2013-09-30 19:37:13 -07:00
|
|
|
/******************************************************************************
|
Revamp API and start using doxygen
The API used to be designed in such a way to where it would expect
exports for each individual source/output/encoder/etc. You would export
functions for each and it would automatically load those functions based
on a specific naming scheme from the module.
The idea behind this was that I wanted to limit the usage of structures
in the API so only functions could be used. It was an interesting idea
in theory, but this idea turned out to be flawed in a number of ways:
1.) Requiring exports to create sources/outputs/encoders/etc meant that
you could not create them by any other means, which meant that
things like faruton's .net plugin would become difficult.
2.) Export function declarations could not be checked, therefore if you
created a function with the wrong parameters and parameter types,
the compiler wouldn't know how to check for that.
3.) Required overly complex load functions in libobs just to handle it.
It makes much more sense to just have a load function that you call
manually. Complexity is the bane of all good programs.
4.) It required that you have functions of specific names, which looked
and felt somewhat unsightly.
So, to fix these issues, I replaced it with a more commonly used API
scheme, seen commonly in places like kernels and typical C libraries
with abstraction. You simply create a structure that contains the
callback definitions, and you pass it to a function to register that
definition (such as obs_register_source), which you call in the
obs_module_load of the module.
It will also automatically check the structure size and ensure that it
only loads the required values if the structure happened to add new
values in an API change.
The "main" source file for each module must include obs-module.h, and
must use OBS_DECLARE_MODULE() within that source file.
Also, started writing some doxygen documentation in to the main library
headers. Will add more detailed documentation as I go.
2014-02-12 07:04:50 -08:00
|
|
|
Copyright (C) 2013-2014 by Hugh Bailey <obs.jim@gmail.com>
|
2013-09-30 19:37:13 -07:00
|
|
|
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
2013-12-02 21:24:38 -08:00
|
|
|
the Free Software Foundation, either version 2 of the License, or
|
2013-09-30 19:37:13 -07:00
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
******************************************************************************/
|
|
|
|
|
2013-10-14 04:21:15 -07:00
|
|
|
#pragma once
|
2013-09-30 19:37:13 -07:00
|
|
|
|
Implement encoder usage with outputs
- Make it so that encoders can be assigned to outputs. If an encoder
is destroyed, it will automatically remove itself from that output.
I specifically didn't want to do reference counting because it leaves
too much potential for unchecked references and it just felt like it
would be more trouble than it's worth.
- Add a 'flags' value to the output definition structure. This lets
the output specify if it uses video/audio, and whether the output is
meant to be used with OBS encoders or not.
- Remove boilerplate code for outputs. This makes it easier to program
outputs. The boilerplate code involved before was mostly just
involving connecting to the audio/video data streams directly in each
output plugin.
Instead of doing that, simply add plugin callback functions for
receiving video/audio (either encoded or non-encoded, whichever it's
set to use), and then call obs_output_begin_data_capture and
obs_output_end_data_capture to automatically handle setting up
connections to raw or encoded video/audio streams for the plugin.
- Remove 'active' function from output callbacks, as it's no longer
really needed now that the libobs output context automatically knows
when the output is active or not.
- Make it so that an encoder cannot be destroyed until all data
connections to the encoder have been removed.
- Change the 'start' and 'stop' functions in the encoder interface to
just an 'initialize' callback, which initializes the encoder.
- Make it so that the encoder must be initialized first before the data
stream can be started. The reason why initialization was separated
from starting the encoder stream was because we need to be able to
check that the settings used with the encoder *can* be used first.
This problem was especially annoying if you had both video/audio
encoding. Before, you'd have to check the return value from
obs_encoder_start, and if that second encoder fails, then you
basically had to stop the first encoder again, making for
unnecessary boilerplate code whenever starting up two encoders.
2014-03-27 21:50:15 -07:00
|
|
|
#define OBS_OUTPUT_VIDEO (1<<0)
|
|
|
|
#define OBS_OUTPUT_AUDIO (1<<1)
|
|
|
|
#define OBS_OUTPUT_AV (OBS_OUTPUT_VIDEO | OBS_OUTPUT_AUDIO)
|
|
|
|
#define OBS_OUTPUT_ENCODED (1<<2)
|
2014-04-01 11:55:18 -07:00
|
|
|
#define OBS_OUTPUT_SERVICE (1<<3)
|
Implement encoder usage with outputs
- Make it so that encoders can be assigned to outputs. If an encoder
is destroyed, it will automatically remove itself from that output.
I specifically didn't want to do reference counting because it leaves
too much potential for unchecked references and it just felt like it
would be more trouble than it's worth.
- Add a 'flags' value to the output definition structure. This lets
the output specify if it uses video/audio, and whether the output is
meant to be used with OBS encoders or not.
- Remove boilerplate code for outputs. This makes it easier to program
outputs. The boilerplate code involved before was mostly just
involving connecting to the audio/video data streams directly in each
output plugin.
Instead of doing that, simply add plugin callback functions for
receiving video/audio (either encoded or non-encoded, whichever it's
set to use), and then call obs_output_begin_data_capture and
obs_output_end_data_capture to automatically handle setting up
connections to raw or encoded video/audio streams for the plugin.
- Remove 'active' function from output callbacks, as it's no longer
really needed now that the libobs output context automatically knows
when the output is active or not.
- Make it so that an encoder cannot be destroyed until all data
connections to the encoder have been removed.
- Change the 'start' and 'stop' functions in the encoder interface to
just an 'initialize' callback, which initializes the encoder.
- Make it so that the encoder must be initialized first before the data
stream can be started. The reason why initialization was separated
from starting the encoder stream was because we need to be able to
check that the settings used with the encoder *can* be used first.
This problem was especially annoying if you had both video/audio
encoding. Before, you'd have to check the return value from
obs_encoder_start, and if that second encoder fails, then you
basically had to stop the first encoder again, making for
unnecessary boilerplate code whenever starting up two encoders.
2014-03-27 21:50:15 -07:00
|
|
|
|
|
|
|
struct encoder_packet;
|
|
|
|
|
Revamp API and start using doxygen
The API used to be designed in such a way to where it would expect
exports for each individual source/output/encoder/etc. You would export
functions for each and it would automatically load those functions based
on a specific naming scheme from the module.
The idea behind this was that I wanted to limit the usage of structures
in the API so only functions could be used. It was an interesting idea
in theory, but this idea turned out to be flawed in a number of ways:
1.) Requiring exports to create sources/outputs/encoders/etc meant that
you could not create them by any other means, which meant that
things like faruton's .net plugin would become difficult.
2.) Export function declarations could not be checked, therefore if you
created a function with the wrong parameters and parameter types,
the compiler wouldn't know how to check for that.
3.) Required overly complex load functions in libobs just to handle it.
It makes much more sense to just have a load function that you call
manually. Complexity is the bane of all good programs.
4.) It required that you have functions of specific names, which looked
and felt somewhat unsightly.
So, to fix these issues, I replaced it with a more commonly used API
scheme, seen commonly in places like kernels and typical C libraries
with abstraction. You simply create a structure that contains the
callback definitions, and you pass it to a function to register that
definition (such as obs_register_source), which you call in the
obs_module_load of the module.
It will also automatically check the structure size and ensure that it
only loads the required values if the structure happened to add new
values in an API change.
The "main" source file for each module must include obs-module.h, and
must use OBS_DECLARE_MODULE() within that source file.
Also, started writing some doxygen documentation in to the main library
headers. Will add more detailed documentation as I go.
2014-02-12 07:04:50 -08:00
|
|
|
struct obs_output_info {
|
|
|
|
/* required */
|
2013-12-20 16:23:19 -08:00
|
|
|
const char *id;
|
2013-09-30 19:37:13 -07:00
|
|
|
|
Implement encoder usage with outputs
- Make it so that encoders can be assigned to outputs. If an encoder
is destroyed, it will automatically remove itself from that output.
I specifically didn't want to do reference counting because it leaves
too much potential for unchecked references and it just felt like it
would be more trouble than it's worth.
- Add a 'flags' value to the output definition structure. This lets
the output specify if it uses video/audio, and whether the output is
meant to be used with OBS encoders or not.
- Remove boilerplate code for outputs. This makes it easier to program
outputs. The boilerplate code involved before was mostly just
involving connecting to the audio/video data streams directly in each
output plugin.
Instead of doing that, simply add plugin callback functions for
receiving video/audio (either encoded or non-encoded, whichever it's
set to use), and then call obs_output_begin_data_capture and
obs_output_end_data_capture to automatically handle setting up
connections to raw or encoded video/audio streams for the plugin.
- Remove 'active' function from output callbacks, as it's no longer
really needed now that the libobs output context automatically knows
when the output is active or not.
- Make it so that an encoder cannot be destroyed until all data
connections to the encoder have been removed.
- Change the 'start' and 'stop' functions in the encoder interface to
just an 'initialize' callback, which initializes the encoder.
- Make it so that the encoder must be initialized first before the data
stream can be started. The reason why initialization was separated
from starting the encoder stream was because we need to be able to
check that the settings used with the encoder *can* be used first.
This problem was especially annoying if you had both video/audio
encoding. Before, you'd have to check the return value from
obs_encoder_start, and if that second encoder fails, then you
basically had to stop the first encoder again, making for
unnecessary boilerplate code whenever starting up two encoders.
2014-03-27 21:50:15 -07:00
|
|
|
uint32_t flags;
|
|
|
|
|
2014-08-04 14:38:26 -07:00
|
|
|
const char *(*get_name)(void);
|
2013-11-13 05:24:20 -08:00
|
|
|
|
Revamp API and start using doxygen
The API used to be designed in such a way to where it would expect
exports for each individual source/output/encoder/etc. You would export
functions for each and it would automatically load those functions based
on a specific naming scheme from the module.
The idea behind this was that I wanted to limit the usage of structures
in the API so only functions could be used. It was an interesting idea
in theory, but this idea turned out to be flawed in a number of ways:
1.) Requiring exports to create sources/outputs/encoders/etc meant that
you could not create them by any other means, which meant that
things like faruton's .net plugin would become difficult.
2.) Export function declarations could not be checked, therefore if you
created a function with the wrong parameters and parameter types,
the compiler wouldn't know how to check for that.
3.) Required overly complex load functions in libobs just to handle it.
It makes much more sense to just have a load function that you call
manually. Complexity is the bane of all good programs.
4.) It required that you have functions of specific names, which looked
and felt somewhat unsightly.
So, to fix these issues, I replaced it with a more commonly used API
scheme, seen commonly in places like kernels and typical C libraries
with abstraction. You simply create a structure that contains the
callback definitions, and you pass it to a function to register that
definition (such as obs_register_source), which you call in the
obs_module_load of the module.
It will also automatically check the structure size and ensure that it
only loads the required values if the structure happened to add new
values in an API change.
The "main" source file for each module must include obs-module.h, and
must use OBS_DECLARE_MODULE() within that source file.
Also, started writing some doxygen documentation in to the main library
headers. Will add more detailed documentation as I go.
2014-02-12 07:04:50 -08:00
|
|
|
void *(*create)(obs_data_t settings, obs_output_t output);
|
2013-09-30 19:37:13 -07:00
|
|
|
void (*destroy)(void *data);
|
|
|
|
|
Add preliminary output/encoder interface
- First, I redid the output interface for libobs. I feel like it's
going in a pretty good direction in terms of design.
Right now, the design is so that outputs and encoders are separate.
One or more outputs can connect to a specific encoder to receive its
data, or the output can connect directly to raw data from libobs
output itself, if the output doesn't want to use a designated encoder.
Data is received via callbacks set when you connect to the encoder or
raw output. Multiple outputs can receive the data from a single
encoder context if need be (such as for streaming to multiple channels
at once, and/or recording with the same data).
When an encoder is first connected to, it will connect to raw output,
and start encoding. Additional connections will receive that same
data being encoded as well after that. When the last encoder has
disconnected, it will stop encoding. If for some reason the encoder
needs to stop, it will use the callback with NULL to signal that
encoding has stopped. Some of these things may be subject to change
in the future, though it feels pretty good with this design so far.
Will have to see how well it works out in practice versus theory.
- Second, Started adding preliminary RTMP/x264 output plugin code.
To speed things up, I might just make a direct raw->FFmpeg output to
create a quick output plugin that we can start using for testing all
the subsystems.
2014-01-16 21:34:51 -08:00
|
|
|
bool (*start)(void *data);
|
2013-09-30 19:37:13 -07:00
|
|
|
void (*stop)(void *data);
|
|
|
|
|
Implement encoder usage with outputs
- Make it so that encoders can be assigned to outputs. If an encoder
is destroyed, it will automatically remove itself from that output.
I specifically didn't want to do reference counting because it leaves
too much potential for unchecked references and it just felt like it
would be more trouble than it's worth.
- Add a 'flags' value to the output definition structure. This lets
the output specify if it uses video/audio, and whether the output is
meant to be used with OBS encoders or not.
- Remove boilerplate code for outputs. This makes it easier to program
outputs. The boilerplate code involved before was mostly just
involving connecting to the audio/video data streams directly in each
output plugin.
Instead of doing that, simply add plugin callback functions for
receiving video/audio (either encoded or non-encoded, whichever it's
set to use), and then call obs_output_begin_data_capture and
obs_output_end_data_capture to automatically handle setting up
connections to raw or encoded video/audio streams for the plugin.
- Remove 'active' function from output callbacks, as it's no longer
really needed now that the libobs output context automatically knows
when the output is active or not.
- Make it so that an encoder cannot be destroyed until all data
connections to the encoder have been removed.
- Change the 'start' and 'stop' functions in the encoder interface to
just an 'initialize' callback, which initializes the encoder.
- Make it so that the encoder must be initialized first before the data
stream can be started. The reason why initialization was separated
from starting the encoder stream was because we need to be able to
check that the settings used with the encoder *can* be used first.
This problem was especially annoying if you had both video/audio
encoding. Before, you'd have to check the return value from
obs_encoder_start, and if that second encoder fails, then you
basically had to stop the first encoder again, making for
unnecessary boilerplate code whenever starting up two encoders.
2014-03-27 21:50:15 -07:00
|
|
|
void (*raw_video)(void *data, struct video_data *frame);
|
|
|
|
void (*raw_audio)(void *data, struct audio_data *frames);
|
|
|
|
|
2014-04-04 00:30:37 -07:00
|
|
|
void (*encoded_packet)(void *data, struct encoder_packet *packet);
|
Add preliminary output/encoder interface
- First, I redid the output interface for libobs. I feel like it's
going in a pretty good direction in terms of design.
Right now, the design is so that outputs and encoders are separate.
One or more outputs can connect to a specific encoder to receive its
data, or the output can connect directly to raw data from libobs
output itself, if the output doesn't want to use a designated encoder.
Data is received via callbacks set when you connect to the encoder or
raw output. Multiple outputs can receive the data from a single
encoder context if need be (such as for streaming to multiple channels
at once, and/or recording with the same data).
When an encoder is first connected to, it will connect to raw output,
and start encoding. Additional connections will receive that same
data being encoded as well after that. When the last encoder has
disconnected, it will stop encoding. If for some reason the encoder
needs to stop, it will use the callback with NULL to signal that
encoding has stopped. Some of these things may be subject to change
in the future, though it feels pretty good with this design so far.
Will have to see how well it works out in practice versus theory.
- Second, Started adding preliminary RTMP/x264 output plugin code.
To speed things up, I might just make a direct raw->FFmpeg output to
create a quick output plugin that we can start using for testing all
the subsystems.
2014-01-16 21:34:51 -08:00
|
|
|
|
2013-09-30 19:37:13 -07:00
|
|
|
/* optional */
|
Revamp API and start using doxygen
The API used to be designed in such a way to where it would expect
exports for each individual source/output/encoder/etc. You would export
functions for each and it would automatically load those functions based
on a specific naming scheme from the module.
The idea behind this was that I wanted to limit the usage of structures
in the API so only functions could be used. It was an interesting idea
in theory, but this idea turned out to be flawed in a number of ways:
1.) Requiring exports to create sources/outputs/encoders/etc meant that
you could not create them by any other means, which meant that
things like faruton's .net plugin would become difficult.
2.) Export function declarations could not be checked, therefore if you
created a function with the wrong parameters and parameter types,
the compiler wouldn't know how to check for that.
3.) Required overly complex load functions in libobs just to handle it.
It makes much more sense to just have a load function that you call
manually. Complexity is the bane of all good programs.
4.) It required that you have functions of specific names, which looked
and felt somewhat unsightly.
So, to fix these issues, I replaced it with a more commonly used API
scheme, seen commonly in places like kernels and typical C libraries
with abstraction. You simply create a structure that contains the
callback definitions, and you pass it to a function to register that
definition (such as obs_register_source), which you call in the
obs_module_load of the module.
It will also automatically check the structure size and ensure that it
only loads the required values if the structure happened to add new
values in an API change.
The "main" source file for each module must include obs-module.h, and
must use OBS_DECLARE_MODULE() within that source file.
Also, started writing some doxygen documentation in to the main library
headers. Will add more detailed documentation as I go.
2014-02-12 07:04:50 -08:00
|
|
|
void (*update)(void *data, obs_data_t settings);
|
|
|
|
|
2014-08-04 21:27:52 -07:00
|
|
|
void (*get_defaults)(obs_data_t settings);
|
2014-03-07 05:55:21 -08:00
|
|
|
|
2014-08-04 21:27:52 -07:00
|
|
|
obs_properties_t (*get_properties)(void);
|
2014-02-01 21:46:13 -08:00
|
|
|
|
2013-09-30 19:37:13 -07:00
|
|
|
void (*pause)(void *data);
|
2014-07-06 14:55:56 -07:00
|
|
|
|
2014-08-04 21:27:52 -07:00
|
|
|
uint64_t (*get_total_bytes)(void *data);
|
2014-07-06 14:55:56 -07:00
|
|
|
|
2014-08-04 21:27:52 -07:00
|
|
|
int (*get_dropped_frames)(void *data);
|
2013-09-30 19:37:13 -07:00
|
|
|
};
|
|
|
|
|
2014-04-05 01:43:59 -07:00
|
|
|
EXPORT void obs_register_output_s(const struct obs_output_info *info,
|
|
|
|
size_t size);
|
|
|
|
|
|
|
|
#define obs_register_output(info) \
|
|
|
|
obs_register_output_s(info, sizeof(struct obs_output_info))
|