irrlicht/source/Irrlicht/COpenGLDriver.cpp
2008-06-12 12:00:41 +00:00

2779 lines
80 KiB
C++

// Copyright (C) 2002-2008 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "COpenGLDriver.h"
// needed here also because of the create methods' parameters
#include "CNullDriver.h"
#ifdef _IRR_COMPILE_WITH_OPENGL_
#include "COpenGLTexture.h"
#include "COpenGLMaterialRenderer.h"
#include "COpenGLShaderMaterialRenderer.h"
#include "COpenGLSLMaterialRenderer.h"
#include "COpenGLNormalMapRenderer.h"
#include "COpenGLParallaxMapRenderer.h"
#include "CImage.h"
#include "os.h"
#ifdef _IRR_USE_SDL_DEVICE_
#include <SDL/SDL.h>
#endif
namespace irr
{
namespace video
{
// -----------------------------------------------------------------------
// WINDOWS CONSTRUCTOR
// -----------------------------------------------------------------------
#ifdef _IRR_USE_WINDOWS_DEVICE_
//! Windows constructor and init code
COpenGLDriver::COpenGLDriver(const core::dimension2d<s32>& screenSize,
HWND window, bool fullscreen, bool stencilBuffer,
io::IFileSystem* io, bool antiAlias)
: CNullDriver(io, screenSize), COpenGLExtensionHandler(),
CurrentRenderMode(ERM_NONE), ResetRenderStates(true), Transformation3DChanged(true),
AntiAlias(antiAlias), RenderTargetTexture(0), LastSetLight(-1),
CurrentRendertargetSize(0,0),
HDc(0), Window(window), HRc(0)
{
#ifdef _DEBUG
setDebugName("COpenGLDriver");
#endif
}
//! inits the open gl driver
bool COpenGLDriver::initDriver(const core::dimension2d<s32>& screenSize,
HWND window, u32 bits, bool fullscreen, bool vsync, bool stencilBuffer)
{
static PIXELFORMATDESCRIPTOR pfd = {
sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor
1, // Version Number
PFD_DRAW_TO_WINDOW | // Format Must Support Window
PFD_SUPPORT_OPENGL | // Format Must Support OpenGL
PFD_DOUBLEBUFFER, // Must Support Double Buffering
PFD_TYPE_RGBA, // Request An RGBA Format
bits, // Select Our Color Depth
0, 0, 0, 0, 0, 0, // Color Bits Ignored
0, // No Alpha Buffer
0, // Shift Bit Ignored
0, // No Accumulation Buffer
0, 0, 0, 0, // Accumulation Bits Ignored
24, // Z-Buffer (Depth Buffer)
stencilBuffer ? 1 : 0, // Stencil Buffer Depth
0, // No Auxiliary Buffer
PFD_MAIN_PLANE, // Main Drawing Layer
0, // Reserved
0, 0, 0 // Layer Masks Ignored
};
for (u32 i=0; i<5; ++i)
{
if (i == 1)
{
if (stencilBuffer)
{
os::Printer::log("Cannot create a GL device with stencil buffer, disabling stencil shadows.", ELL_WARNING);
stencilBuffer = false;
pfd.cStencilBits = 0;
}
else
continue;
}
else
if (i == 2)
{
pfd.cDepthBits = 24;
}
if (i == 3)
{
if (bits!=16)
pfd.cDepthBits = 16;
else
continue;
}
else
if (i == 4)
{
os::Printer::log("Cannot create a GL device context.", ELL_ERROR);
return false;
}
// get hdc
if (!(HDc=GetDC(window)))
{
os::Printer::log("Cannot create a GL device context.", ELL_ERROR);
continue;
}
GLuint PixelFormat;
// choose pixelformat
if (!(PixelFormat = ChoosePixelFormat(HDc, &pfd)))
{
os::Printer::log("Cannot find a suitable pixelformat.", ELL_ERROR);
continue;
}
// set pixel format
if(!SetPixelFormat(HDc, PixelFormat, &pfd))
{
os::Printer::log("Cannot set the pixel format.", ELL_ERROR);
continue;
}
// create rendering context
if (!(HRc=wglCreateContext(HDc)))
{
os::Printer::log("Cannot create a GL rendering context.", ELL_ERROR);
continue;
}
// activate rendering context
if(!wglMakeCurrent(HDc, HRc))
{
os::Printer::log("Cannot activate GL rendering context", ELL_ERROR);
continue;
}
break;
}
genericDriverInit(screenSize, stencilBuffer);
// set vsync
if (wglSwapIntervalEXT)
wglSwapIntervalEXT(vsync ? 1 : 0);
// set exposed data
ExposedData.OpenGLWin32.HDc = HDc;
ExposedData.OpenGLWin32.HRc = HRc;
ExposedData.OpenGLWin32.HWnd = Window;
return true;
}
#endif //IRR_USE_WINDOWS_DEVICE_
// -----------------------------------------------------------------------
// MacOSX CONSTRUCTOR
// -----------------------------------------------------------------------
#ifdef _IRR_USE_OSX_DEVICE_
//! Windows constructor and init code
COpenGLDriver::COpenGLDriver(const core::dimension2d<s32>& screenSize,
bool fullscreen, bool stencilBuffer, CIrrDeviceMacOSX *device,
io::IFileSystem* io, bool vsync, bool antiAlias)
: CNullDriver(io, screenSize), COpenGLExtensionHandler(),
CurrentRenderMode(ERM_NONE), ResetRenderStates(true), Transformation3DChanged(true),
AntiAlias(antiAlias), RenderTargetTexture(0), LastSetLight(-1),
CurrentRendertargetSize(0,0), _device(device)
{
#ifdef _DEBUG
setDebugName("COpenGLDriver");
#endif
genericDriverInit(screenSize, stencilBuffer);
}
#endif
// -----------------------------------------------------------------------
// LINUX CONSTRUCTOR
// -----------------------------------------------------------------------
#ifdef _IRR_USE_LINUX_DEVICE_
//! Linux constructor and init code
COpenGLDriver::COpenGLDriver(const core::dimension2d<s32>& screenSize,
bool fullscreen, bool stencilBuffer, io::IFileSystem* io,
bool vsync, bool antiAlias)
: CNullDriver(io, screenSize), COpenGLExtensionHandler(),
CurrentRenderMode(ERM_NONE), ResetRenderStates(true),
Transformation3DChanged(true), AntiAlias(antiAlias),
RenderTargetTexture(0), LastSetLight(-1), CurrentRendertargetSize(0,0)
{
#ifdef _DEBUG
setDebugName("COpenGLDriver");
#endif
XWindow = glXGetCurrentDrawable();
XDisplay = glXGetCurrentDisplay();
ExposedData.OpenGLLinux.X11Display = XDisplay;
ExposedData.OpenGLLinux.X11Window = XWindow;
genericDriverInit(screenSize, stencilBuffer);
// set vsync
#ifdef GLX_SGI_swap_control
#ifdef _IRR_OPENGL_USE_EXTPOINTER_
if (vsync && glxSwapIntervalSGI)
glxSwapIntervalSGI(1);
#else
if (vsync)
glXSwapIntervalSGI(1);
#endif
#endif
}
#endif // _IRR_USE_LINUX_DEVICE_
// -----------------------------------------------------------------------
// SDL CONSTRUCTOR
// -----------------------------------------------------------------------
#ifdef _IRR_USE_SDL_DEVICE_
//! SDL constructor and init code
COpenGLDriver::COpenGLDriver(const core::dimension2d<s32>& screenSize,
bool fullscreen, bool stencilBuffer, io::IFileSystem* io,
bool vsync, bool antiAlias)
: CNullDriver(io, screenSize), COpenGLExtensionHandler(),
CurrentRenderMode(ERM_NONE), ResetRenderStates(true),
Transformation3DChanged(true), AntiAlias(antiAlias),
RenderTargetTexture(0), LastSetLight(-1), CurrentRendertargetSize(0,0)
{
#ifdef _DEBUG
setDebugName("COpenGLDriver");
#endif
genericDriverInit(screenSize, stencilBuffer);
}
#endif // _IRR_USE_SDL_DEVICE_
//! destructor
COpenGLDriver::~COpenGLDriver()
{
deleteMaterialRenders();
// I get a blue screen on my laptop, when I do not delete the
// textures manually before releasing the dc. Oh how I love this.
deleteAllTextures();
#ifdef _IRR_USE_WINDOWS_DEVICE_
if (HRc)
{
if (!wglMakeCurrent(0, 0))
os::Printer::log("Release of dc and rc failed.", ELL_WARNING);
if (!wglDeleteContext(HRc))
os::Printer::log("Release of rendering context failed.", ELL_WARNING);
}
if (HDc)
ReleaseDC(Window, HDc);
#endif
}
// -----------------------------------------------------------------------
// METHODS
// -----------------------------------------------------------------------
bool COpenGLDriver::genericDriverInit(const core::dimension2d<s32>& screenSize, bool stencilBuffer)
{
Name=L"OpenGL ";
Name.append(glGetString(GL_VERSION));
s32 pos=Name.findNext(L' ', 7);
if (pos != -1)
Name=Name.subString(0, pos);
printVersion();
// print renderer information
const GLubyte* renderer = glGetString(GL_RENDERER);
const GLubyte* vendor = glGetString(GL_VENDOR);
if (renderer && vendor)
{
os::Printer::log(reinterpret_cast<const c8*>(renderer), reinterpret_cast<const c8*>(vendor), ELL_INFORMATION);
vendorName = reinterpret_cast<const c8*>(vendor);
}
u32 i;
for (i=0; i<MATERIAL_MAX_TEXTURES; ++i)
CurrentTexture[i]=0;
// load extensions
initExtensions(stencilBuffer);
if (queryFeature(EVDF_ARB_GLSL))
{
char buf[32];
const u32 maj = ShaderLanguageVersion/100;
snprintf(buf, 32, "%u.%u", maj, ShaderLanguageVersion-maj*100);
os::Printer::log("GLSL version", buf, ELL_INFORMATION);
}
else
os::Printer::log("GLSL not available.", ELL_INFORMATION);
glViewport(0, 0, screenSize.Width, screenSize.Height); // Reset The Current Viewport
setAmbientLight(SColorf(0.0f,0.0f,0.0f,0.0f));
// This needs an SMaterial flag to enable/disable later on, but should become default sometimes
// glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
// glEnable(GL_COLOR_MATERIAL);
#ifdef GL_EXT_separate_specular_color
if (FeatureAvailable[IRR_EXT_separate_specular_color])
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR);
#endif
glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 1);
// This is a fast replacement for NORMALIZE_NORMALS
// if ((Version>101) || FeatureAvailable[IRR_EXT_rescale_normal])
// glEnable(GL_RESCALE_NORMAL_EXT);
glClearDepth(1.0);
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
glDepthFunc(GL_LEQUAL);
glFrontFace( GL_CW );
if (AntiAlias)
{
glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);
glEnable(GL_LINE_SMOOTH);
}
// currently disabled, because often in software, and thus very slow
// glHint(GL_POINT_SMOOTH_HINT, GL_FASTEST);
// glEnable(GL_POINT_SMOOTH);
if (AntiAlias && MultiSamplingExtension)
glEnable(GL_MULTISAMPLE_ARB);
UserClipPlane.reallocate(MaxUserClipPlanes);
UserClipPlaneEnabled.reallocate(MaxUserClipPlanes);
for (i=0; i<MaxUserClipPlanes; ++i)
{
UserClipPlane.push_back(core::plane3df());
UserClipPlaneEnabled.push_back(false);
}
// create material renderers
createMaterialRenderers();
// set the renderstates
ResetRenderStates = true;
setRenderStates3DMode();
// set fog mode
setFog(FogColor, LinearFog, FogStart, FogEnd, FogDensity, PixelFog, RangeFog);
// create matrix for flipping textures
TextureFlipMatrix.buildTextureTransform(0.0f, core::vector2df(0,0), core::vector2df(0,1.0f), core::vector2df(1.0f,-1.0f));
return true;
}
void COpenGLDriver::createMaterialRenderers()
{
// create OpenGL material renderers
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_SOLID(this));
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_SOLID_2_LAYER(this));
// add the same renderer for all lightmap types
COpenGLMaterialRenderer_LIGHTMAP* lmr = new COpenGLMaterialRenderer_LIGHTMAP( this);
addMaterialRenderer(lmr); // for EMT_LIGHTMAP:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_ADD:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_M2:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_M4:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING_M2:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING_M4:
lmr->drop();
// add remaining material renderer
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_DETAIL_MAP(this));
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_SPHERE_MAP(this));
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_REFLECTION_2_LAYER(this));
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_ADD_COLOR(this));
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_ALPHA_CHANNEL(this));
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_ALPHA_CHANNEL_REF(this));
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_VERTEX_ALPHA(this));
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_REFLECTION_2_LAYER(this));
// add normal map renderers
s32 tmp = 0;
video::IMaterialRenderer* renderer = 0;
renderer = new COpenGLNormalMapRenderer(this, tmp, MaterialRenderers[EMT_SOLID].Renderer);
renderer->drop();
renderer = new COpenGLNormalMapRenderer(this, tmp, MaterialRenderers[EMT_TRANSPARENT_ADD_COLOR].Renderer);
renderer->drop();
renderer = new COpenGLNormalMapRenderer(this, tmp, MaterialRenderers[EMT_TRANSPARENT_VERTEX_ALPHA].Renderer);
renderer->drop();
// add parallax map renderers
renderer = new COpenGLParallaxMapRenderer(this, tmp, MaterialRenderers[EMT_SOLID].Renderer);
renderer->drop();
renderer = new COpenGLParallaxMapRenderer(this, tmp, MaterialRenderers[EMT_TRANSPARENT_ADD_COLOR].Renderer);
renderer->drop();
renderer = new COpenGLParallaxMapRenderer(this, tmp, MaterialRenderers[EMT_TRANSPARENT_VERTEX_ALPHA].Renderer);
renderer->drop();
// add basic 1 texture blending
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_ONETEXTURE_BLEND(this));
}
//! presents the rendered scene on the screen, returns false if failed
bool COpenGLDriver::endScene( void* windowId, core::rect<s32>* sourceRect )
{
CNullDriver::endScene();
glFlush();
#ifdef _IRR_USE_WINDOWS_DEVICE_
return SwapBuffers(HDc) == TRUE;
#elif defined(_IRR_USE_LINUX_DEVICE_)
glXSwapBuffers(XDisplay, XWindow);
return true;
#elif defined(_IRR_USE_OSX_DEVICE_)
_device->flush();
return true;
#elif defined(_IRR_USE_SDL_DEVICE_)
SDL_GL_SwapBuffers();
return true;
#else
return false;
#endif
}
//! clears the zbuffer
bool COpenGLDriver::beginScene(bool backBuffer, bool zBuffer, SColor color)
{
CNullDriver::beginScene(backBuffer, zBuffer, color);
GLbitfield mask = 0;
if (backBuffer)
{
const f32 inv = 1.0f / 255.0f;
glClearColor(color.getRed() * inv, color.getGreen() * inv,
color.getBlue() * inv, color.getAlpha() * inv);
mask |= GL_COLOR_BUFFER_BIT;
}
if (zBuffer)
{
glDepthMask(GL_TRUE);
mask |= GL_DEPTH_BUFFER_BIT;
}
glClear(mask);
return true;
}
//! Returns the transformation set by setTransform
const core::matrix4& COpenGLDriver::getTransform(E_TRANSFORMATION_STATE state) const
{
return Matrices[state];
}
//! sets transformation
void COpenGLDriver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat)
{
Matrices[state] = mat;
Transformation3DChanged = true;
switch(state)
{
case ETS_VIEW:
case ETS_WORLD:
{
// OpenGL only has a model matrix, view and world is not existent. so lets fake these two.
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf((Matrices[ETS_VIEW] * Matrices[ETS_WORLD]).pointer());
// we have to update the clip planes to the latest view matrix
for (u32 i=0; i<MaxUserClipPlanes; ++i)
if (UserClipPlaneEnabled[i])
uploadClipPlane(i);
}
break;
case ETS_PROJECTION:
{
GLfloat glmat[16];
createGLMatrix(glmat, mat);
// flip z to compensate OpenGLs right-hand coordinate system
glmat[12] *= -1.0f;
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(glmat);
}
break;
case ETS_TEXTURE_0:
case ETS_TEXTURE_1:
case ETS_TEXTURE_2:
case ETS_TEXTURE_3:
{
const u32 i = state - ETS_TEXTURE_0;
const bool isRTT = Material.getTexture(i) && Material.getTexture(i)->isRenderTarget();
if (MultiTextureExtension)
extGlActiveTexture(GL_TEXTURE0_ARB + i);
glMatrixMode(GL_TEXTURE);
if (mat.isIdentity() && !isRTT)
glLoadIdentity();
else
{
GLfloat glmat[16];
if (isRTT)
createGLTextureMatrix(glmat, mat * TextureFlipMatrix);
else
createGLTextureMatrix(glmat, mat);
glLoadMatrixf(glmat);
}
break;
}
default:
break;
}
}
bool COpenGLDriver::updateVertexHardwareBuffer(SHWBufferLink_opengl *HWBuffer)
{
if (!HWBuffer)
return false;
if (!FeatureAvailable[IRR_ARB_vertex_buffer_object])
return false;
#if defined(GL_ARB_vertex_buffer_object)
const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer;
const void* vertices=mb->getVertices();
const u32 vertexCount=mb->getVertexCount();
const E_VERTEX_TYPE vType=mb->getVertexType();
const u32 vertexSize = getVertexPitchFromType(vType);
//buffer vertex data, and convert colours...
core::array<c8> buffer(vertexSize * vertexCount);
memcpy(buffer.pointer(), vertices, vertexSize * vertexCount);
// in order to convert the colors into opengl format (RGBA)
switch (vType)
{
case EVT_STANDARD:
{
S3DVertex* pb = reinterpret_cast<S3DVertex*>(buffer.pointer());
const S3DVertex* po = reinterpret_cast<const S3DVertex*>(vertices);
for (u32 i=0; i<vertexCount; i++)
{
po[i].Color.toOpenGLColor((u8*)&(pb[i].Color.color));
}
}
break;
case EVT_2TCOORDS:
{
S3DVertex2TCoords* pb = reinterpret_cast<S3DVertex2TCoords*>(buffer.pointer());
const S3DVertex2TCoords* po = reinterpret_cast<const S3DVertex2TCoords*>(vertices);
for (u32 i=0; i<vertexCount; i++)
{
po[i].Color.toOpenGLColor((u8*)&(pb[i].Color.color));
}
}
break;
case EVT_TANGENTS:
{
S3DVertexTangents* pb = reinterpret_cast<S3DVertexTangents*>(buffer.pointer());
const S3DVertexTangents* po = reinterpret_cast<const S3DVertexTangents*>(vertices);
for (u32 i=0; i<vertexCount; i++)
{
po[i].Color.toOpenGLColor((u8*)&(pb[i].Color.color));
}
}
break;
default:
{
return false;
}
}
//get or create buffer
bool newBuffer=false;
if (!HWBuffer->vbo_verticesID)
{
extGlGenBuffers(1, &HWBuffer->vbo_verticesID);
if (!HWBuffer->vbo_verticesID) return false;
newBuffer=true;
}
else if (HWBuffer->vbo_verticesSize < vertexCount*vertexSize)
{
newBuffer=true;
}
extGlBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID );
//copy data to graphics card
if (!newBuffer)
extGlBufferSubData(GL_ARRAY_BUFFER, 0, vertexCount * vertexSize, buffer.const_pointer());
else
{
HWBuffer->vbo_verticesSize = vertexCount*vertexSize;
if (HWBuffer->Mapped==scene::EHM_STATIC)
extGlBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, buffer.const_pointer(), GL_STATIC_DRAW);
else if (HWBuffer->Mapped==scene::EHM_DYNAMIC)
extGlBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, buffer.const_pointer(), GL_DYNAMIC_DRAW);
else //scene::EHM_STREAM
extGlBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, buffer.const_pointer(), GL_STREAM_DRAW);
}
extGlBindBuffer(GL_ARRAY_BUFFER, 0);
return true;
#else
return false;
#endif
}
bool COpenGLDriver::updateIndexHardwareBuffer(SHWBufferLink_opengl *HWBuffer)
{
if (!HWBuffer)
return false;
if(!FeatureAvailable[IRR_ARB_vertex_buffer_object])
return false;
#if defined(GL_ARB_vertex_buffer_object)
const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer;
const u16* indices=mb->getIndices();
u32 indexCount= mb->getIndexCount();
u32 indexSize = 2;
//get or create buffer
bool newBuffer=false;
if (!HWBuffer->vbo_indicesID)
{
extGlGenBuffers(1, &HWBuffer->vbo_indicesID);
if (!HWBuffer->vbo_indicesID) return false;
newBuffer=true;
}
else if (HWBuffer->vbo_indicesSize < indexCount*indexSize)
{
newBuffer=true;
}
extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID);
//copy data to graphics card
if (!newBuffer)
extGlBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, indexCount * indexSize, indices);
else
{
HWBuffer->vbo_indicesSize = indexCount*indexSize;
if (HWBuffer->Mapped==scene::EHM_STATIC)
extGlBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_STATIC_DRAW);
else if (HWBuffer->Mapped==scene::EHM_DYNAMIC)
extGlBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_DYNAMIC_DRAW);
else //scene::EHM_STREAM
extGlBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_STREAM_DRAW);
}
extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
return true;
#else
return false;
#endif
}
//! updates hardware buffer if needed
bool COpenGLDriver::updateHardwareBuffer(SHWBufferLink *HWBuffer)
{
if (!HWBuffer)
return false;
if (HWBuffer->ChangedID != HWBuffer->MeshBuffer->getChangedID()
|| !((SHWBufferLink_opengl*)HWBuffer)->vbo_indicesID
|| !((SHWBufferLink_opengl*)HWBuffer)->vbo_verticesID)
{
HWBuffer->ChangedID = HWBuffer->MeshBuffer->getChangedID();
if (!updateVertexHardwareBuffer((SHWBufferLink_opengl*)HWBuffer))
return false;
if (!updateIndexHardwareBuffer((SHWBufferLink_opengl*)HWBuffer))
return false;
}
return true;
}
//! Create hardware buffer from meshbuffer
COpenGLDriver::SHWBufferLink *COpenGLDriver::createHardwareBuffer(const scene::IMeshBuffer* mb)
{
#if defined(GL_ARB_vertex_buffer_object)
if (!mb || (mb->getHardwareMappingHint()==scene::EHM_NEVER))
return 0;
SHWBufferLink_opengl *HWBuffer=new SHWBufferLink_opengl(mb);
//add to map
HWBufferMap.insert(HWBuffer->MeshBuffer, HWBuffer);
HWBuffer->ChangedID=HWBuffer->MeshBuffer->getChangedID();
HWBuffer->Mapped=mb->getHardwareMappingHint();
HWBuffer->LastUsed=0;
HWBuffer->vbo_verticesID=0;
HWBuffer->vbo_indicesID=0;
HWBuffer->vbo_verticesSize=0;
HWBuffer->vbo_indicesSize=0;
if (!updateHardwareBuffer(HWBuffer))
{
deleteHardwareBuffer(HWBuffer);
return 0;
}
return HWBuffer;
#else
return 0;
#endif
}
void COpenGLDriver::deleteHardwareBuffer(SHWBufferLink *_HWBuffer)
{
if (!_HWBuffer) return;
#if defined(GL_ARB_vertex_buffer_object)
SHWBufferLink_opengl *HWBuffer=(SHWBufferLink_opengl*)_HWBuffer;
if (HWBuffer->vbo_verticesID)
{
extGlDeleteBuffers(1, &HWBuffer->vbo_verticesID);
HWBuffer->vbo_verticesID=0;
}
if (HWBuffer->vbo_indicesID)
{
extGlDeleteBuffers(1, &HWBuffer->vbo_indicesID);
HWBuffer->vbo_indicesID=0;
}
#endif
CNullDriver::deleteHardwareBuffer(_HWBuffer);
}
//! Draw hardware buffer
void COpenGLDriver::drawHardwareBuffer(SHWBufferLink *_HWBuffer)
{
if (!_HWBuffer)
return;
SHWBufferLink_opengl *HWBuffer=(SHWBufferLink_opengl*)_HWBuffer;
updateHardwareBuffer(HWBuffer); //check if update is needed
HWBuffer->LastUsed=0;//reset count
#if defined(GL_ARB_vertex_buffer_object)
const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer;
extGlBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID);
extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID);
drawVertexPrimitiveList(0, mb->getVertexCount(), 0, mb->getIndexCount()/3, mb->getVertexType(), scene::EPT_TRIANGLES);
extGlBindBuffer(GL_ARRAY_BUFFER, 0);
extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
#endif
}
// small helper function to create vertex buffer object adress offsets
static inline u8* buffer_offset(const long offset)
{
return ((u8*)0 + offset);
}
//! draws a vertex primitive list
void COpenGLDriver::drawVertexPrimitiveList(const void* vertices, u32 vertexCount,
const u16* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType)
{
if (!primitiveCount || !vertexCount)
return;
if (!checkPrimitiveCount(primitiveCount))
return;
CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType);
if (vertices)
{
// convert colors to gl color format.
vertexCount *= 4; //reused as color component count
ColorBuffer.set_used(vertexCount);
u32 i;
switch (vType)
{
case EVT_STANDARD:
{
const S3DVertex* p = reinterpret_cast<const S3DVertex*>(vertices);
for ( i=0; i<vertexCount; i+=4)
{
p->Color.toOpenGLColor(&ColorBuffer[i]);
++p;
}
}
break;
case EVT_2TCOORDS:
{
const S3DVertex2TCoords* p = reinterpret_cast<const S3DVertex2TCoords*>(vertices);
for ( i=0; i<vertexCount; i+=4)
{
p->Color.toOpenGLColor(&ColorBuffer[i]);
++p;
}
}
break;
case EVT_TANGENTS:
{
const S3DVertexTangents* p = reinterpret_cast<const S3DVertexTangents*>(vertices);
for ( i=0; i<vertexCount; i+=4)
{
p->Color.toOpenGLColor(&ColorBuffer[i]);
++p;
}
}
break;
}
}
// draw everything
setRenderStates3DMode();
if (MultiTextureExtension)
extGlClientActiveTexture(GL_TEXTURE0_ARB);
glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);
if ((pType!=scene::EPT_POINTS) && (pType!=scene::EPT_POINT_SPRITES))
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if ((pType!=scene::EPT_POINTS) && (pType!=scene::EPT_POINT_SPRITES))
glEnableClientState(GL_NORMAL_ARRAY);
if (vertices)
glColorPointer(4, GL_UNSIGNED_BYTE, 0, &ColorBuffer[0]);
switch (vType)
{
case EVT_STANDARD:
if (vertices)
{
glNormalPointer(GL_FLOAT, sizeof(S3DVertex), &(reinterpret_cast<const S3DVertex*>(vertices))[0].Normal);
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(reinterpret_cast<const S3DVertex*>(vertices))[0].TCoords);
glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex), &(reinterpret_cast<const S3DVertex*>(vertices))[0].Pos);
}
else
{
glNormalPointer(GL_FLOAT, sizeof(S3DVertex), buffer_offset(12));
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertex), buffer_offset(24));
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28));
glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex), 0);
}
if (MultiTextureExtension && CurrentTexture[1])
{
extGlClientActiveTexture(GL_TEXTURE1_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (vertices)
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(reinterpret_cast<const S3DVertex*>(vertices))[0].TCoords);
else
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28));
}
break;
case EVT_2TCOORDS:
if (vertices)
{
glNormalPointer(GL_FLOAT, sizeof(S3DVertex2TCoords), &(reinterpret_cast<const S3DVertex2TCoords*>(vertices))[0].Normal);
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(reinterpret_cast<const S3DVertex2TCoords*>(vertices))[0].TCoords);
glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex2TCoords), &(reinterpret_cast<const S3DVertex2TCoords*>(vertices))[0].Pos);
}
else
{
glNormalPointer(GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(12));
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertex2TCoords), buffer_offset(24));
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(28));
glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(0));
}
if (MultiTextureExtension)
{
extGlClientActiveTexture(GL_TEXTURE1_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (vertices)
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(reinterpret_cast<const S3DVertex2TCoords*>(vertices))[0].TCoords2);
else
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(36));
}
break;
case EVT_TANGENTS:
if (vertices)
{
glNormalPointer(GL_FLOAT, sizeof(S3DVertexTangents), &(reinterpret_cast<const S3DVertexTangents*>(vertices))[0].Normal);
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), &(reinterpret_cast<const S3DVertexTangents*>(vertices))[0].TCoords);
glVertexPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(reinterpret_cast<const S3DVertexTangents*>(vertices))[0].Pos);
}
else
{
glNormalPointer(GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(12));
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertexTangents), buffer_offset(24));
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(28));
glVertexPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(0));
}
if (MultiTextureExtension)
{
extGlClientActiveTexture(GL_TEXTURE1_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (vertices)
glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(reinterpret_cast<const S3DVertexTangents*>(vertices))[0].Tangent);
else
glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(36));
extGlClientActiveTexture(GL_TEXTURE2_ARB);
glEnableClientState ( GL_TEXTURE_COORD_ARRAY );
if (vertices)
glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(reinterpret_cast<const S3DVertexTangents*>(vertices))[0].Binormal);
else
glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(48));
}
break;
}
switch (pType)
{
case scene::EPT_POINTS:
case scene::EPT_POINT_SPRITES:
{
#ifdef GL_ARB_point_sprite
if (pType==scene::EPT_POINT_SPRITES && FeatureAvailable[IRR_ARB_point_sprite])
glEnable(GL_POINT_SPRITE_ARB);
#endif
float quadratic[] = {0.0f, 0.0f, 10.01f};
extGlPointParameterfv(GL_POINT_DISTANCE_ATTENUATION_ARB, quadratic);
float maxParticleSize=1.0f;
glGetFloatv(GL_POINT_SIZE_MAX_ARB, &maxParticleSize);
// maxParticleSize=maxParticleSize<Material.Thickness?maxParticleSize:Material.Thickness;
// extGlPointParameterf(GL_POINT_SIZE_MAX_ARB,maxParticleSize);
// extGlPointParameterf(GL_POINT_SIZE_MIN_ARB,Material.Thickness);
extGlPointParameterf(GL_POINT_FADE_THRESHOLD_SIZE_ARB, 60.0f);
glPointSize(Material.Thickness);
#ifdef GL_ARB_point_sprite
if (pType==scene::EPT_POINT_SPRITES && FeatureAvailable[IRR_ARB_point_sprite])
glTexEnvf(GL_POINT_SPRITE_ARB,GL_COORD_REPLACE, GL_TRUE);
#endif
glDrawArrays(GL_POINTS, 0, primitiveCount);
#ifdef GL_ARB_point_sprite
if (pType==scene::EPT_POINT_SPRITES && FeatureAvailable[IRR_ARB_point_sprite])
{
glDisable(GL_POINT_SPRITE_ARB);
glTexEnvf(GL_POINT_SPRITE_ARB,GL_COORD_REPLACE, GL_FALSE);
}
#endif
}
break;
case scene::EPT_LINE_STRIP:
glDrawElements(GL_LINE_STRIP, primitiveCount+1, GL_UNSIGNED_SHORT, indexList);
break;
case scene::EPT_LINE_LOOP:
glDrawElements(GL_LINE_LOOP, primitiveCount, GL_UNSIGNED_SHORT, indexList);
break;
case scene::EPT_LINES:
glDrawElements(GL_LINES, primitiveCount*2, GL_UNSIGNED_SHORT, indexList);
break;
case scene::EPT_TRIANGLE_STRIP:
glDrawElements(GL_TRIANGLE_STRIP, primitiveCount+2, GL_UNSIGNED_SHORT, indexList);
break;
case scene::EPT_TRIANGLE_FAN:
glDrawElements(GL_TRIANGLE_FAN, primitiveCount+2, GL_UNSIGNED_SHORT, indexList);
break;
case scene::EPT_TRIANGLES:
glDrawElements(GL_TRIANGLES, primitiveCount*3, GL_UNSIGNED_SHORT, indexList);
break;
case scene::EPT_QUAD_STRIP:
glDrawElements(GL_QUAD_STRIP, primitiveCount*2+2, GL_UNSIGNED_SHORT, indexList);
break;
case scene::EPT_QUADS:
glDrawElements(GL_QUADS, primitiveCount*4, GL_UNSIGNED_SHORT, indexList);
break;
case scene::EPT_POLYGON:
glDrawElements(GL_POLYGON, primitiveCount, GL_UNSIGNED_SHORT, indexList);
break;
}
if (MultiTextureExtension)
{
if (vType==EVT_TANGENTS)
{
extGlClientActiveTexture(GL_TEXTURE2_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
if ((vType!=EVT_STANDARD) || CurrentTexture[1])
{
extGlClientActiveTexture(GL_TEXTURE1_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
extGlClientActiveTexture(GL_TEXTURE0_ARB);
}
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
//! draws a 2d image, using a color and the alpha channel of the texture if
//! desired. The image is drawn at pos, clipped against clipRect (if != 0).
//! Only the subtexture defined by sourceRect is used.
void COpenGLDriver::draw2DImage(const video::ITexture* texture,
const core::position2d<s32>& pos,
const core::rect<s32>& sourceRect,
const core::rect<s32>* clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (!texture)
return;
if (!sourceRect.isValid())
return;
core::position2d<s32> targetPos(pos);
core::position2d<s32> sourcePos(sourceRect.UpperLeftCorner);
core::dimension2d<s32> sourceSize(sourceRect.getSize());
if (clipRect)
{
if (targetPos.X < clipRect->UpperLeftCorner.X)
{
sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X;
if (sourceSize.Width <= 0)
return;
sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X;
targetPos.X = clipRect->UpperLeftCorner.X;
}
if (targetPos.X + sourceSize.Width > clipRect->LowerRightCorner.X)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X;
if (sourceSize.Width <= 0)
return;
}
if (targetPos.Y < clipRect->UpperLeftCorner.Y)
{
sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y;
if (sourceSize.Height <= 0)
return;
sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y;
targetPos.Y = clipRect->UpperLeftCorner.Y;
}
if (targetPos.Y + sourceSize.Height > clipRect->LowerRightCorner.Y)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y;
if (sourceSize.Height <= 0)
return;
}
}
// clip these coordinates
if (targetPos.X<0)
{
sourceSize.Width += targetPos.X;
if (sourceSize.Width <= 0)
return;
sourcePos.X -= targetPos.X;
targetPos.X = 0;
}
const core::dimension2d<s32>& renderTargetSize = getCurrentRenderTargetSize();
if (targetPos.X + sourceSize.Width > renderTargetSize.Width)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width;
if (sourceSize.Width <= 0)
return;
}
if (targetPos.Y<0)
{
sourceSize.Height += targetPos.Y;
if (sourceSize.Height <= 0)
return;
sourcePos.Y -= targetPos.Y;
targetPos.Y = 0;
}
if (targetPos.Y + sourceSize.Height > renderTargetSize.Height)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height;
if (sourceSize.Height <= 0)
return;
}
// ok, we've clipped everything.
// now draw it.
// texcoords need to be flipped horizontally for RTTs
const bool isRTT = Material.getTexture(0) && Material.getTexture(0)->isRenderTarget();
const core::dimension2d<s32>& ss = texture->getOriginalSize();
const f32 invW = 1.f / static_cast<f32>(ss.Width);
const f32 invH = 1.f / static_cast<f32>(ss.Height);
const core::rect<f32> tcoords(
sourcePos.X * invW,
(isRTT?(sourcePos.Y + sourceSize.Height):sourcePos.Y) * invH,
(sourcePos.X + sourceSize.Width) * invW,
(isRTT?sourcePos.Y:(sourcePos.Y + sourceSize.Height)) * invH);
const core::rect<s32> poss(targetPos, sourceSize);
disableTextures(1);
if (!setTexture(0, texture))
return;
setRenderStates2DMode(color.getAlpha()<255, true, useAlphaChannelOfTexture);
glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha());
glBegin(GL_QUADS);
glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
glVertex2f(GLfloat(poss.UpperLeftCorner.X), GLfloat(poss.UpperLeftCorner.Y));
glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
glVertex2f(GLfloat(poss.LowerRightCorner.X), GLfloat(poss.UpperLeftCorner.Y));
glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
glVertex2f(GLfloat(poss.LowerRightCorner.X), GLfloat(poss.LowerRightCorner.Y));
glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
glVertex2f(GLfloat(poss.UpperLeftCorner.X), GLfloat(poss.LowerRightCorner.Y));
glEnd();
}
//! The same, but with a four element array of colors, one for each vertex
void COpenGLDriver::draw2DImage(const video::ITexture* texture, const core::rect<s32>& destRect,
const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect,
video::SColor* colors, bool useAlphaChannelOfTexture)
{
if (!texture)
return;
// texcoords need to be flipped horizontally for RTTs
const bool isRTT = Material.getTexture(0) && Material.getTexture(0)->isRenderTarget();
const core::dimension2d<s32>& ss = texture->getOriginalSize();
const f32 invW = 1.f / static_cast<f32>(ss.Width);
const f32 invH = 1.f / static_cast<f32>(ss.Height);
const core::rect<f32> tcoords(
sourceRect.UpperLeftCorner.X * invW,
(isRTT?sourceRect.LowerRightCorner.Y:sourceRect.UpperLeftCorner.Y) * invH,
sourceRect.LowerRightCorner.X * invW,
(isRTT?sourceRect.UpperLeftCorner.Y:sourceRect.LowerRightCorner.Y) *invH);
video::SColor temp[4] =
{
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF
};
video::SColor* useColor = colors ? colors : temp;
disableTextures(1);
setTexture(0, texture);
setRenderStates2DMode(useColor[0].getAlpha()<255 || useColor[1].getAlpha()<255 ||
useColor[2].getAlpha()<255 || useColor[3].getAlpha()<255,
true, useAlphaChannelOfTexture);
if (clipRect)
{
if (!clipRect->isValid())
return;
glEnable(GL_SCISSOR_TEST);
const core::dimension2d<s32>& renderTargetSize = getCurrentRenderTargetSize();
glScissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height-clipRect->LowerRightCorner.Y,
clipRect->getWidth(), clipRect->getHeight());
}
glBegin(GL_QUADS);
glColor4ub(useColor[0].getRed(), useColor[0].getGreen(), useColor[0].getBlue(), useColor[0].getAlpha());
glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
glVertex2f(GLfloat(destRect.UpperLeftCorner.X), GLfloat(destRect.UpperLeftCorner.Y));
glColor4ub(useColor[3].getRed(), useColor[3].getGreen(), useColor[3].getBlue(), useColor[3].getAlpha());
glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
glVertex2f(GLfloat(destRect.LowerRightCorner.X), GLfloat(destRect.UpperLeftCorner.Y));
glColor4ub(useColor[2].getRed(), useColor[2].getGreen(), useColor[2].getBlue(), useColor[2].getAlpha());
glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
glVertex2f(GLfloat(destRect.LowerRightCorner.X), GLfloat(destRect.LowerRightCorner.Y));
glColor4ub(useColor[1].getRed(), useColor[1].getGreen(), useColor[1].getBlue(), useColor[1].getAlpha());
glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
glVertex2f(GLfloat(destRect.UpperLeftCorner.X), GLfloat(destRect.LowerRightCorner.Y));
glEnd();
if (clipRect)
glDisable(GL_SCISSOR_TEST);
}
//! draws a set of 2d images, using a color and the alpha channel of the
//! texture if desired. The images are drawn beginning at pos and concatenated
//! in one line. All drawings are clipped against clipRect (if != 0).
//! The subtextures are defined by the array of sourceRects and are chosen
//! by the indices given.
void COpenGLDriver::draw2DImage(const video::ITexture* texture,
const core::position2d<s32>& pos,
const core::array<core::rect<s32> >& sourceRects,
const core::array<s32>& indices,
const core::rect<s32>* clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (!texture)
return;
disableTextures(1);
if (!setTexture(0, texture))
return;
setRenderStates2DMode(color.getAlpha()<255, true, useAlphaChannelOfTexture);
glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha());
if (clipRect)
{
if (!clipRect->isValid())
return;
glEnable(GL_SCISSOR_TEST);
const core::dimension2d<s32>& renderTargetSize = getCurrentRenderTargetSize();
glScissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height-clipRect->LowerRightCorner.Y,
clipRect->getWidth(),clipRect->getHeight());
}
const core::dimension2d<s32>& ss = texture->getOriginalSize();
core::position2d<s32> targetPos(pos);
// texcoords need to be flipped horizontally for RTTs
const bool isRTT = Material.getTexture(0) && Material.getTexture(0)->isRenderTarget();
const f32 invW = 1.f / static_cast<f32>(ss.Width);
const f32 invH = 1.f / static_cast<f32>(ss.Height);
for (u32 i=0; i<indices.size(); ++i)
{
const s32 currentIndex = indices[i];
if (!sourceRects[currentIndex].isValid())
break;
const core::rect<f32> tcoords(
sourceRects[currentIndex].UpperLeftCorner.X * invW,
(isRTT?sourceRects[currentIndex].LowerRightCorner.Y:sourceRects[currentIndex].UpperLeftCorner.Y) * invH,
sourceRects[currentIndex].LowerRightCorner.X * invW,
(isRTT?sourceRects[currentIndex].UpperLeftCorner.Y:sourceRects[currentIndex].LowerRightCorner.Y) * invH);
const core::rect<s32> poss(targetPos, sourceRects[currentIndex].getSize());
glBegin(GL_QUADS);
glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
glVertex2f(GLfloat(poss.UpperLeftCorner.X), GLfloat(poss.UpperLeftCorner.Y));
glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
glVertex2f(GLfloat(poss.LowerRightCorner.X), GLfloat(poss.UpperLeftCorner.Y));
glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
glVertex2f(GLfloat(poss.LowerRightCorner.X), GLfloat(poss.LowerRightCorner.Y));
glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
glVertex2f(GLfloat(poss.UpperLeftCorner.X), GLfloat(poss.LowerRightCorner.Y));
glEnd();
targetPos.X += sourceRects[currentIndex].getWidth();
}
if (clipRect)
glDisable(GL_SCISSOR_TEST);
}
//! draw a 2d rectangle
void COpenGLDriver::draw2DRectangle(SColor color, const core::rect<s32>& position,
const core::rect<s32>* clip)
{
disableTextures();
setRenderStates2DMode(color.getAlpha() < 255, false, false);
core::rect<s32> pos = position;
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha());
glRectf(GLfloat(pos.UpperLeftCorner.X), GLfloat(pos.UpperLeftCorner.Y),
GLfloat(pos.LowerRightCorner.X), GLfloat(pos.LowerRightCorner.Y));
}
//! draw an 2d rectangle
void COpenGLDriver::draw2DRectangle(const core::rect<s32>& position,
SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown,
const core::rect<s32>* clip)
{
core::rect<s32> pos = position;
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
disableTextures();
setRenderStates2DMode(colorLeftUp.getAlpha() < 255 ||
colorRightUp.getAlpha() < 255 ||
colorLeftDown.getAlpha() < 255 ||
colorRightDown.getAlpha() < 255, false, false);
glBegin(GL_QUADS);
glColor4ub(colorLeftUp.getRed(), colorLeftUp.getGreen(),
colorLeftUp.getBlue(), colorLeftUp.getAlpha());
glVertex2f(GLfloat(pos.UpperLeftCorner.X), GLfloat(pos.UpperLeftCorner.Y));
glColor4ub(colorRightUp.getRed(), colorRightUp.getGreen(),
colorRightUp.getBlue(), colorRightUp.getAlpha());
glVertex2f(GLfloat(pos.LowerRightCorner.X), GLfloat(pos.UpperLeftCorner.Y));
glColor4ub(colorRightDown.getRed(), colorRightDown.getGreen(),
colorRightDown.getBlue(), colorRightDown.getAlpha());
glVertex2f(GLfloat(pos.LowerRightCorner.X), GLfloat(pos.LowerRightCorner.Y));
glColor4ub(colorLeftDown.getRed(), colorLeftDown.getGreen(),
colorLeftDown.getBlue(), colorLeftDown.getAlpha());
glVertex2f(GLfloat(pos.UpperLeftCorner.X), GLfloat(pos.LowerRightCorner.Y));
glEnd();
}
//! Draws a 2d line.
void COpenGLDriver::draw2DLine(const core::position2d<s32>& start,
const core::position2d<s32>& end,
SColor color)
{
disableTextures();
setRenderStates2DMode(color.getAlpha() < 255, false, false);
glBegin(GL_LINES);
glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha());
glVertex2f(GLfloat(start.X), GLfloat(start.Y));
glVertex2f(GLfloat(end.X), GLfloat(end.Y));
glEnd();
}
bool COpenGLDriver::setTexture(u32 stage, const video::ITexture* texture)
{
if (stage >= MaxTextureUnits)
return false;
if (CurrentTexture[stage]==texture)
return true;
if (MultiTextureExtension)
extGlActiveTexture(GL_TEXTURE0_ARB + stage);
CurrentTexture[stage]=texture;
if (!texture)
{
glDisable(GL_TEXTURE_2D);
return true;
}
else
{
if (texture->getDriverType() != EDT_OPENGL)
{
glDisable(GL_TEXTURE_2D);
os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR);
return false;
}
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D,
static_cast<const COpenGLTexture*>(texture)->getOpenGLTextureName());
}
return true;
}
//! disables all textures beginning with the optional fromStage parameter. Otherwise all texture stages are disabled.
//! Returns whether disabling was successful or not.
bool COpenGLDriver::disableTextures(u32 fromStage)
{
bool result=true;
for (u32 i=fromStage; i<MaxTextureUnits; ++i)
result &= setTexture(i, 0);
return result;
}
//! creates a matrix in supplied GLfloat array to pass to OpenGL
inline void COpenGLDriver::createGLMatrix(GLfloat gl_matrix[16], const core::matrix4& m)
{
memcpy(gl_matrix, m.pointer(), 16 * sizeof(f32));
}
//! creates a opengltexturematrix from a D3D style texture matrix
inline void COpenGLDriver::createGLTextureMatrix(GLfloat *o, const core::matrix4& m)
{
o[0] = m[0];
o[1] = m[1];
o[2] = 0.f;
o[3] = 0.f;
o[4] = m[4];
o[5] = m[5];
o[6] = 0.f;
o[7] = 0.f;
o[8] = 0.f;
o[9] = 0.f;
o[10] = 1.f;
o[11] = 0.f;
o[12] = m[8];
o[13] = m[9];
o[14] = 0.f;
o[15] = 1.f;
}
//! returns a device dependent texture from a software surface (IImage)
video::ITexture* COpenGLDriver::createDeviceDependentTexture(IImage* surface, const char* name)
{
return new COpenGLTexture(surface, name, this);
}
//! Sets a material. All 3d drawing functions draw geometry now
//! using this material.
//! \param material: Material to be used from now on.
void COpenGLDriver::setMaterial(const SMaterial& material)
{
Material = material;
for (s32 i = MaxTextureUnits-1; i>= 0; --i)
{
setTransform ((E_TRANSFORMATION_STATE) ( ETS_TEXTURE_0 + i ),
material.getTextureMatrix(i));
}
}
//! prints error if an error happened.
bool COpenGLDriver::testGLError()
{
#ifdef _DEBUG
GLenum g = glGetError();
switch(g)
{
case GL_NO_ERROR:
return false;
case GL_INVALID_ENUM:
os::Printer::log("GL_INVALID_ENUM", ELL_ERROR); break;
case GL_INVALID_VALUE:
os::Printer::log("GL_INVALID_VALUE", ELL_ERROR); break;
case GL_INVALID_OPERATION:
os::Printer::log("GL_INVALID_OPERATION", ELL_ERROR); break;
case GL_STACK_OVERFLOW:
os::Printer::log("GL_STACK_OVERFLOW", ELL_ERROR); break;
case GL_STACK_UNDERFLOW:
os::Printer::log("GL_STACK_UNDERFLOW", ELL_ERROR); break;
case GL_OUT_OF_MEMORY:
os::Printer::log("GL_OUT_OF_MEMORY", ELL_ERROR); break;
case GL_TABLE_TOO_LARGE:
os::Printer::log("GL_TABLE_TOO_LARGE", ELL_ERROR); break;
};
return true;
#else
return false;
#endif
}
//! sets the needed renderstates
void COpenGLDriver::setRenderStates3DMode()
{
if (CurrentRenderMode != ERM_3D)
{
// Reset Texture Stages
if (FeatureAvailable[IRR_ARB_texture_env_combine])
glTexEnvi( GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_MODULATE );
glDisable(GL_ALPHA_TEST);
glDisable( GL_BLEND );
glBlendFunc( GL_ONE, GL_ONE_MINUS_SRC_COLOR );
// switch back the matrices
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf((Matrices[ETS_VIEW] * Matrices[ETS_WORLD]).pointer());
GLfloat glmat[16];
createGLMatrix(glmat, Matrices[ETS_PROJECTION]);
glmat[12] *= -1.0f;
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(glmat);
ResetRenderStates = true;
}
if ( ResetRenderStates || LastMaterial != Material)
{
// unset old material
if (LastMaterial.MaterialType != Material.MaterialType &&
static_cast<u32>(LastMaterial.MaterialType) < MaterialRenderers.size())
MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial();
// set new material.
if (static_cast<u32>(Material.MaterialType) < MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnSetMaterial(
Material, LastMaterial, ResetRenderStates, this);
LastMaterial = Material;
ResetRenderStates = false;
}
if (static_cast<u32>(Material.MaterialType) < MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnRender(this, video::EVT_STANDARD);
CurrentRenderMode = ERM_3D;
}
//! Can be called by an IMaterialRenderer to make its work easier.
void COpenGLDriver::setBasicRenderStates(const SMaterial& material, const SMaterial& lastmaterial,
bool resetAllRenderStates)
{
if (resetAllRenderStates ||
lastmaterial.AmbientColor != material.AmbientColor ||
lastmaterial.DiffuseColor != material.DiffuseColor ||
lastmaterial.SpecularColor != material.SpecularColor ||
lastmaterial.EmissiveColor != material.EmissiveColor ||
lastmaterial.Shininess != material.Shininess)
{
GLfloat color[4];
const f32 inv = 1.0f / 255.0f;
color[0] = material.AmbientColor.getRed() * inv;
color[1] = material.AmbientColor.getGreen() * inv;
color[2] = material.AmbientColor.getBlue() * inv;
color[3] = material.AmbientColor.getAlpha() * inv;
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, color);
color[0] = material.DiffuseColor.getRed() * inv;
color[1] = material.DiffuseColor.getGreen() * inv;
color[2] = material.DiffuseColor.getBlue() * inv;
color[3] = material.DiffuseColor.getAlpha() * inv;
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, color);
// disable Specular colors if no shininess is set
if (material.Shininess != 0.0f)
{
#ifdef GL_EXT_separate_specular_color
if (FeatureAvailable[IRR_EXT_separate_specular_color])
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR);
#endif
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, material.Shininess);
color[0] = material.SpecularColor.getRed() * inv;
color[1] = material.SpecularColor.getGreen() * inv;
color[2] = material.SpecularColor.getBlue() * inv;
color[3] = material.SpecularColor.getAlpha() * inv;
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, color);
}
#ifdef GL_EXT_separate_specular_color
else
if (FeatureAvailable[IRR_EXT_separate_specular_color])
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SINGLE_COLOR);
#endif
color[0] = material.EmissiveColor.getRed() * inv;
color[1] = material.EmissiveColor.getGreen() * inv;
color[2] = material.EmissiveColor.getBlue() * inv;
color[3] = material.EmissiveColor.getAlpha() * inv;
glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, color);
}
// Texture filter
// Has to be checked always because it depends on the textures
// Filtering has to be set for each texture layer
for (u32 i=0; i<MaxTextureUnits; ++i)
{
if (!material.getTexture(i))
continue;
if (MultiTextureExtension)
extGlActiveTexture(GL_TEXTURE0_ARB + i);
else if (i>0)
break;
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
(material.TextureLayer[i].BilinearFilter || material.TextureLayer[i].TrilinearFilter) ? GL_LINEAR : GL_NEAREST);
if (material.getTexture(i) && material.getTexture(i)->hasMipMaps())
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
material.TextureLayer[i].TrilinearFilter ? GL_LINEAR_MIPMAP_LINEAR :
material.TextureLayer[i].BilinearFilter ? GL_LINEAR_MIPMAP_NEAREST :
GL_NEAREST_MIPMAP_NEAREST );
else
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
(material.TextureLayer[i].BilinearFilter || material.TextureLayer[i].TrilinearFilter) ? GL_LINEAR : GL_NEAREST);
#ifdef GL_EXT_texture_filter_anisotropic
if (AnisotropyExtension)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT,
material.TextureLayer[i].AnisotropicFilter ? MaxAnisotropy : 1.0f );
#endif
}
// fillmode
if (resetAllRenderStates || (lastmaterial.Wireframe != material.Wireframe) || (lastmaterial.PointCloud != material.PointCloud))
glPolygonMode(GL_FRONT_AND_BACK, material.Wireframe ? GL_LINE : material.PointCloud? GL_POINT : GL_FILL);
// shademode
if (resetAllRenderStates || (lastmaterial.GouraudShading != material.GouraudShading))
{
if (material.GouraudShading)
glShadeModel(GL_SMOOTH);
else
glShadeModel(GL_FLAT);
}
// lighting
if (resetAllRenderStates || (lastmaterial.Lighting != material.Lighting))
{
if (material.Lighting)
glEnable(GL_LIGHTING);
else
glDisable(GL_LIGHTING);
}
// zbuffer
if (resetAllRenderStates || lastmaterial.ZBuffer != material.ZBuffer)
{
switch (material.ZBuffer)
{
case 0:
glDisable(GL_DEPTH_TEST);
break;
case 1:
glEnable(GL_DEPTH_TEST);
glDepthFunc ( GL_LEQUAL );
break;
case 2:
glEnable(GL_DEPTH_TEST);
glDepthFunc ( GL_EQUAL );
break;
}
}
// zwrite
if (resetAllRenderStates || lastmaterial.ZWriteEnable != material.ZWriteEnable)
{
if (material.ZWriteEnable)
{
glDepthMask(GL_TRUE);
}
else
glDepthMask(GL_FALSE);
}
// back face culling
if (resetAllRenderStates || lastmaterial.BackfaceCulling != material.BackfaceCulling)
{
if ((material.FrontfaceCulling) && (material.BackfaceCulling))
{
glCullFace(GL_FRONT_AND_BACK);
glEnable(GL_CULL_FACE);
}
else
if (material.BackfaceCulling)
{
glCullFace(GL_BACK);
glEnable(GL_CULL_FACE);
}
else
if (material.FrontfaceCulling)
{
glCullFace(GL_FRONT);
glEnable(GL_CULL_FACE);
}
else
glDisable(GL_CULL_FACE);
}
// fog
if (resetAllRenderStates || lastmaterial.FogEnable != material.FogEnable)
{
if (material.FogEnable)
glEnable(GL_FOG);
else
glDisable(GL_FOG);
}
// normalization
if (resetAllRenderStates || lastmaterial.NormalizeNormals != material.NormalizeNormals)
{
if (material.NormalizeNormals)
glEnable(GL_NORMALIZE);
else
glDisable(GL_NORMALIZE);
}
// thickness
if (resetAllRenderStates || lastmaterial.Thickness != material.Thickness)
{
glPointSize(material.Thickness);
glLineWidth(material.Thickness);
}
// texture address mode
for (u32 u=0; u<MaxTextureUnits; ++u)
{
if (resetAllRenderStates || lastmaterial.TextureLayer[u].TextureWrap != material.TextureLayer[u].TextureWrap)
{
GLint mode=GL_REPEAT;
switch (material.TextureLayer[u].TextureWrap)
{
case ETC_REPEAT:
mode=GL_REPEAT;
break;
case ETC_CLAMP:
mode=GL_CLAMP;
break;
case ETC_CLAMP_TO_EDGE:
#ifdef GL_VERSION_1_2
if (Version>101)
mode=GL_CLAMP_TO_EDGE;
else
#endif
#ifdef GL_SGIS_texture_edge_clamp
if (FeatureAvailable[IRR_SGIS_texture_edge_clamp])
mode=GL_CLAMP_TO_EDGE_SGIS;
else
#endif
// fallback
mode=GL_CLAMP;
break;
case ETC_CLAMP_TO_BORDER:
#ifdef GL_VERSION_1_3
if (Version>102)
mode=GL_CLAMP_TO_BORDER;
else
#endif
#ifdef GL_ARB_texture_border_clamp
if (FeatureAvailable[IRR_ARB_texture_border_clamp])
mode=GL_CLAMP_TO_BORDER_ARB;
else
#endif
#ifdef GL_SGIS_texture_border_clamp
if (FeatureAvailable[IRR_SGIS_texture_border_clamp])
mode=GL_CLAMP_TO_BORDER_SGIS;
else
#endif
// fallback
mode=GL_CLAMP_TO_EDGE;
break;
case ETC_MIRROR:
#ifdef GL_VERSION_1_4
if (Version>103)
mode=GL_MIRRORED_REPEAT;
else
#endif
#ifdef GL_ARB_texture_border_clamp
if (FeatureAvailable[IRR_ARB_texture_mirrored_repeat])
mode=GL_MIRRORED_REPEAT_ARB;
else
#endif
#ifdef GL_IBM_texture_mirrored_repeat
if (FeatureAvailable[IRR_IBM_texture_mirrored_repeat])
mode=GL_MIRRORED_REPEAT_IBM;
else
#endif
mode=GL_REPEAT;
break;
}
if (MultiTextureExtension)
extGlActiveTexture(GL_TEXTURE0_ARB + u);
else if (u>0)
break;
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, mode);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, mode);
}
}
// be sure to leave in texture stage 0
if (MultiTextureExtension)
extGlActiveTexture(GL_TEXTURE0_ARB);
}
//! sets the needed renderstates
void COpenGLDriver::setRenderStates2DMode(bool alpha, bool texture, bool alphaChannel)
{
if (CurrentRenderMode != ERM_2D || Transformation3DChanged)
{
// unset last 3d material
if (CurrentRenderMode == ERM_3D)
{
if (static_cast<u32>(Material.MaterialType) < MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnUnsetMaterial();
SMaterial mat;
mat.ZBuffer=0;
mat.Lighting=false;
setBasicRenderStates(mat, mat, true);
LastMaterial = mat;
}
glMatrixMode(GL_PROJECTION);
const core::dimension2d<s32>& renderTargetSize = getCurrentRenderTargetSize();
core::matrix4 m;
m.buildProjectionMatrixOrthoLH(f32(renderTargetSize.Width), f32(-renderTargetSize.Height), -1.0, 1.0);
m.setTranslation(core::vector3df(-1,1,0));
glLoadMatrixf(m.pointer());
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef (0.375, 0.375, 0.0);
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
Transformation3DChanged = false;
}
if (texture)
{
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
if (alphaChannel)
{
if (alpha)
{
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_MODULATE);
glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_TEXTURE);
glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_PRIMARY_COLOR_EXT);
}
else
{
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_REPLACE);
glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_TEXTURE);
}
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_BLEND);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT);
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_MODULATE);
glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_TEXTURE);
glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PRIMARY_COLOR_EXT);
}
else
{
if (alpha)
{
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT);
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_REPLACE);
glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_PRIMARY_COLOR_EXT);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_BLEND);
}
else
{
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glDisable(GL_BLEND);
}
}
}
else
{
if (alpha)
{
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
else
{
glDisable(GL_BLEND);
}
}
CurrentRenderMode = ERM_2D;
}
//! \return Returns the name of the video driver. Example: In case of the Direct3D8
//! driver, it would return "Direct3D8.1".
const wchar_t* COpenGLDriver::getName() const
{
return Name.c_str();
}
//! deletes all dynamic lights there are
void COpenGLDriver::deleteAllDynamicLights()
{
for (s32 i=0; i<LastSetLight+1; ++i)
glDisable(GL_LIGHT0 + i);
LastSetLight = -1;
CNullDriver::deleteAllDynamicLights();
}
//! adds a dynamic light
void COpenGLDriver::addDynamicLight(const SLight& light)
{
if (LastSetLight == MaxLights-1)
return;
setTransform(ETS_WORLD, core::matrix4());
++LastSetLight;
CNullDriver::addDynamicLight(light);
s32 lidx = GL_LIGHT0 + LastSetLight;
GLfloat data[4];
switch (light.Type)
{
case video::ELT_SPOT:
data[0] = light.Direction.X;
data[1] = light.Direction.Y;
data[2] = light.Direction.Z;
data[3] = 0.0f;
glLightfv(lidx, GL_SPOT_DIRECTION, data);
// set position
data[0] = light.Position.X;
data[1] = light.Position.Y;
data[2] = light.Position.Z;
data[3] = 1.0f; // 1.0f for positional light
glLightfv(lidx, GL_POSITION, data);
glLightf(lidx, GL_SPOT_EXPONENT, light.Falloff);
glLightf(lidx, GL_SPOT_CUTOFF, light.OuterCone);
break;
case video::ELT_POINT:
// set position
data[0] = light.Position.X;
data[1] = light.Position.Y;
data[2] = light.Position.Z;
data[3] = 1.0f; // 1.0f for positional light
glLightfv(lidx, GL_POSITION, data);
glLightf(lidx, GL_SPOT_EXPONENT, 0.0f);
glLightf(lidx, GL_SPOT_CUTOFF, 180.0f);
break;
case video::ELT_DIRECTIONAL:
// set direction
data[0] = -light.Direction.X;
data[1] = -light.Direction.Y;
data[2] = -light.Direction.Z;
data[3] = 0.0f; // 0.0f for directional light
glLightfv(lidx, GL_POSITION, data);
glLightf(lidx, GL_SPOT_EXPONENT, 0.0f);
glLightf(lidx, GL_SPOT_CUTOFF, 180.0f);
break;
}
// set diffuse color
data[0] = light.DiffuseColor.r;
data[1] = light.DiffuseColor.g;
data[2] = light.DiffuseColor.b;
data[3] = light.DiffuseColor.a;
glLightfv(lidx, GL_DIFFUSE, data);
// set specular color
data[0] = light.SpecularColor.r;
data[1] = light.SpecularColor.g;
data[2] = light.SpecularColor.b;
data[3] = light.SpecularColor.a;
glLightfv(lidx, GL_SPECULAR, data);
// set ambient color
data[0] = light.AmbientColor.r;
data[1] = light.AmbientColor.g;
data[2] = light.AmbientColor.b;
data[3] = light.AmbientColor.a;
glLightfv(lidx, GL_AMBIENT, data);
// 1.0f / (constant + linear * d + quadratic*(d*d);
// set attenuation
glLightf(lidx, GL_CONSTANT_ATTENUATION, light.Attenuation.X);
glLightf(lidx, GL_LINEAR_ATTENUATION, light.Attenuation.Y);
glLightf(lidx, GL_QUADRATIC_ATTENUATION, light.Attenuation.Z);
glEnable(lidx);
}
//! returns the maximal amount of dynamic lights the device can handle
u32 COpenGLDriver::getMaximalDynamicLightAmount() const
{
return MaxLights;
}
//! Sets the dynamic ambient light color. The default color is
//! (0,0,0,0) which means it is dark.
//! \param color: New color of the ambient light.
void COpenGLDriver::setAmbientLight(const SColorf& color)
{
GLfloat data[4] = {color.r, color.g, color.b, color.a};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, data);
}
// this code was sent in by Oliver Klems, thank you! (I modified the glViewport
// method just a bit.
void COpenGLDriver::setViewPort(const core::rect<s32>& area)
{
core::rect<s32> vp = area;
core::rect<s32> rendert(0,0, getCurrentRenderTargetSize().Width, getCurrentRenderTargetSize().Height);
vp.clipAgainst(rendert);
if (vp.getHeight()>0 && vp.getWidth()>0)
glViewport(vp.UpperLeftCorner.X,
getCurrentRenderTargetSize().Height - vp.UpperLeftCorner.Y - vp.getHeight(),
vp.getWidth(), vp.getHeight());
ViewPort = vp;
}
//! Draws a shadow volume into the stencil buffer. To draw a stencil shadow, do
//! this: First, draw all geometry. Then use this method, to draw the shadow
//! volume. Next use IVideoDriver::drawStencilShadow() to visualize the shadow.
void COpenGLDriver::drawStencilShadowVolume(const core::vector3df* triangles, s32 count, bool zfail)
{
if (!StencilBuffer || !count)
return;
// unset last 3d material
if (CurrentRenderMode == ERM_3D &&
static_cast<u32>(Material.MaterialType) < MaterialRenderers.size())
{
MaterialRenderers[Material.MaterialType].Renderer->OnUnsetMaterial();
ResetRenderStates = true;
}
// store current OpenGL state
glPushAttrib(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_ENABLE_BIT |
GL_POLYGON_BIT | GL_STENCIL_BUFFER_BIT);
glDisable(GL_LIGHTING);
glDisable(GL_FOG);
glDepthFunc(GL_LEQUAL);
glDepthMask(GL_FALSE); // no depth buffer writing
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE ); // no color buffer drawing
glEnable(GL_STENCIL_TEST);
glEnable(GL_POLYGON_OFFSET_FILL);
glPolygonOffset(0.0f, 1.0f);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3,GL_FLOAT,sizeof(core::vector3df),&triangles[0]);
glStencilMask(~0);
glStencilFunc(GL_ALWAYS, 0, ~0);
// The first parts are not correctly working, yet.
#if 0
#ifdef GL_EXT_stencil_two_side
if (FeatureAvailable[IRR_EXT_stencil_two_side])
{
glEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);
#ifdef GL_NV_depth_clamp
if (FeatureAvailable[IRR_NV_depth_clamp])
glEnable(GL_DEPTH_CLAMP_NV);
#endif
glDisable(GL_CULL_FACE);
if (!zfail)
{
// ZPASS Method
extGlActiveStencilFace(GL_BACK);
if (FeatureAvailable[IRR_EXT_stencil_wrap])
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR_WRAP_EXT);
else
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR);
glStencilMask(~0);
glStencilFunc(GL_ALWAYS, 0, ~0);
extGlActiveStencilFace(GL_FRONT);
if (FeatureAvailable[IRR_EXT_stencil_wrap])
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR_WRAP_EXT);
else
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);
glStencilMask(~0);
glStencilFunc(GL_ALWAYS, 0, ~0);
glDrawArrays(GL_TRIANGLES,0,count);
}
else
{
// ZFAIL Method
extGlActiveStencilFace(GL_BACK);
if (FeatureAvailable[IRR_EXT_stencil_wrap])
glStencilOp(GL_KEEP, GL_INCR_WRAP_EXT, GL_KEEP);
else
glStencilOp(GL_KEEP, GL_INCR, GL_KEEP);
glStencilMask(~0);
glStencilFunc(GL_ALWAYS, 0, ~0);
extGlActiveStencilFace(GL_FRONT);
if (FeatureAvailable[IRR_EXT_stencil_wrap])
glStencilOp(GL_KEEP, GL_DECR_WRAP_EXT, GL_KEEP);
else
glStencilOp(GL_KEEP, GL_DECR, GL_KEEP);
glStencilMask(~0);
glStencilFunc(GL_ALWAYS, 0, ~0);
glDrawArrays(GL_TRIANGLES,0,count);
}
}
else
#endif
if (FeatureAvailable[IRR_ATI_separate_stencil])
{
glDisable(GL_CULL_FACE);
if (!zfail)
{
// ZPASS Method
extGlStencilOpSeparate(GL_BACK, GL_KEEP, GL_KEEP, GL_DECR);
extGlStencilOpSeparate(GL_FRONT, GL_KEEP, GL_KEEP, GL_INCR);
extGlStencilFuncSeparate(GL_FRONT_AND_BACK, GL_ALWAYS, 0, ~0);
glStencilMask(~0);
glDrawArrays(GL_TRIANGLES,0,count);
}
else
{
// ZFAIL Method
extGlStencilOpSeparate(GL_BACK, GL_KEEP, GL_INCR, GL_KEEP);
extGlStencilOpSeparate(GL_FRONT, GL_KEEP, GL_DECR, GL_KEEP);
extGlStencilFuncSeparate(GL_FRONT_AND_BACK, GL_ALWAYS, 0, ~0);
glDrawArrays(GL_TRIANGLES,0,count);
}
}
else
#endif
{
glEnable(GL_CULL_FACE);
if (!zfail)
{
// ZPASS Method
glCullFace(GL_BACK);
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);
glDrawArrays(GL_TRIANGLES,0,count);
glCullFace(GL_FRONT);
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR);
glDrawArrays(GL_TRIANGLES,0,count);
}
else
{
// ZFAIL Method
glStencilOp(GL_KEEP, GL_INCR, GL_KEEP);
glCullFace(GL_FRONT);
glDrawArrays(GL_TRIANGLES,0,count);
glStencilOp(GL_KEEP, GL_DECR, GL_KEEP);
glCullFace(GL_BACK);
glDrawArrays(GL_TRIANGLES,0,count);
}
}
glDisableClientState(GL_VERTEX_ARRAY); //not stored on stack
glPopAttrib();
}
void COpenGLDriver::drawStencilShadow(bool clearStencilBuffer, video::SColor leftUpEdge,
video::SColor rightUpEdge, video::SColor leftDownEdge, video::SColor rightDownEdge)
{
if (!StencilBuffer)
return;
disableTextures();
// store attributes
glPushAttrib( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_ENABLE_BIT | GL_POLYGON_BIT | GL_STENCIL_BUFFER_BIT );
glDisable( GL_LIGHTING );
glDisable(GL_FOG);
glDepthMask(GL_FALSE);
glShadeModel( GL_FLAT );
glColorMask( GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE );
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable( GL_STENCIL_TEST );
glStencilFunc(GL_NOTEQUAL, 0, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
// draw a shadow rectangle covering the entire screen using stencil buffer
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
glBegin(GL_QUADS);
glColor4ub (leftDownEdge.getRed(), leftDownEdge.getGreen(), leftDownEdge.getBlue(), leftDownEdge.getAlpha() );
glVertex3f(-1.1f,-1.1f,0.9f);
glColor4ub (leftUpEdge.getRed(), leftUpEdge.getGreen(), leftUpEdge.getBlue(), leftUpEdge.getAlpha() );
glVertex3f(-1.1f, 1.1f,0.9f);
glColor4ub (rightUpEdge.getRed(), rightUpEdge.getGreen(), rightUpEdge.getBlue(), rightUpEdge.getAlpha() );
glVertex3f( 1.1f, 1.1f,0.9f);
glColor4ub (rightDownEdge.getRed(), rightDownEdge.getGreen(), rightDownEdge.getBlue(), rightDownEdge.getAlpha() );
glVertex3f( 1.1f,-1.1f,0.9f);
glEnd();
if (clearStencilBuffer)
glClear(GL_STENCIL_BUFFER_BIT);
// restore settings
glPopMatrix();
glPopAttrib();
}
//! Sets the fog mode.
void COpenGLDriver::setFog(SColor c, bool linearFog, f32 start,
f32 end, f32 density, bool pixelFog, bool rangeFog)
{
CNullDriver::setFog(c, linearFog, start, end, density, pixelFog, rangeFog);
glFogf(GL_FOG_MODE, GLfloat(linearFog ? GL_LINEAR : GL_EXP));
#ifdef GL_EXT_fog_coord
if (FeatureAvailable[IRR_EXT_fog_coord])
glFogi(GL_FOG_COORDINATE_SOURCE, GL_FRAGMENT_DEPTH);
#endif
if(linearFog)
{
glFogf(GL_FOG_START, start);
glFogf(GL_FOG_END, end);
}
else
glFogf(GL_FOG_DENSITY, density);
if (pixelFog)
glHint(GL_FOG_HINT, GL_NICEST);
else
glHint(GL_FOG_HINT, GL_FASTEST);
SColorf color(c);
GLfloat data[4] = {color.r, color.g, color.b, color.a};
glFogfv(GL_FOG_COLOR, data);
}
//! Draws a 3d line.
void COpenGLDriver::draw3DLine(const core::vector3df& start,
const core::vector3df& end, SColor color)
{
setRenderStates3DMode();
glBegin(GL_LINES);
glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha());
glVertex3f(start.X, start.Y, start.Z);
glVertex3f(end.X, end.Y, end.Z);
glEnd();
}
//! Only used by the internal engine. Used to notify the driver that
//! the window was resized.
void COpenGLDriver::OnResize(const core::dimension2d<s32>& size)
{
CNullDriver::OnResize(size);
glViewport(0, 0, size.Width, size.Height);
}
//! Returns type of video driver
E_DRIVER_TYPE COpenGLDriver::getDriverType() const
{
return EDT_OPENGL;
}
//! Sets a vertex shader constant.
void COpenGLDriver::setVertexShaderConstant(const f32* data, s32 startRegister, s32 constantAmount)
{
#ifdef GL_ARB_vertex_program
for (s32 i=0; i<constantAmount; ++i)
extGlProgramLocalParameter4fv(GL_VERTEX_PROGRAM_ARB, startRegister+i, &data[i*4]);
#endif
}
//! Sets a pixel shader constant.
void COpenGLDriver::setPixelShaderConstant(const f32* data, s32 startRegister, s32 constantAmount)
{
#ifdef GL_ARB_fragment_program
for (s32 i=0; i<constantAmount; ++i)
extGlProgramLocalParameter4fv(GL_FRAGMENT_PROGRAM_ARB, startRegister+i, &data[i*4]);
#endif
}
//! Sets a constant for the vertex shader based on a name.
bool COpenGLDriver::setVertexShaderConstant(const c8* name, const f32* floats, int count)
{
//pass this along, as in GLSL the same routine is used for both vertex and fragment shaders
return setPixelShaderConstant(name, floats, count);
}
//! Sets a constant for the pixel shader based on a name.
bool COpenGLDriver::setPixelShaderConstant(const c8* name, const f32* floats, int count)
{
os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant().");
return false;
}
//! Adds a new material renderer to the VideoDriver, using pixel and/or
//! vertex shaders to render geometry.
s32 COpenGLDriver::addShaderMaterial(const c8* vertexShaderProgram,
const c8* pixelShaderProgram,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial, s32 userData)
{
s32 nr = -1;
COpenGLShaderMaterialRenderer* r = new COpenGLShaderMaterialRenderer(
this, nr, vertexShaderProgram, pixelShaderProgram,
callback, getMaterialRenderer(baseMaterial), userData);
r->drop();
return nr;
}
//! Adds a new material renderer to the VideoDriver, using GLSL to render geometry.
s32 COpenGLDriver::addHighLevelShaderMaterial(
const c8* vertexShaderProgram,
const c8* vertexShaderEntryPointName,
E_VERTEX_SHADER_TYPE vsCompileTarget,
const c8* pixelShaderProgram,
const c8* pixelShaderEntryPointName,
E_PIXEL_SHADER_TYPE psCompileTarget,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial,
s32 userData)
{
s32 nr = -1;
COpenGLSLMaterialRenderer* r = new COpenGLSLMaterialRenderer(
this, nr, vertexShaderProgram, vertexShaderEntryPointName,
vsCompileTarget, pixelShaderProgram, pixelShaderEntryPointName, psCompileTarget,
callback,getMaterialRenderer(baseMaterial), userData);
r->drop();
return nr;
}
//! Returns a pointer to the IVideoDriver interface. (Implementation for
//! IMaterialRendererServices)
IVideoDriver* COpenGLDriver::getVideoDriver()
{
return this;
}
//! Returns pointer to the IGPUProgrammingServices interface.
IGPUProgrammingServices* COpenGLDriver::getGPUProgrammingServices()
{
return this;
}
ITexture* COpenGLDriver::createRenderTargetTexture(const core::dimension2d<s32>& size, const c8* name)
{
//disable mip-mapping
bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS);
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false);
video::ITexture* rtt = 0;
if (name==0)
name="rt";
#if defined(GL_EXT_framebuffer_object)
// if driver supports FrameBufferObjects, use them
if (queryFeature(EVDF_FRAMEBUFFER_OBJECT))
rtt = new COpenGLTexture(size, FeatureAvailable[IRR_EXT_packed_depth_stencil], name, this);
else
#endif
{
rtt = addTexture(size, name, ECF_A8R8G8B8);
if (rtt)
{
rtt->grab();
static_cast<video::COpenGLTexture*>(rtt)->setRenderTarget(true);
}
}
//restore mip-mapping
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels);
return rtt;
}
//! Returns the maximum amount of primitives (mostly vertices) which
//! the device is able to render with one drawIndexedTriangleList
//! call.
u32 COpenGLDriver::getMaximalPrimitiveCount() const
{
return 65535;// TODO: Fix all loaders to auto-split and then return the correct value: MaxIndices;
}
//! checks triangle count and print warning if wrong
bool COpenGLDriver::setRenderTarget(video::ITexture* texture, bool clearBackBuffer,
bool clearZBuffer, SColor color)
{
// check for right driver type
if (texture && texture->getDriverType() != EDT_OPENGL)
{
os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR);
return false;
}
// check if we should set the previous RT back
bool ret = true;
setTexture(0, 0);
ResetRenderStates=true;
if (RenderTargetTexture!=0)
{
if (RenderTargetTexture->isFrameBufferObject())
{
RenderTargetTexture->unbindFrameBufferObject();
}
else
{
glBindTexture(GL_TEXTURE_2D, RenderTargetTexture->getOpenGLTextureName());
// Copy Our ViewPort To The Texture
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 0,
RenderTargetTexture->getSize().Width, RenderTargetTexture->getSize().Height);
}
}
if (texture)
{
// we want to set a new target. so do this.
glViewport(0, 0, texture->getSize().Width, texture->getSize().Height);
RenderTargetTexture = static_cast<COpenGLTexture*>(texture);
CurrentRendertargetSize = texture->getSize();
if (RenderTargetTexture->isFrameBufferObject())
{
RenderTargetTexture->bindFrameBufferObject();
}
}
else
{
glViewport(0,0,ScreenSize.Width,ScreenSize.Height);
RenderTargetTexture = 0;
CurrentRendertargetSize = core::dimension2d<s32>(0,0);
}
GLbitfield mask = 0;
if (clearBackBuffer)
{
const f32 inv = 1.0f / 255.0f;
glClearColor(color.getRed() * inv, color.getGreen() * inv,
color.getBlue() * inv, color.getAlpha() * inv);
mask |= GL_COLOR_BUFFER_BIT;
}
if (clearZBuffer)
{
glDepthMask(GL_TRUE);
mask |= GL_DEPTH_BUFFER_BIT;
}
glClear(mask);
return ret;
}
// returns the current size of the screen or rendertarget
const core::dimension2d<s32>& COpenGLDriver::getCurrentRenderTargetSize() const
{
if ( CurrentRendertargetSize.Width == 0 )
return ScreenSize;
else
return CurrentRendertargetSize;
}
//! Clears the ZBuffer.
void COpenGLDriver::clearZBuffer()
{
GLboolean enabled = GL_TRUE;
glGetBooleanv(GL_DEPTH_WRITEMASK, &enabled);
glDepthMask(GL_TRUE);
glClear(GL_DEPTH_BUFFER_BIT);
glDepthMask(enabled);
}
//! Returns an image created from the last rendered frame.
IImage* COpenGLDriver::createScreenShot()
{
IImage* newImage = new CImage(ECF_R8G8B8, ScreenSize);
u8* pPixels = reinterpret_cast<u8*>(newImage->lock());
if (!pPixels)
{
newImage->drop();
return 0;
}
// allows to read pixels in top-to-bottom order
#ifdef GL_MESA_pack_invert
if (FeatureAvailable[IRR_MESA_pack_invert])
glPixelStorei(GL_PACK_INVERT_MESA, GL_TRUE);
#endif
glReadPixels(0, 0, ScreenSize.Width, ScreenSize.Height, GL_RGB, GL_UNSIGNED_BYTE, pPixels);
#ifdef GL_MESA_pack_invert
if (FeatureAvailable[IRR_MESA_pack_invert])
glPixelStorei(GL_PACK_INVERT_MESA, GL_FALSE);
else
#endif
{
// opengl images are horizontally flipped, so we have to fix that here.
s32 pitch=newImage->getPitch();
u8* p2 = pPixels + (ScreenSize.Height - 1) * pitch;
u8* tmpBuffer = new u8[pitch];
for (s32 i=0; i < ScreenSize.Height; i += 2)
{
memcpy(tmpBuffer, pPixels, pitch);
memcpy(pPixels, p2, pitch);
memcpy(p2, tmpBuffer, pitch);
pPixels += pitch;
p2 -= pitch;
}
delete [] tmpBuffer;
}
newImage->unlock();
if (testGLError())
{
newImage->drop();
return 0;
}
return newImage;
}
//! Set/unset a clipping plane.
//! There are at least 6 clipping planes available for the user to set at will.
//! \param index: The plane index. Must be between 0 and MaxUserClipPlanes.
//! \param plane: The plane itself.
//! \param enable: If true, enable the clipping plane else disable it.
bool COpenGLDriver::setClipPlane(u32 index, const core::plane3df& plane, bool enable)
{
if (index >= MaxUserClipPlanes)
return false;
UserClipPlane[index]=plane;
enableClipPlane(index, enable);
return true;
}
void COpenGLDriver::uploadClipPlane(u32 index)
{
// opengl needs an array of doubles for the plane equation
double clip_plane[4];
clip_plane[0] = UserClipPlane[index].Normal.X;
clip_plane[1] = UserClipPlane[index].Normal.Y;
clip_plane[2] = UserClipPlane[index].Normal.Z;
clip_plane[3] = UserClipPlane[index].D;
glClipPlane(GL_CLIP_PLANE0 + index, clip_plane);
}
//! Enable/disable a clipping plane.
//! There are at least 6 clipping planes available for the user to set at will.
//! \param index: The plane index. Must be between 0 and MaxUserClipPlanes.
//! \param enable: If true, enable the clipping plane else disable it.
void COpenGLDriver::enableClipPlane(u32 index, bool enable)
{
if (index >= MaxUserClipPlanes)
return;
if (enable)
{
if (!UserClipPlaneEnabled[index])
{
uploadClipPlane(index);
glEnable(GL_CLIP_PLANE0 + index);
}
}
else
glDisable(GL_CLIP_PLANE0 + index);
UserClipPlaneEnabled[index]=enable;
}
} // end namespace
} // end namespace
#endif // _IRR_COMPILE_WITH_OPENGL_
namespace irr
{
namespace video
{
// -----------------------------------
// WINDOWS VERSION
// -----------------------------------
#ifdef _IRR_USE_WINDOWS_DEVICE_
IVideoDriver* createOpenGLDriver(const core::dimension2d<s32>& screenSize,
HWND window, u32 bits, bool fullscreen, bool stencilBuffer, io::IFileSystem* io, bool vsync, bool antiAlias)
{
#ifdef _IRR_COMPILE_WITH_OPENGL_
COpenGLDriver* ogl = new COpenGLDriver(screenSize, window, fullscreen, stencilBuffer, io, antiAlias);
if (!ogl->initDriver(screenSize, window, bits, fullscreen, vsync, stencilBuffer))
{
ogl->drop();
ogl = 0;
}
return ogl;
#else
return 0;
#endif // _IRR_COMPILE_WITH_OPENGL_
}
#endif // _IRR_USE_WINDOWS_DEVICE_
// -----------------------------------
// MACOSX VERSION
// -----------------------------------
#if defined(_IRR_USE_OSX_DEVICE_)
IVideoDriver* createOpenGLDriver(const core::dimension2d<s32>& screenSize,
CIrrDeviceMacOSX *device, bool fullscreen, bool stencilBuffer,
io::IFileSystem* io, bool vsync, bool antiAlias)
{
#ifdef _IRR_COMPILE_WITH_OPENGL_
return new COpenGLDriver(screenSize, fullscreen, stencilBuffer,
device, io, vsync, antiAlias);
#else
return 0;
#endif // _IRR_COMPILE_WITH_OPENGL_
}
#endif // _IRR_USE_OSX_DEVICE_
// -----------------------------------
// LINUX VERSION
// -----------------------------------
#ifdef _IRR_USE_LINUX_DEVICE_
IVideoDriver* createOpenGLDriver(const core::dimension2d<s32>& screenSize,
bool fullscreen, bool stencilBuffer, io::IFileSystem* io, bool vsync, bool antiAlias)
{
#ifdef _IRR_COMPILE_WITH_OPENGL_
return new COpenGLDriver(screenSize, fullscreen, stencilBuffer,
io, vsync, antiAlias);
#else
return 0;
#endif // _IRR_COMPILE_WITH_OPENGL_
}
#endif // _IRR_USE_LINUX_DEVICE_
// -----------------------------------
// SDL VERSION
// -----------------------------------
#ifdef _IRR_USE_SDL_DEVICE_
IVideoDriver* createOpenGLDriver(const core::dimension2d<s32>& screenSize,
bool fullscreen, bool stencilBuffer, io::IFileSystem* io, bool vsync, bool antiAlias)
{
#ifdef _IRR_COMPILE_WITH_OPENGL_
return new COpenGLDriver(screenSize, fullscreen, stencilBuffer,
io, vsync, antiAlias);
#else
return 0;
#endif // _IRR_COMPILE_WITH_OPENGL_
}
#endif // _IRR_USE_SDL_DEVICE_
} // end namespace
} // end namespace