL_ASPECT_RATIO, 1, 1));
HRC(o->SetUINT32(MF_MT_MPEG2_LEVEL, (UINT32)-1));
HRC(o->SetUINT32(MF_MT_MPEG2_PROFILE, MapProfile(profile)));
return S_OK;
fail:
return hr;
}
HRESULT H264Encoder::DrainEvents()
{
HRESULT hr;
while ((hr = DrainEvent(false)) == S_OK);
if (hr == MF_E_NO_EVENTS_AVAILABLE)
hr = S_OK;
return hr;
}
HRESULT H264Encoder::DrainEvent(bool block)
{
HRESULT hr, eventStatus;
ComPtr<IMFMediaEvent> event;
MediaEventType type;
hr = eventGenerator->GetEvent(
block ? 0 : MF_EVENT_FLAG_NO_WAIT, &event);
if (hr != MF_E_NO_EVENTS_AVAILABLE && FAILED(hr))
goto fail;
if (hr == MF_E_NO_EVENTS_AVAILABLE)
return hr;
HRC(event->GetType(&type));
HRC(event->GetStatus(&eventStatus));
if (SUCCEEDED(eventStatus)) {
if (type == METransformNeedInput) {
inputRequests++;
}
else if (type == METransformHaveOutput) {
outputRequests++;
}
}
return S_OK;
fail:
return hr;
}
HRESULT H264Encoder::InitializeEventGenerator()
{
HRESULT hr;
HRC(transform->QueryInterface(&eventGenerator));
return S_OK;
fail:
return hr;
}
HRESULT H264Encoder::InitializeExtraData()
{
HRESULT hr;
ComPtr<IMFMediaType> inputType;
UINT32 headerSize;
extraData.clear();
HRC(transform->GetOutputCurrentType(0, &inputType));
HRC(inputType->GetBlobSize(MF_MT_MPEG_SEQUENCE_HEADER, &headerSize));
extraData.resize(headerSize);
HRC(inputType->GetBlob(MF_MT_MPEG_SEQUENCE_HEADER, extraData.data(),
headerSize, NULL));
return S_OK;
fail:
return hr;
}
static HRESULT SetCodecProperty(ComPtr<ICodecAPI> &codecApi, GUID guid,
bool value)
{
VARIANT v;
v.vt = VT_BOOL;
v.boolVal = value ? VARIANT_TRUE : VARIANT_FALSE;
return codecApi->SetValue(&guid, &v);
}
static HRESULT SetCodecProperty(ComPtr<ICodecAPI> &codecApi, GUID guid,
UINT32 value)
{
VARIANT v;
v.vt = VT_UI4;
v.ulVal = value;
return codecApi->SetValue(&guid, &v);
}
static HRESULT SetCodecProperty(ComPtr<ICodecAPI> &codecApi, GUID guid,
UINT64 value)
{
VARIANT v;
v.vt = VT_UI8;
v.ullVal = value;
return codecApi->SetValue(&guid, &v);
}
bool H264Encoder::SetBitrate(UINT32 bitrate)
{
HRESULT hr;
if (codecApi) {
HR_CHECK(LOG_WARNING, SetCodecProperty(codecApi,
CODECAPI_AVEncCommonMeanBitRate,
UINT32(bitrate * 1000)));
}
return true;
fail:
return false;
}
bool H264Encoder::SetQP(H264QP &qp)
{
HRESULT hr;
if (codecApi) {
HR_CHECK(LOG_WARNING, SetCodecProperty(codecApi,
CODECAPI_AVEncCommonQuality,
UINT32(MapQpToQuality(qp))));
HRL(SetCodecProperty(codecApi,
CODECAPI_AVEncVideoEncodeQP,
UINT64(qp.Pack(true))));
HRL(SetCodecProperty(codecApi,
CODECAPI_AVEncVideoEncodeFrameTypeQP,
UINT64(qp.Pack(false))));
}
return true;
fail:
return false;
}
bool H264Encoder::SetMinQP(UINT32 minQp)
{
HRESULT hr;
if (codecApi) {
HR_CHECK(LOG_WARNING, SetCodecProperty(codecApi,
CODECAPI_AVEncVideoMinQP,
UINT32(minQp)));
}
return true;
fail:
return false;
}
bool H264Encoder::SetMaxQP(UINT32 maxQp)
{
HRESULT hr;
if (codecApi) {
HR_CHECK(LOG_WARNING, SetCodecProperty(codecApi,
CODECAPI_AVEncVideoMaxQP,
UINT32(maxQp)));
}
return true;
fail:
return false;
}
bool H264Encoder::SetRateControl(H264RateControl rateControl)
{
HRESULT hr;
if (codecApi) {
HR_CHECK(LOG_WARNING, SetCodecProperty(codecApi,
CODECAPI_AVEncCommonRateControlMode,
UINT32(MapRateControl(rateControl))));
}
return true;
fail:
return false;
}
bool H264Encoder::SetKeyframeInterval(UINT32 seconds)
{
HRESULT hr;
if (codecApi) {
float gopSize = float(framerateNum) / framerateDen * seconds;
HR_CHECK(LOG_WARNING, SetCodecProperty(codecApi,
CODECAPI_AVEncMPVGOPSize,
UINT32(gopSize)));
}
return true;
fail:
return false;
}
bool H264Encoder::SetMaxBitrate(UINT32 maxBitrate)
{
HRESULT hr;
if (codecApi) {
HR_CHECK(LOG_WARNING, SetCodecProperty(codecApi,
CODECAPI_AVEncCommonMaxBitRate,
UINT32(maxBitrate * 1000)));
}
return true;
fail:
return false;
}
bool H264Encoder::SetLowLatency(bool lowLatency)
{
HRESULT hr;
if (codecApi) {
HR_CHECK(LOG_WARNING, SetCodecProperty(codecApi,
CODECAPI_AVEncCommonLowLatency,
lowLatency));
}
return true;
fail:
return false;
}
bool H264Encoder::SetBufferSize(UINT32 bufferSize)
{
HRESULT hr;
if (codecApi) {
HR_CHECK(LOG_WARNING, SetCodecProperty(codecApi,
CODECAPI_AVEncCommonBufferSize,
UINT32(bufferSize * 1000)));
}
return true;
fail:
return false;
}
bool H264Encoder::SetBFrameCount(UINT32 bFrames)
{
HRESULT hr;
if (codecApi) {
HR_CHECK(LOG_WARNING, SetCodecProperty(codecApi,
CODECAPI_AVEncMPVDefaultBPictureCount,
UINT32(bFrames)));
}
return true;
fail:
return false;
}
bool H264Encoder::SetEntropyEncoding(H264EntropyEncoding entropyEncoding)
{
HRESULT hr;
if (codecApi) {
HR_CHECK(LOG_WARNING, SetCodecProperty(codecApi,
CODECAPI_AVEncH264CABACEnable,
entropyEncoding == H264EntropyEncodingCABAC));
}
return true;
fail:
return false;
}
bool H264Encoder::Initialize(std::function<bool(void)> func)
{
ProfileScope("H264Encoder::Initialize");
HRESULT hr;
ComPtr<IMFMediaType> inputType, outputType;
ComPtr<IMFAttributes> transformAttributes;
MFT_OUTPUT_STREAM_INFO streamInfo = {0};
HRC(CoCreateInstance(descriptor->Guid(), NULL, CLSCTX_INPROC_SERVER,
IID_PPV_ARGS(&transform)));
HRC(CreateMediaTypes(inputType, outputType));
if (descriptor->Async()) {
HRC(transform->GetAttributes(&transformAttributes));
HRC(transformAttributes->SetUINT32(MF_TRANSFORM_ASYNC_UNLOCK,
TRUE));
}
HRC(transform->QueryInterface(&codecApi));
if (func && !func()) {
MF_LOG(LOG_ERROR, "Failed setting custom properties");
goto fail;
}
2015-09-17 17:41:03 -07:00
MF_LOG(LOG_INFO, "Activating encoder: %s",
typeNames[(int)descriptor->Type()]);
MF_LOG(LOG_INFO, " Setting output type to transform:");
LogMediaType(outputType.Get());
HRC(transform->SetOutputType(0, outputType.Get(), 0));
2015-09-17 17:41:03 -07:00
MF_LOG(LOG_INFO, " Setting input type to transform:");
LogMediaType(inputType.Get());
HRC(transform->SetInputType(0, inputType.Get(), 0));
HRC(transform->ProcessMessage(MFT_MESSAGE_NOTIFY_BEGIN_STREAMING,
NULL));
HRC(transform->ProcessMessage(MFT_MESSAGE_NOTIFY_START_OF_STREAM,
NULL));
if (descriptor->Async())
HRC(InitializeEventGenerator());
HRC(transform->GetOutputStreamInfo(0, &streamInfo));
createOutputSample = !(streamInfo.dwFlags &
(MFT_OUTPUT_STREAM_PROVIDES_SAMPLES |
MFT_OUTPUT_STREAM_CAN_PROVIDE_SAMPLES));
return true;
fail:
return false;
}
bool H264Encoder::ExtraData(UINT8 **data, UINT32 *dataLength)
{
if (extraData.empty())
return false;
*data = extraData.data();
*dataLength = (UINT32)extraData.size();
return true;
}
HRESULT H264Encoder::CreateEmptySample(ComPtr<IMFSample> &sample,
ComPtr<IMFMediaBuffer> &buffer, DWORD length)
{
HRESULT hr;
HRC(MFCreateSample(&sample));
HRC(MFCreateMemoryBuffer(length, &buffer));
HRC(sample->AddBuffer(buffer.Get()));
return S_OK;
fail:
return hr;
}
HRESULT H264Encoder::EnsureCapacity(ComPtr<IMFSample> &sample, DWORD length)
{
HRESULT hr;
ComPtr<IMFMediaBuffer> buffer;
DWORD currentLength;
if (!sample) {
HRC(CreateEmptySample(sample, buffer, length));
}
else {
HRC(sample->GetBufferByIndex(0, &buffer));
}
HRC(buffer->GetMaxLength(&currentLength));
if (currentLength < length) {
HRC(sample->RemoveAllBuffers());
HRC(MFCreateMemoryBuffer(length, &buffer));
HRC(sample->AddBuffer(buffer));
}
else {
buffer->SetCurrentLength(0);
}
return S_OK;
fail:
return hr;
}
HRESULT H264Encoder::ProcessInput(ComPtr<IMFSample> &sample)
{
ProfileScope("H264Encoder::ProcessInput(sample)");
HRESULT hr = S_OK;
if (descriptor->Async()) {
if (inputRequests == 1 && inputSamples.empty()) {
inputRequests--;
return transform->ProcessInput(0, sample, 0);
}
inputSamples.push(sample);
while (inputRequests > 0) {
if (inputSamples.empty())
return hr;
ComPtr<IMFSample> queuedSample = inputSamples.front();
inputSamples.pop();
inputRequests--;
HRC(transform->ProcessInput(0, queuedSample, 0));
}
} else {
return transform->ProcessInput(0, sample, 0);
}
fail:
return hr;
}
bool H264Encoder::ProcessInput(UINT8 **data, UINT32 *linesize, UINT64 pts,
Status *status)
{
ProfileScope("H264Encoder::ProcessInput");
HRESULT hr;
ComPtr<IMFSample> sample;
ComPtr<IMFMediaBuffer> buffer;
BYTE *bufferData;
UINT64 sampleDur;
UINT32 imageSize;
HRC(MFCalculateImageSize(MFVideoFormat_NV12, width, height, &imageSize));
HRC(CreateEmptySample(sample, buffer, imageSize));
{
ProfileScope("H264EncoderCopyInputSample");
HRC(buffer->Lock(&bufferData, NULL, NULL));
ProcessNV12([&, this](DWORD height, int plane) {
MFCopyImage(bufferData, width, data[plane],
linesize[plane], width, height);
bufferData += width * height;
}, height);
}
HRC(buffer->Unlock());
HRC(buffer->SetCurrentLength(imageSize));
MFFrameRateToAverageTimePerFrame(framerateNum, framerateDen, &sampleDur);
HRC(sample->SetSampleTime(pts * sampleDur));
HRC(sample->SetSampleDuration(sampleDur));
if (descriptor->Async()) {
HRC(DrainEvents());
while (outputRequests > 0 && (hr = ProcessOutput()) == S_OK);
if (hr != MF_E_TRANSFORM_NEED_MORE_INPUT && FAILED(hr)) {
MF_LOG_COM(LOG_ERROR, "ProcessOutput()", hr);
goto fail;
}
while (inputRequests == 0) {
hr = DrainEvent(false);
if (hr == MF_E_NO_EVENTS_AVAILABLE) {
Sleep(1);
continue;
}
if (FAILED(hr)) {
MF_LOG_COM(LOG_ERROR, "DrainEvent()", hr);
goto fail;
}
if (outputRequests > 0) {
hr = ProcessOutput();
if (hr != MF_E_TRANSFORM_NEED_MORE_INPUT &&
FAILED(hr))
goto fail;
}
}
}
HRC(ProcessInput(sample));
pendingRequests++;
*status = SUCCESS;
return true;
fail:
*status = FAILURE;
return false;
}
HRESULT H264Encoder::ProcessOutput()
{
HRESULT hr;
ComPtr<IMFSample> sample;
MFT_OUTPUT_STREAM_INFO outputInfo = { 0 };
DWORD outputStatus = 0;
MFT_OUTPUT_DATA_BUFFER output = { 0 };
ComPtr<IMFMediaBuffer> buffer;
BYTE *bufferData;
DWORD bufferLength;
INT64 samplePts;
INT64 sampleDts;
INT64 sampleDur;
std::unique_ptr<std::vector<BYTE>> data(new std::vector<BYTE>());
ComPtr<IMFMediaType> type;
std::unique_ptr<H264Frame> frame;
if (descriptor->Async()) {
HRC(DrainEvents());
if (outputRequests == 0)
return S_OK;
outputRequests--;
}
if (createOutputSample) {
HRC(transform->GetOutputStreamInfo(0, &outputInfo));
HRC(CreateEmptySample(sample, buffer, outputInfo.cbSize));
output.pSample = sample;
} else {
output.pSample = NULL;
}
while (true) {
hr = transform->ProcessOutput(0, 1, &output,
&outputStatus);
ComPtr<IMFCollection> events(output.pEvents);
if (hr == MF_E_TRANSFORM_NEED_MORE_INPUT)
return hr;
if (hr == MF_E_TRANSFORM_STREAM_CHANGE) {
HRC(transform->GetOutputAvailableType(0, 0, &type));
HRC(transform->SetOutputType(0, type, 0));
MF_LOG(LOG_INFO, "Updating output type to transform");
LogMediaType(type);
if (descriptor->Async() && outputRequests > 0) {
outputRequests--;
continue;
} else {
return MF_E_TRANSFORM_NEED_MORE_INPUT;
}
}
if (hr != S_OK) {
MF_LOG_COM(LOG_ERROR, "transform->ProcessOutput()",
hr);
return hr;
}
break;
}
if (!createOutputSample)
sample.Set(output.pSample);
HRC(sample->GetBufferByIndex(0, &buffer));
bool keyframe = !!MFGetAttributeUINT32(sample,
MFSampleExtension_CleanPoint, FALSE);
HRC(buffer->Lock(&bufferData, NULL, &bufferLength));
if (keyframe && extraData.empty())
HRC(InitializeExtraData());
data->reserve(bufferLength + extraData.size());
if (keyframe)
data->insert(data->end(), extraData.begin(), extraData.end());
data->insert(data->end(), &bufferData[0], &bufferData[bufferLength]);
HRC(buffer->Unlock());
HRC(sample->GetSampleDuration(&sampleDur));
HRC(sample->GetSampleTime(&samplePts));
sampleDts = MFGetAttributeUINT64(sample,
MFSampleExtension_DecodeTimestamp, samplePts);
frame.reset(new H264Frame(keyframe,
samplePts / sampleDur,
sampleDts / sampleDur,
std::move(data)));
encodedFrames.push(std::move(frame));
return S_OK;
fail:
return hr;
}
bool H264Encoder::ProcessOutput(UINT8 **data, UINT32 *dataLength,
UINT64 *pts, UINT64 *dts, bool *keyframe, Status *status)
{
ProfileScope("H264Encoder::ProcessOutput");
HRESULT hr;
hr = ProcessOutput();
if (hr == MF_E_TRANSFORM_NEED_MORE_INPUT || encodedFrames.empty()) {
*status = NEED_MORE_INPUT;
return true;
}
if (FAILED(hr) && encodedFrames.empty()) {
*status = FAILURE;
return false;
}
activeFrame = std::move(encodedFrames.front());
encodedFrames.pop();
*data = activeFrame.get()->Data();
*dataLength = activeFrame.get()->DataLength();
*pts = activeFrame.get()->Pts();
*dts = activeFrame.get()->Dts();
*keyframe = activeFrame.get()->Keyframe();
*status = SUCCESS;
pendingRequests--;
return true;
}